16-5 Interference of Waves **16-5** Interference of Waves

reserved.

Principle of Superposition of waves

Let $y_1(x, t)$ and $y_2(x, t)$ be the displacements that the string would experience if each wave traveled alone. The displacement of the string when the waves overlap is then the algebraic sum

 $y'(x, t) = y_1(x, t) + y_2(x, t).$

This summation of displacements along the string means that

Overlapping waves algebraically add to produce a resultant wave (or net wave).

16-5 Interference of Waves **16-5** Interference of Waves

Two identical sinusoidal waves, $y_1(x, t)$ and $y_2(x, t)$, travel along a string in the positive direction of an x axis. They interfere to give a resultant wave $y'(x, t)$. The resultant wave is what is actually seen on the string. The phase difference *Φ* between the two interfering waves is (a) *0* rad or O^o , (b) *π* rad or 180° , and (c) $2/3 \pi$ rad or 120° . The corresponding resultant waves are shown in (d), (e), and (f). © 2014 John Wiley & Sons, Inc. All rights reserved.

$$
y_{1}(x_{1}+)-y_{m}sin(kx-\omega t)y_{2}(x_{1}+)-y_{m}sin(hx-\omega t+\phi)y_{2}(x_{1}+)-y_{1}(x_{1}+)+y_{2}(x_{1}+)y_{3}(x_{1}+)-y_{1}(x_{1}+)+y_{2}(x_{1}+)sin\omega + sin\beta = 2 sin\frac{\alpha+\beta}{2} cos \frac{\alpha-\beta}{2}y(x_{1}+)-2 cos \frac{\alpha}{2} sin(hx-\omega t+\phi/2)constant/2 sin 1\n $\phi = 0,2\pi, ... = 2\pi n$
\ndestm(dw:
\n $\phi = \pi, 3\pi, ... = 2\pi (n+\frac{1}{2})- \pi (2n+1)$
$$

 $\overline{\mathcal{L}}$

$$
y_{1}(x_{1}+)-y_{m}sin(kx-\omega t) \longrightarrow y_{2}(x_{1}+)-y_{m}sin(kx-\omega t) \longrightarrow y_{2}(x_{1}+)-y_{m}sin(kx+\omega t) \longrightarrow y_{2}(x_{1}+)-y_{1}(x_{1}+)+y_{2}(x_{1}+)
$$
\n
$$
sin\alpha + sin\beta = 2 sin\frac{\alpha + \beta}{2} cos \frac{\alpha - \beta}{2}
$$
\n
$$
y_{1}(x_{1}+)-2y_{m}sin(kx) cos(\omega t)
$$
\n
$$
y_{2}(x_{1}+)-2y_{m}sin(kx) cos(\omega t)
$$
\n
$$
y_{1}(x_{1}+)-y_{2}(
$$

© 2014 John Wiley & Sons, Inc. All rights reserved.

As the waves move through each other, some points never move and some move the most.

 $R = \frac{2\pi}{2}$

(a) A pulse incident from the right is reflected at the left end of the string, which is tied to a wall. Note that the reflected pulse is inverted from the incident pulse. (b) Here the left end of the string is tied to a ring that can slide without friction up and down the rod. Now the pulse is not inverted by the reflection.

16-7 Standing Wayes and Resonance **16-7** Standing Waves and Resonance

Standing Waves

•The interference of two identical sinusoidal waves moving in opposite directions produces standing waves. For a string with fixed ends, the standing wave is given by $\frac{\text{bisplacement}}{\text{Displacement}}$

Richard Megna/Fundamental Photographs

Stroboscopic photographs reveal (imperfect) standing wave patterns on a string being made to oscillate by an oscillator at the left end. The patterns occur at certain frequencies of **oscillation** lev & Sons, Inc. All rights

reserved.

$$
\lambda_{d} = U \qquad \overbrace{\frac{1}{k_{\text{max}}}} = \frac{U - T U}{\lambda}
$$
\nStandarding waves

\n
$$
U = \sqrt{\frac{g}{\lambda}}
$$
\n
$$
U = \sqrt{\frac{g}{\lambda
$$

16-7 Standing Wayes and Resonance **16-7** Standing Waves and Resonance

Harmonics

•Standing waves on a string can be set up by reflection of traveling waves from the ends of the string. If an end is fixed, it must be the position of a node. This limits the frequencies at which standing waves will occur on a given string. Each possible frequency is a **resonant frequency**, and the corresponding standing wave pattern is an oscillation mode. For a stretched string of length L with fixed ends, the resonant frequencies are

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved

$$
f=\frac{v}{\lambda}=n\,\frac{v}{2L},\quad \text{ for }n=1,2,3,\ldots.
$$

16 Summary

Waves

- **Transverse Waves**
- **.** Longitudinal Waves

Wave Speed

Angular velocity/ Angular wave number

$$
v=\frac{\omega}{k}=\frac{\lambda}{T}=\lambda f. \text{ Eq. (16-13)}
$$

WILEY

Sinusoidal Waves

. Wave moving in positive direction (vector)

 $y(x, t) = y_m \sin(kx - \omega t)$ **Eq.** (16-2)

Traveling Waves

• A functional form for traveling waves $y(x, t) = h(kx \pm \omega t)$ Eq. (16-17)

16 Summary

Powers

Average Power is given by

 $P_{\text{avg}} = \frac{1}{2}\mu v \omega^2 y_m^2$ **Eq. (16-33)**

Interference of Waves

Two sinusoidal waves on the same string exhibit interference

 $y'(x, t) = [2y_m \cos \frac{1}{2}\phi] \sin(kx - \omega t + \frac{1}{2}\phi).$ **Eq. (16-51)**

Standing Waves

The interference of two identical sinusoidal waves moving in opposite directions produces standing waves.

WILEY

 $y'(x, t) = [2y_m \sin kx] \cos \omega t$. **Eq.** (16-60)

Resonance

• For a stretched string of length L with fixed ends, the resonant frequencies are

$$
f = \frac{v}{\lambda} = n \frac{v}{2L}, \quad \text{for } n = 1, 2, 3, ...
$$

Eq. (16-66)

© 2014 John Wiley & Sons, Inc. All rights reserved.

17

Sound waves are longitudinal mechanical waves that can travel through solids, liquids, or gases.

Point S represents a tiny sound source, called a **point source**, that emits sound waves in all directions. A sound wave travels from a point source S through a three-dimensional medium. The **wavefronts** (surfaces over which the oscillations due to the sound wave have the same value) form spheres centered on S; the rays are radial to S. The short, double-headed arrows indicate that elements of the medium oscillate parallel to the rays.

The speed *v* of a sound wave in a medium having bulk modulus *B* and density *ρ* is

The leading face of the element enters the pulse. The forces acting on the leading and trailing faces (due to air pressure) are shown.

$$
\frac{A}{\frac{1}{2}}\sqrt{\frac{v}{v}} = \frac{9v}{1200} \text{ m} + \Delta v
$$
\n
$$
\frac{A}{v} = \frac{1}{2}x
$$
\n
$$
\frac{1}{2}x = \frac{1}{2}x
$$
\n
$$
f = \frac{1}{2}A - (p + \Delta p)A = -\Delta p \cdot A
$$
\n
$$
f = \frac{1}{2}A - (p + \Delta p)A = -\Delta p \cdot A
$$
\n
$$
\Delta v = 5\Delta x - 5A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = 5\Delta y = 5\Delta x \cdot A = 5A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = 5\Delta y = 5\Delta x \cdot A = 5A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = \frac{1}{2}A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = \frac{1}{2}A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = \frac{1}{2}A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = \frac{1}{2}A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = \frac{1}{2}A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = \frac{1}{2}A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = 5\Delta y = 5\Delta x \cdot A = 5A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = 5\Delta y = 5\Delta x \cdot A = 5A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = 5\Delta y = 5\Delta x \cdot A = 5A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = 5\Delta y = 5\Delta x \cdot A = 5A \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = 5\Delta y = 5\Delta x \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = 5\Delta y = 5\Delta x \cdot 0 + \Delta v \Delta t
$$
\n
$$
\Delta m = 5\Delta y \Delta t \cdot \Delta v \Delta t
$$
\n
$$
\Delta m = 5\Delta
$$

(a) A sound wave, traveling through a long air-filled tube with speed v, consists of a moving, periodic pattern of expansions and compressions of the air. The wave is shown at an arbitrary instant.

(b) A horizontally expanded view of a short piece of the tube. As the wave passes, an air element of thickness Δx oscillates left and right in simple harmonic motion about its equilibrium position. At the instant shown in (b), the element happens to be displaced a distance s to the right of its equilibrium position. Its maximum displacement, either right or left, is s_m .

reserved.

Displacement: A sound wave causes a longitudinal displacement s of a mass element in a medium as given by

$$
s(x,t)=s_m\cos(kx-\omega t).
$$

where s_m is the displacement amplitude (maximum displacement) from equilibrium, $k = 2\pi/\lambda$, and $\omega = 2\pi f$, λ and f being the wavelength and frequency, respectively, of the sound wave.

Pressure: The sound wave also causes a pressure change Δ*p* of the medium from the equilibrium pressure:

$$
\Delta p(x,t)=\Delta p_m\sin(kx-\omega t).
$$

 $S(x, t) = S_m cos(kx-\omega t)$
 $\Delta \varphi(x,t) = \Delta \varphi_m sin(kx-\omega t)$ $\Delta x \Delta \varphi_m$ $= -13 \frac{ds}{dx}$ $\boldsymbol{\mathsf{A}}$ Δ $\Delta V = A \Delta S$ $\Delta S = \underline{dS} = -S_m k sin(h \times \omega t)$ $V = A \cdot \Delta x$ λ $A.\Delta S$ BS_m ksin(hx-4) lχ $\Delta P =$ $U.95nk$ s 6 $R =$ © 2014 John Wiley & Sons, Inc. All rights reserved.

$$
\Delta P_{m} = 28Pa
$$
 1 $\sigma m = 10^{5}Pa$
\n
$$
S = 1.21kg/m^{3}
$$
 1 $\sigma = 343 m/s$
\n
$$
S_{m} = \frac{\Delta P_{m}}{\Delta S w} = \frac{28}{343.121.29.1000}
$$

\n
$$
S_{m} = 1.1 \times 10^{-5} m = 0.01 mm
$$

\n
$$
S_{m} = 1.1 \times 10^{-5} m = 0.01 mm
$$

\n
$$
S_{m} = 1.1 \times 10^{-11} m
$$
 69 H
\n
$$
S_{m} = 1.1 \times 10^{-11} m
$$
 69 H

© 2014 John Wiley & Sons, Inc. All rights reserved.

Two point sources S_1 and S_2 emit spherical sound waves in phase. The rays indicate that the waves pass through a common point *P*. The waves (represented with transverse waves) arrive at P.

Fully Destructive Interference (exactly out of phase)

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

If the difference is equal to, say, 2.5λ , then the waves arrive exactly out of phase. This is how transverse waves would look.

Fully Constructive Interference

(exactly in phase)

If the difference is equal to, say, 2.0 λ , then the waves arrive exactly in phase. This is how transverse waves would look.

© 2014 John Wiley & Sons, Inc. All rights reserved. reserved.

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

 $S_1(x,t) = S_m cos(hx-\omega t)$ $S_{2}(x, t) = S_{mCD}(hr, wt)$ $S_{\text{tot}} = S_{1} + S_{2} = 2 S_{m} cos(\frac{\phi}{2}) cos(hx - \omega t + \frac{\phi}{2})$ Amp lidude $1s_{tot}$ $l=$ $12s_{m}cos\frac{\phi}{2}$ $= 2\pi A$ **k** Songth com $= 2nT$ \mathbb{Z} X © 2014 John Wiley & Sons, Inc. All rights reserved.

Path Length Difference

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

• The interference of two sound waves with identical wavelengths passing through a common point depends on their phase difference there ϕ . If the sound waves were emitted in phase and are traveling in approximately the same direction, ϕ is given by

$$
\phi = \frac{\Delta L}{\lambda} 2\pi.
$$

where $ΔL$ is their **path length difference**.

• **Fully constructive interference** occurs when ϕ is an integer and multiple of 2π,

$$
\phi = m(2\pi),
$$
 for $m = 0, 1, 2, ...,$

and, equivalently, when ΔL is related to wavelength λ by

$$
\frac{\Delta L}{\lambda} = 0, 1, 2, \dots
$$
 (fully constructive interference).

• **Fully destructive interference** occurs when ϕ is an odd multiple of π ,

$$
\phi = (2m + 1)\pi
$$
, for $m = 0, 1, 2, ...$,

and, equivalently, when ΔL is related to wavelength λ by

$$
\frac{\Delta L}{\lambda} = 0.5, 1.5, 2.5, \ldots
$$
 (fully destructive interference).
\n
$$
\frac{\Delta L}{\lambda} = 0.5, 1.5, 2.5, \ldots
$$
 (fully destructive interference).