Phys 4C Fall 2019
Chapter 6 Solutions to Exercises

6.37.

6.40.

Off-center hole

The given setup is equivalent to the superposition of a complete solid rod with current
flowing into the page plus a smaller rod (where the hole is) with current flowing out of
the page. If the two current densities are equal and opposite, then there will be zero
current in the hole, in agreement with the given setup. Given the ratio of the areas of
the two circular cross sections, currents of 1200 A into the page and 300 A out of the
page will yield the given 900 A into the page. The large rod produces zero field on its
axis, so the desired field is due entirely to the smaller rod with 300 A coming out of
the page. The magnitude of the field is
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or 30 gauss, and it points to the left. A more remarkable fact (see Exercise 6.38) is
that the field is 30 gauss pointing to the left not only at P but everywhere inside the
cylindrical hole.

The pinch effect

If the conduction electrons are forced closer to the axis, there will be uncompensated
negative charge near the axis. This will generate an inward radial electric field E that
pushes outward on the electrons, preventing further constriction when the outward
electric force balances the inward magnetic force, that is, when eE = evB = E = vB.

The magnetic field at radius r is B, = pol,./2nr, where I,. is the current contained
within radius . Assuming no redistribution of the charge, I,. is given by I, = 7r?.J,
where J = nev is the current density (n is the number of electrons per unit volume,
and v is the drift velocity). The B field is therefore B, = po(mwr?nev)/2nr = pornev/2.

Suppose that the cloud of electrons at radius r is squeezed inward by a small distance
Ar. The cylinder of radius r will now contain, per unit length, an excess of negative
charge in the amount of AX = (ne)(2nr Ar); this is the volume charge density times
the cross-sectional area. This causes an inward electric field equal to E,. = AX/2regr =
ne Ar/ey. The condition for equilibrium in then (using pgep = 1/¢?)
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In solid conductors we always have v/c < 1. In metal conduction, v/c is seldom much
greater than 1071 so (Ar)/r ~ 107%° is too small to detect. In highly ionized gases,
however, the “pinch effect,” as it is called, can be not only detectable but important.

If the effect were large enough to measure, a Hall probe in the spirit of Fig. 6.33 could
be used, with one lead connected to the axis (by drilling a thin tube in the rod), and
the other lead connected to the surface of the rod. If v ~ 103 m/s and B ~ 1T,
the resulting £ ~ 1072 V/m would be large enough to generate a measurable voltage
difference.



6.44. Line integral along the axis

6.45.

The magnetic field on the axis is B, = poIb?/2(b* 4+ 22)3/2, so the given line integral

is (using the integral table in Appendix K)
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as desired. If you want, you can derive this integral with a trig substitution, z = btan 6.

To see why the integral along the axis should indeed be equal to pgl, consider the
closed path shown in Fig. 110, which involves a semicircle touching the points z = +r.
Assume that r > b. Along the z axis, B, behaves like 1/23 for z > b. And |B| also
behaves like 1/72 along the (large) semicircle. Accepting that this is true (see below),
then since the length of the semicircle is proportional to 7, the line integral along the
semicircle is at least as small (in order of magnitude) as r/r® = 1/r2, which goes to
zero as r — 0o. We can therefore ignore the return semicircular path. So the line
integral along the whole loop (which encloses a current I) equals the line integral along
the z axis, in the r — oo limit.

Let’s now argue why |B| behaves like 1 /72 for large r. Consider the point at the “side”
of the semicircle in Fig. 110. In order of magnitude, the field at this point, due to
the ring, is the same as the field due to a square with side b. But the field due to
the square has contributions from two opposite sides (the sides perpendicular to the
r vector) that nearly cancel, because the current moves in opposite directions along
these sides. The Biot-Savart law says that each side gives a contribution of order
1/r%. Taking the difference of these contributions is essentially the same as taking a
derivative, and the derivative of 1/72 is proportional to 1/7%, as desired. Additionally,
the two sides parallel to the r vector also happen to produce a contribution of order
1/r3; see Problem 6.14. At points in between the axis and the “side” point on the
semicircle, there will be various angles that come into play. But these simply bring in
factors of order 1 that morph the 1/23 result on the axis to the 1/73 result at the side
point, so they don’t change the general 1/r? result.

Field from an infinite wire

Consider a small piece of the wire at angle 0, subtending an angle df, as shown in
Fig. 111 If r is the distance from a given point P to the small piece, then Fig.112 shows
that the length of the piece is dl = rdf/ cos 8. But r equals b/ cos 8, so dl = bdf/ cos? f.
(This can also be obtained by taking the differential of | = btané.) In the Biot-Savart
law, the cross product between dl and t brings in a factor of sin ¢, which is the same
as cosf. If the current points rightward, then we have (with z pointing out of the

page)
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which agrees with the standard result obtained more much quickly via Ampere’s law.
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6.47.

6.48.

6.49.

6.50.

Field at the center of an orbit

The time for one revolution is t = 27 /v, so the average current is I = e/t = ev/2mr.
From Eq. (6.54) the field at the center of the orbit is therefore
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Fields from two rings

The Biot-Savart law is dB = (uo/47)I dl x #/r?. Consider corresponding pieces of the
two rings that subtend the same angle df. The dl for the larger piece is twice the dl
for the smaller piece. And the I for the larger ring is also twice the I for the smaller
ring, because I is proportional to the speed of the ring, which in turn is proportional
the radius, because the w’s are the same. These two powers of 2 in the numerator
cancel the two powers of 2 in the 72 in the denominator, so the fields at the centers
of the two rings are the same. This reasoning works for any ratio of ring sizes, of
course. In terms of the various parameters, you can show that the field at the center
is B = pgAw/2, which is independent of r, as we just showed.

Field at the center of a disk

Consider a ring with radius r and thickness dr. The effective linear charge density
along the ring is d\ = o dr. The speed of all points on the ring is v = wr, so the current
in the ring is dI = (dA)v = (o dr)(wr). From the Biot-Savart law, a small piece of
the ring with length dl produces a dB field at the center that points perpendicular to
the ring and has magnitude (pq/47)1 dl/r?. Integrating over the whole ring turns the
dl into 27r, so the field at the center due to the ring is (uo/4m)(ocwr dr)(2nr)/r? =
poow dr /2. Integrating over r (that is, integrating over all the rings in the disk) turns
the dr into an R, so the field at the center equals pgowR/2. It points perpendicular
to the disk, with the direction determined by the righthand rule.

Hairpin field

Each of the two straight segments contributes half the field of an infinite wire. (The
contributions do indeed add and not cancel.) The semicircle contributes half the field
of an entire ring at the center, which is given by Eq. (6.54). The desired field therefore
points out of the page and has magnitude
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6.55. Helmholtz coils

Let the symmetry axis of the setup be the z axis, and let the centers of the rings be
located at z = +b/2. If the currents in the rings are equal and point in the same
direction, then from Eq. (6.53) the field along the axis at position z is given by
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If we expand this function in a Taylor series around z = 0, the first derivative and all
other odd derivatives are zero at z = 0, because B,(z) is an even function of z, due
to the symmetry of the setup. So the function will be most uniform near z = 0 if the
second derivative is zero there. The deviations will then be of order z*. That is, the
Taylor series will look like B.(z) = B,(0) + Cz* + - --. Differentiating the first term
in Eq. (459) twice and evaluating the result at z = 0 yields
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The second derivative of the second term in Eq. (459) simply involves replacing b/2
with —b/2, so we end up with the same result, because there are no odd powers of b in
Eq. (460). We therefore see that the second derivative is zero at z = 0 if « = b. You
can show that if a = b, the field halfway from 2z = 0 to the plane of each ring (that is,
at z = £b/4) is only 0.4% smaller than the field at z = 0. And at z = £b/8 the field
is only 0.03% smaller. Two coils arranged with a = b are called Helmholtz coils.

A continuity argument shows why there must exist a point where the second derivative
of B,(z) equals zero. If the rings are far apart (for example, if b = 4a), then the plot
of B, consists of two bumps, as shown in Fig. 119. But if the rings are close together
(for example, if b = a/4), then they act effectively like one ring with twice the current,
so there is just one bump. The second derivative at z = 0 is positive in the former
case, and negative in the latter, so somewhere in between it must be zero.
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6.57. A rotating cylinder

6.73.

Eq. (6.57) gives the magnetic field inside an infinite solenoid as B = ugnl, where n is
the number of turns per unit length. The surface current density (per unit length) is
J =nl, so we can write the field as B = uyJ .

‘What is the current density in our rotating cylinder? The amount of charge that passes
a given segment of length £ on the cylinder in a time dt is dqg = of(v dt). The current per
unit length (that is, the surface current density) is therefore J = (1/€)(dq/dt) = ov.
In terms of the angular frequency, J equals cwR.

To find the field inside the rotating cylinder, we simply need to replace the current
density J = nl in the original solenoid formula with the present current density
J = owR. This yields a field of B = pgowR.

Hall voltage

Our strategy will be to find the current density, then the drift velocity, then the
transverse field, then the transverse (Hall) voltage. The current density is
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The drift velocity is then
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The induced electric field is Ey = vB = (39m/s)(0.1 T) = 3.9V/m. The Hall voltage
across the ribbon of width 0.002m is therefore (3.9V/m)(0.002m) = 7.8 - 1073V, or
7.8 millivolts. Symbolically, the Hall voltage equals V Bw/pLne, where w is the width.



