Lectures 11: Bootstrap |I.

error propagation for nonlinear functions of fit
parameters



loose ends from lecture 10: (degrees of freedom)



x2 distribution of the fitted parameters  from lecture 10

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Taylor series:
1 2(h) 0 1.2 1 |1 90X
— 35X (b) ~ T3 Xmin E(b - bO) §8bc9b (b - bo)

So, while exploring the y2 surface to find its minimum, we must also
calculate the Hessian (2nd derivative) matrix at the minimum.

Then
P(b|{y}) o< exp [—3(b — bg)"3, " (b — bo)] P(b)
with I
N2.2 17— covariance (or “standard error”) matrix
) - {%jbgb} — of the fitted parameters

Notice that if (i) the Taylor series converges rapidly and (ii) the
prior is uniform, then the posterior distribution of the b’s is
multivariate Normal



confidence intervals from lecture 10

What Ay? contour in v dimensions contains some percentile probability?

Rotate and scale the covariance to make it spherical.
(Linear, so contours still contain same probability.)

Now, each dimension is an independent Normal, and contours are labeled
by radius squared (sum of v individual #2 values), so Ay?~ Chisquare(v)
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what is the Degree of Freedom? from lecture 10

How is our fit by this test? 1

In our example, x?(bg) = 11.13 }”H { '
This is a bit unlikely in Chisquare(20), o ] k HL
with (left tail) p=0.0569. |

In fact, if you had many repetitions of the experiment, you would find that

their 2 is not distributed as Chisquare(20), but rather as Chisquare(15)!
Why?
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what is the Degree of Freedom? from lecture10

Degrees of Freedom: Why is y2 with /V data points “not quite”
the sum of N t2-values? Because DOFs are reduced by constraints.

First consider a hypothetical situation where the data has
linear constraints:

ti_yz'_,ui ~ N (0,1)

0;
joint distribution on all the t) = H tYoxexp | =1 E 12
t's, if they are independent p( ) , p( z) P 2 : ¢
(] (]

x? is squared distance from origin »_ t

Linear constraint: Z o;y; = C $<C> — Z Q;

C = Z%(Uz‘ti + 1)

So E oot = a hyper plane through the origin
’ e in t space!



what is the Degree of Freedom? from lecture 10

Constraint is a plane cut through
the origin. Any cut through the
origin of a sphere is a circle.

So the distribution of distance from origin is the same as a multivariate
normal “ball” in the lower number of dimensions. Thus, each linear
constraint reduces v by exactly 1.

We don't have explicit constraints on the y;’'s. But as the y's wiggle around
(within their errors) we do have the constraint that we want to keep the

MLE estimate b, fixed. (E.g., we have 20 wiggling y;'s and only 5 b/’s to
keep fixed.)

So by the implicit function theorem, there are M (number of parameters)
approximately linear constraints on the y;'s. So v = N — M , the so-
called number of degrees of freedom (d.o.f.).




what is the Degree of Freedom? from lecture10

Review: 1
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error on nonlinear functions of fitted parameters?

like error on b3*b5 ?



error on nonlinear function of fitted parameters?

What is the uncertainty in quantities other than the fitted coefficients:

|. Linearized error propagation

by is the MLE parameters estimate

b; = b — by is the RV as the parameters fluctuate

f=f®)=Ff(bo)+Vfbi+--
(f) = (f(bo)) + V£ _(b1) = f(bo)
(£2) = (£)* = 2f(bo)(Vf 4b1)) + ((Vf b1)?)
=Vf (bib] )VfT
=VfEVfT



Linearized error propagation

In our example, if we are interested in the area of the “hump”,

bfit =
1.1235 1.5210 0.6582 3.2654 1.4832

covar = 8 . -:'; :
0.1349 0.2224 0.0068 -0.0309 0.0135 o g;‘9y’f‘

0.2224 0.6918 0.0052 -0.1598 0.1585 S L3
0.0068 0.0052 0.0049 0.0016 -0.0094 g : e e
-0.0309 -0.1598 0.0016 0.0746 -0.0444 T A B
0.0135 0.1585 -0.0094 -0.0444 0.0948 T T T R R R

f = bsbs
vf — (0707b5707b3)

Vi EVFL = b23335 + 2b3b5 X35 + b2355 = 0.0336
v/0.0336 = 0.18

the one standard deviation

So b3b5 — 098 1 018 «— (1-c) error bar

Is it normally distributed?

Absolutely not! A function of normals is not normal (although, if they
are all narrow, it might be close).



Sampling the posterior histogram

Method 2: Sample from the posterior distribution

1. Generate a large number of (vector) b’s
b ~ MVNormal(bg, 33)

2. Compute your f(b) separately for each b

600

3. Histogram
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Note again that b is typically (close to) m.v. normal because of the CLT, but
your (nonlinear) fmay not, in general, be anything even close to normal!



Sampling the posterior histogram

Our example:

bees = mvnrnd(bfit,covar,10000);
humps = bees(:,3).*bees(:,5);
histChumps, 30);

std Chumps)
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Does it matter that | use the full covar, not
just the 2x2 piece for parameters 3 and 5?



comparison of linear propagation and posterior sampling:

Compare linear propagation of errors to sampling the posterior

 Note that even with lots of data, so that the distribution of the b’s
F\Ieally ? multivariate normal, a derived quantity might be very non-
ormal.

— In this case, sampling the posterior is a good idea!

* For example, the ratio of two normals of zero mean is Cauchy
— which is very non-Normall!.

* So, sampling the posterior is a more powerful method than linear
propagation of errors.

— even when optimistically (or in ignorance) assuming multivariate
Gaussian for the fitted parameters

* |In fact, sampling the posterior distribution of large Bayesian models
whose parameters are not at all Gaussian is, under the name
MCMC, the most powerful technique in modern computational
statistics.



bootstrap sampling

Method 3: Bootstrap resampling of the data

 We applied some end-to-end process to a data set
and got a number fout

« The data set was drawn from a population of
repetitions of the identical experiment

— which we don'’t get to see, unfortunately
— we see only a sample of the population

« We'd like to draw new data sets from the population,
reapply the process, and see the distribution of answers

— this would tell us how accurate the original answer, on average, was
— but we can’t: we don’t have access to the population

 However, the data set itself is an estimate of the population pdf!
— in fact, it’s the only estimate we've got!
 So we draw from the data set — with replacement — many “fake”
data sets of equal size, and carry out the proposed program
— does this sound crazy? for a long time many people thought so!

— Bootstrap theorem [glossing over technical assumptions]: The
distribution of any resampled quantity around its full-data-set value
estimates (naively: “asymptotically has the same histogram as”) the
distribution of the data set value around the population value.




bootstrap sampling

Let’s try a simple example where we can see the “hidden” side of things, too.

Visible side (sample): Hidden side (population):

These happen to be s
drawn from a
Gamma distribution.  socor
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Statistic we are interested in happens to be (it could be anything):

mean of distribution
median of distribution

sammedian = median(sample) themedian = median(bigsample)
sammean = mean(sample) themean = mean(bigsample)
samstatistic = sammean/sammedian thestatistic = themean/themedian
sammedian = themedian =

2.6505 2.6730
sammean = _ . themean =

2.9112 How accurate is this? 2.9997
samstatfstiqk;///// thestatistics =

1.0984 1.1222



bootstrap sampling
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Gamma distribution: ok

s r l"-.‘F(10.4) ]
= [\ ]
2 Lyt ]

x ~ Gamma(x, ). >0 8>0 T e ]
= 0.3 \ 7]

(04 - - \ T
{ - Gamma(3,1)
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p(x) =

[(a) ORI
L[ " N, N : -
01 ff ;7 ‘.‘f\\ .. 7 = - Chisquare(5) ]
i ST~ = Logronma(k1)_ _
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When « > 1 there is a single mode at x = (o — 1)/



bootstrap sampling

To estimate the accuracy of our statistic, we bootstrap

ndata = 100; new sample of integers in ndata = 100;

nboot = 100000; 1:ndata, with rep|acement nboot = 100000;

vals = zeros(nboot,1); vals = zeros(nboot,1);

for j=1:nboot, for j=1:nboot,
choose = randsample(ndata,ndata,true); sam = randg(3, [ndata 1]);
vals(j) = mean(sample(choose)) vals(j) = mean(sam)/median(sam);

/median(sample(choose)); end
end hist(vals,100)

hist(vals,100)
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Things to notice:
The mean of resamplings does not improve the original estimate! (Same data!)

The distribution around the mean is not identical to that of the population. But it is
close and would become identical asymptotically for large ndata (not nboot!).



