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Abstract

An overview of the random network model invented by Chalker and Coddington, and its generalizations, is
provided. After a short introduction into the physics of the Integer Quantum Hall Effect, which historically has
been the motivation for introducing the network model, the percolation model for electrons in spatial dimen-
sion 2 in a strong perpendicular magnetic field and a spatially correlated random potential is described. Based
on this, the network model is established, using the concepts of percolating probability amplitude and tunnel-
ing. Its localization properties and its behavior at the critical point are discussed including a short survey on
the statistics of energy levels and wave function amplitudes. Magneto-transport is reviewed with emphasis on
some new results on conductance distributions. Generalizations are performed by establishing equivalent Hamil-
tonians. In particular, the significance of mappings to the Dirac model and the two-dimensional Ising model
is discussed. A description of renormalization group treatments is given. The classification of two-dimensional
random systems according to their symmetries is outlined. This provides access to the complete set of quan-
tum phase transitions like the thermal Hall transition and the spin quantum Hall transition in two dimensions.
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The supersymmetric effective field theory for the critical properties of network models is formulated. The network
model is extended to higher dimensions including remarks on the chiral metal phase at the surface of a multi-layer
quantum Hall system.
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1. Introduction

At the end of the seventies of the past century, many thought that solid state physics had matured to
such a degree that practically everything important had been discovered. Superconductivity seemed to
be well understood with the transition temperatures ceasing to increase further. Semiconductor physics
had developed almost into an engineering discipline. No significant further progress of the field of solid
state physics was predicted for the foreseeable future. It was widely believed in the community that the
development more or less had come to an end. In this situation, a completely new and by no one foreseen
phenomenon was discovered in the magneto-transport properties of a commercial electronic device, the
Silicon MOSFET. Thdnteger Quantum Hall Effeatas found.

This experimental discovery, together with several others that came roughly at the same time, opened
a completely new area of solid state research and during the forthcoming years initiated a truly novel
view on the field of condensed matter. This concerns the quantum mechanical properties of disordered
and interacting electronic solid state systems on mesoscopic scales of which the Quantum Hall Effect is
only one example, though a very prominent one. Until today, researchers in the field of the Quantum Hall
Effect continue to produce new surprises, perhaps not on daily, but certainly on monthly time scales. In
many cases, these concern only at first glance the smaller area of the quantum Hall phenomenon. Often
as in the case of the fractional Quantum Hall Effect, the discovered phenomena later turn out to be of
much wider importance than foreseen at the time of their discovery.

In this review articl@ we want to describe one example of such a development, namely the discovery
and further development of a theoretical model which originally was designed to describe a special aspect

2|n contrast to the short overview that has been published earlier [B. Kramer, S. Kettemann, T. Ohtsuki, Physica E 20
172 (2003); cond-mat/0309115], the present article is supposed to provide a much more self-contained—as much as it is
possible—overview of the derivation of the network model and its quantum mechanical properties, amended by some recent
results. Much emphasis is on generalizations of the model and many connections to other models and descriptions of quantum
phase transitions, especially in two dimensions.
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of the integer Quantum Hall Effect, namely the localization—delocalization quantum phase transition in
a Landau band in the limit of long-range randomness. Later, the model—although at first glance very
specialized and restricted—has been shown to be able to account for many phenomena in a much wide
class of systems, namely the disorder-induced quantum phase transitions in seathofghe different
presently considered disordered systems. The model, invented by Chalker and Coddington in 1988,
describes aandom networlof currents.

In the following sections of this introductory section, we first provide shortly some insight into,
and understanding of the integer Quantum Hall Effect as it has been originally detected. Our consid-
erations will be based on the so-called localization model. This is used for describing some funda-
mental physical aspects of the Integer Quantum Hall Effect, the interplay between a high—so-called
quantizing—magnetic field, and the disorder in the system due to impurities. This interplay can lead
to a localization—delocalization transition in a two-dimensional electronic system. To the best of our
present knowledge, this appears to be a paradigm of a gequamgum phase transitionfogether
with the gauge argument first proposed by Laughlin, this can explain not only the very existence of
plateaus in the Hall conductivity as a function of the electron density, and the simultaneous vanishing of
the magneto-conductivity, but also the quantization in integer unitd 0f. The Chalker—Coddington
network model is now widely accepted as one possibility for describing the fundamental physics be-
hind the quantum Hall phase transition. While the latter is nevertheless still waiting for a complete
and quantitative theoretical description with predictive power, especially including the precision as-
pect, the network model of Chalker and Coddington seems to have acquired more fundamental
importance also in other fields of solid state physics like superconductivity and magnetism, as will be
seen below.

1.1. The discovery of the Quantum Hall Effect

The Quantum Hall Effect has been discovered by Klaus von Klitzing in 1980 when working as a
guest researcher at thiigh Magnetic Field Laboratorpf the Max-Planck-Gesellschaft in Grenolflg
(Fig. 1). He was investigating the electronic transport in a Silicon MOSFET subject to a high magnetic
field of about 18T flux density at temperatures near 1 K. To his great surprise, he found that the Hall
resistanceRy—the ratio between the Hall voltage across the two-dimensional electron inversion layer in
the transistor, and the source—drain curreht=(1 1 A)—shows extremely well-defined plateaus when
changing the gate voltadgy. In the gate voltage regions of these Hall plateaus, he found the longitudinal
magneto-resistance to be vanishingly small. Most strikingly, he was able to identify the values of the Hall
resistances of the plateaus as integer fractiors ot

RH=1£2 (j=1223,...). (1)
je
Here,his the Planck constant amthe elementary charge.

Klaus von Kilitzing found that the relative uncertainty of the plateau values was much better than
107° in the very first experiments. Thus, as a surprise, despite of the presence of strong disorder
and electron interactions in the MOSFET, the effect appeared to be very promising for measuring the
Sommerfeld constanat= (upco/2)(e?/ h) (co = 299 792 458 ms! speed of light in vacuumyy = 4n x
10~"NA~2 permeability of vacuum) independently from optics. Also, von Klitzing immediately real-
ized the importance of his finding for metrological applications, i.e. the realization, dissemination and
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Fig. 1. The Integer Quantum Hall Effet]. The Hall voltageU (left axis) shows plateaus in regions of the gate voltege
where the source drain voltagk(right axis) is vanishingly small. The experiment was done on a Si-MOSFET of lengtimd00
and width 5um atB = 18T and at a temperatufe= 1.5K.

maintenance of the “Ohm?”, the unit of the electrical resistance. Eventually, this led to the re-definition
of the “Ohm” in terms of thevon Klitzing constankk = 258128085 in 1990. Meanwhile, the exper-
imental reproducibility of the quantized values of the Hall resistance has been improved to values better
than 10°°. This is of special importance in view of the metrological applicatif?}s Some excellent
reviews about the Integer Quantum Hall Effect can be found in the literf8u6a.

The discovery of the von Kilitzing effect stimulated intense experimental and theoretical research
in many international laboratories. A particularly important discovery was made only 2 years later by
the group of Tsui, Stormer and Gossard at Bell Laboratdrigdn this experiment, a GaAs/AlGaAs-
heterostructure which contained the dopant impurities only far from the electron inversion layer was used.
As a consequence, these samples had a very high electron mobility in the inversion layer at the interface
of a few hundred thousand &Vs. The researchers detected quantization of the Hall conductivity at
fractional multiples o&2/ h at temperatures of a few 0.1K.

By improving the sample fabrication technology, more and more such additional fractional features
were uncovered. Hitherto, electron mobilities of more thaj000, 000 cn?/Vs have been achieved and
several dozens of the fractionally quantized features in the Hall resistance (and their counterparts in the
magneto-resistance) are known nf8}. They have been associated with hierarchies of novel correlated
electron states induced by the electron—electron intera@ielil]. The existence of these states goes far
beyond the traditional phenomenological Fermi liquid picture for electrons in metallic systems. Thus, the
Fractional Quantum Hall Effedhas opened a new field in the physicsofrelatedelectrons, but is not
the subject of this review article.
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1.2. The localization model

According to the theory of the classical Hall effect the Hall resistivity of independent particles with
the chargee is a monotonic function of the magnetic flux dendgyand the number density, of the
charges. This can be easily seen by using the Drude friction model for diffusion of charges in external
crossed electric and magnetic fie[dg]. It yields for the components of the conductivity tensor

g0

= ————— . Oyy = WBTOyy - (2)
1+ (wp1)? ’

Oxx
Here,oq = ezner/m* is the Drude conductivity. The mean free timef the particles due to scattering is
assumed to contain all microscopic processes. The effectivemiassntains the effect of the lattice of
atoms and interactions. The quantity =eB/m™ is the cyclotron frequency. The resistance components
are obtained by inverting the conductivity tensor

Oxx Oyx
= 5, = —n—_ 3

Pxx O_)zcx T O%x Pxy O_)%x T O_gx ( )

For strong magnetic field¥ — o0) 6., & B~2t~1 — 0. Correspondingly, sincg,;, # 0, the magneto-
resistivityp,, « axx — 0. The Hall resistivity is

1 B
Pxy =PH= —— = —. (4)
Tyx en,
As the von Klitzing experiment contradicts this result, it is clear that the quantum nature of the two-
dimensional electron system in the MOSFET subject to the high magnetic field must be the reason for
the quantization of the Hall resistivity at sufficiently low temperatures.
For the Landau model for a single spinless electron in two dimensions in a perpendicular homogeneous
magnetic fielBB =V x A, the vector potential given in the Landau gayége (0, Bx, 0), the Schrddinger
equation is

Hoyp(x, y) ==

A 2
(i—v+€A> ‘//nk(x’ y):Enkwnk(xv y) - (5)

2m*

It is solved by the Landau states

1 .
(6, ylnk) = Y, ) = —75 €0 (= Xi) (6)

whereX; = —kﬁ% and{p := /fi/e B the magnetic length. The eigenvalues are the Landau levels

Enx = tog (n + %) . (7

They are associated with the normalized eigenfunctions

¢n X) = nl/zan! p 2@% n ZB
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with the Hermite polynomial$?, (n =0, 1, 2, 3, ...). The Landau states are degenerate with respect to
the wave numbek with a degree per unit area of
_eB B

np = 7 = EO ;

the density of flux quant&p=h/e, in the system. This degeneracy can be easily understood by considering

the maximum possible number of Landau wave functions (Eq. (6)) that can be contained in a system of
the sizeL? [12],

9)

X = 7 ng=1L. (10)

An important quantity is thélling factor which is defined by the ratio of the electron number density
and the density of flux quanta,

vp =2 (11)
ng

Integer filling factors'g = j correspond then tpcompletely filled Landau levels. At the corresponding
electron densities, the Hall resistance is an integer fractidn &% (cf. Eq. (4)).

However, this doesotexplain the existence of the wide plateaug i(.) since upon increasing,
the Fermi level jumps between the Landau levels. In order to generate the observed wide plateaus, it is
necessary to keep the Fermi level continuously varpieigveerthe Landau levels when changing but
withoutchanging the resistivity values of the plateaus.

A mechanism that can account for this pinning without affecting transport is localization of the wave
functions due to disorder induced by the presence of the impurities in the gii@et®b] By introducing
randomness into the Landau model of Eq. (5),

H=Ho+ V() (12)

the degeneracy of the Landau levels is removed. Héce), is a randomly varying potential which is
usually defined via its statistical properties. The Landau levels are broadened into Landau bands by the
disorder, with localized eigenstates occurring in the band tails. These localized states can pin the Fermi
level at the corresponding eigenenergies. A qualitative picture of the density of states of such a model
Hamiltonian is shown irfrig. 2

Localized states correspond to random wave functions with envelopes that are exponentially decaying
at large distances from some localization cefitér17] This implies exponentially decaying correlation
functions which indicates that the localized states cannot contribute to dc-transport at zero temperature.
This means that the magneto-conductivity, and correspondingly the magneto-resistivity, vanish for filling
factors corresponding to the energy regions of the localized states, while the Hall conductivity, and
correspondingly the Hall resistivity, stay at a constant value.

On the other hand, non-localized—extended—states near the band centers, which do not decay ex-
ponentially and are spread randomly across the entire system, can account for electron transport. For
filling factors close to half integer numbers, which correspond to the energy regions near the centers
of the Landau bands, one expects peaks in the magneto-resistivity with widths that reflect the widths
of the energy regions of the extended states. Simultaneously, the Hall resistivity is expected to change
from one plateau value to the next. Often, these spectral regions are denotedmessibleince the
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Fig. 2. Schematic picture of the density of states (full line, arb. units) and the localization lengths (dashed line, arb. units) as a
function of the energy (in units of the cyclotron energy) in the localization model. When introducing a static random potential
into the Landau model, Landau levels are broadened into bands consisting of “incompressible” spectral regions that corresponc
to localized states in the band tails, and “compressible” regions of effectively delocalized states (shaded) near the band centers
In the latter regions, the localization length exceeds the systenh siiefinite temperature, the system size is replaced by the
temperature-dependent phase coherence ldngth

Fermi energy hardly changes with increasing electron number while the localized states are associatec
with incompressible spectral regiomghere the Fermi level strongly changes when varying the electron
number18].

As long as the Fermi level stays within the region of localized states, the zero temperature conductivity
components are not changed. Assuming that the extended states provide the correctly quantized value
of the Hall conductivity, and simultaneously a vanishing magneto-conductivity, one obtains the experi-
mentally observed behavior of the conductivity. Howeweat the Hall conductance remains correctly
quantizedexactlyat integer multiples 0é2/ i in the regions of localization, needs closer consideration.
Laughlin’s gauge argument, which we will shortly discuss below, is supposed to provide an explanation.

All of the analytical and numerical results obtained until recently are consistent with the picture that
at the absolute zero of temperature the localization length diverges only at specific energies close to the
centers of the Landau bands with a universal exponeittich is independent of the specific form of the
randomness and the band ind&®,20],

QE—-E)=———17, (13)

where the constari, depends on microscopic details of the randomness and on the Landau band index
n. It will be one of the main tasks of the following sections to explain this critical behavior in some detail.

Table 1contains a representative selection of the exponents determined numerically. If the exponent
were universal the quantum Hall effect could be considered as a paradigm of a genuine universal quanturn
phase transition.

An important issue is how to detect this critical exponent in an experiment. As in an experiment
the size of the two-dimensional electron system is finite, it is intuitively clear that the singularities of
the localization length near the band centers cannot be resolved. Furthermore, at non-zero temperature
inelastic processes will lead to phase breaking scatterings between different eig¢h8taw@srl he latter
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Table 1

Critical exponents of the quantum Hall phase transition in the lowest Landau band obtained by various theoretical methods
v Model Method Reference

00 Short-range impurities Self-consistent perturbation [21]

~ Peierls tight binding Transfer matrix scaling [22]

~ 2.0 Short-range impurities Recursive Green function [23,24]

2.35(3) Random Landau matrix Recursive Green function [19,20]

2.3(1) Random Landau matrix Recursive Green function [25]

2.4(2) Random Landau matrix Recursive Green function [26]

2.4(1) Finite range impurities Chern number scaling [27]

~ 23 Spin—orbit scattering Thouless number scaling [28]

~2 Double layer system Thouless number scaling [29]

~2 Random matrix model Scaling of level statistics [30]

2.5(5) Chalker—Coddington Transfer matrix scaling [31]

2.4(2) Random saddle points Transfer matrix scaling [32]

2.5(5) Chalker—Coddington type Real space renormalization [33]

2.39(1) Chalker—Coddington type Real space renormalization [34-36]

2.5(4) Super spin chain Density matrix renormalization Obtained {8}
2.33(3) Counter-propagating chiral Fermions Monte Carlo [38]

Numbers in parentheses denote the uncertainty in the last digit of the exponent.

can be described by a mean, temperature-dependent phase breaking(fimehich can be assumed
to increase with decreasing temperature according to

1
with an exponenp of order 1. During the time intervals, the electron can be considered as moving
diffusively under the influence of the impurity scattering. This suggests to define a phase coherence length

Ly(T) = /Dry(T) (15)

with a disorder-induced diffusion constdhthat is related to the dc-conductivity via the Einstein relation
o = e2D(EF)p(Er) wherep(EF) is the density of states at the Fermi level.

In order to connect the singular behavior of the localization length with the results of a transport
experiment it is important to note that a localized state appears extended if its localization length does
exceed the system sizeor, at non-zero temperature, the above phase coherence lepdffig. 2).

This implies that the widths of the peaks in the magneto-conductivity at the centers of the Landau bands
are given by the conditio(AE) = min{L, L(T)}. The resulting characteristic temperature behaviors
[19,20]have been found to be consistent with experimental k2a44}

One still needs an argument as to why the Hall conductance is exactly quantized at integer multiples
of ¢2/h in spite of the presence of the impurity potential. Such an argument has been pioneered by
Laughlin[45]. The idea is to relate the current in an ideally metallic cylinder, subject to a homogeneous
magnetic field perpendicular to the cylinder’s surface, to the change of the total electronic Exeygy
when adiabatically changing a magnetic flux piercing the cylinder along its axis3jfig.

_AE

I=—.
AP

(16)
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Fig. 3. lllustrating Laughlin’s gauge argument: introducing a magnetic#lalong the axis of the cylinder corresponds to a shift

of the wave number in azimuthal direction b9/#L. A change of the gauge flux by® = & corresponds to a shift of exactly
27/L. This leads to a corresponding shiftif) that is equivalent to transferring one electron per Landau band from one edge
of the cylinder to the other that corresponds to a change in enekgyf

Introducing a gauge flu@ along the axis of the cylinder corresponds to a shift of the wave number in
azimuthal direction by ® /4L . This can also be considered as a change in the boundary condition.

A change of the flux by\®@ = &g corresponds to a shift of exactly: 2. and leads to a corresponding
shift in X; (cf. Eq. (6)) that is equivalent to transferring one electron per Landau band from one edge of
the cylinder to the othet. When occupying Landau bands, a transfer joélectrons is associated with
one flux quantum. Due to the presence of a Hall voltégeacross the cylinder, the Landau levels are no
longer degenerate, but on a straight line with a slope given by the Hall electrié¢figld (Fig. 4). The
energy change caused by the flux change is f¥r= jeU, and the Hall current

Wi
I=j—Uy, (17)
h

consistent with integer quantization of the Hall conductance.

As presented, the argument seems to hold only for the ideal Landau Hamiltonian applied to a system
of finite width. However, it can also be used in the presence of dis¢2@¢r To understand this, one
has to have in mind that on the one hand, by definition, localized states are insensitive to changes in the
boundary conditions or, equivalently, flux changes. On the other hand, the flux sensitivity of the extended
states is enhanced, in order to compensate for the localized RBatgd7-50] This compensation is
assured to be exact such that the final result for the current is the same as in Eq. (17).

Despite there exist several experimental features apparently related to electron int¢bdeti®] it
seems that the integer quantization of the Hall conductance can be understood within the localization
model without taking into account the correlations between the eledspns

On the other hand, for explaining the fractionally quantized Hall effect, interaction and correlation
effects are generally accepted to constitute the necessary ingredients for generatixgjttion gaps

3 Strictly speaking, for a two-dimensional system with periodic boundary conditions in one direction and fixed boundary
conditions in the perpendicular direction, one finds a non-degenerate energy spectrum that differs from the Landau spectrum by
the presence of edge staf&2,46] However, for the present qualitative argument, this is not important.
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Fig. 4. Long-range correlated random potential obtained as superposition of randomly placed Gaussian potentials with a width
Lc=2¢ g and some examples of eigenfunctions. (a) gray scale plot of the potential landscape with equipotential lines indicated,;
white: high potential, black: low potential; (b)—(d) the moduli of a selection of characteristic wave functions corresponding to
(b) a low energy in the tail of a Landau Band, localized in a deep potential valley; (c) an intermediate energy in the Landau
band, still localized and following mainly an equipotential line; (d) an energy near the center of the Landau band, extending
essentially along equipotential lines, occasionally inter-connected via tunneling near the saddle points of the potential (indicated
by arrows).

between the many-electron ground states associated with rational filling factors. Nevertheless, in order
to generate the fractionplateausn the Hall conductivity, disorder is believed to be essential in pinning
the chemical potential, in close analogy to the Integer Quantum Hall Effect.
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1.3. Plan of the article

In summary, the Quantum Hall Effect—consistent with all of the presently available experiments—
seems to be an exact and very fundamental phenomenon. One needs for its physical understanding, ar
in particular for a theory with predictive power, not only interactions and correlations in a two-dimensional
many-body system but in particular, and somewhat counter-intuitively—in view of the precision
aspect—the presence of a certain amount of disorder. It is one of the main purposes of this article to
review our present understanding, why, in spite of and due to the disorder, the Quantum Hall Effect
is the most exact phenomenon known in low-dimensional electron systems. We will restrict ourselves
to thelntegerQuantum Hall Effect, ignoring interactions completely.

Especially, we will discuss the localization concept by introducing the so-called random network model
originally invented by Chalker and Coddingt@8il] in order to describe the localization of quantum
states in a random potential with long-range spatial correlations in the presence of a strong, “quantizing”
magnetic field. Later, we will discuss several generalizations of the network model which underline the
general importance of the phenomenon.

We will proceed in the following sections by pursuing a strategy which we hope will enable non-
specialists in the field to understand the main ideas in a self-contained way. We will always start from
elementary accessible facts that form the background of more complicated relations before we eventually
describe to some extent the issues that are more at the frontier of present research. As the field has bee
and still is, extremely rapidly growing, we cannot guarantee that all of the available results have been
included, especially the most recent ones. We have attempted our best to include at least references to &
of the important results. We apologize in advance to all colleagues, whose research efforts might not be
sufficiently highlighted according to their importance or even not be included at all.

The plan of the paper is as follows. In the next section, the so-called percolation model for an electron
in a spatially slowly varying random potential landscape is introduced in some detalil. It can be viewed as
the backbone of the random network model. If itis supplemented by quantum effects, it can be considered
as a precursor of the random network model of Chalker and Coddington for describing localization in
the presence of a quantizing magnetic field.

The latter will be introduced in Section 3. In Section 4, the localization properties of the model will
be discussed in some detail. Strangely enough, technical difficulties seem to have prevented a high-
precision determination of the critical exponent up to now for the original Chalker—Coddington random
network model. Section 5 contains some results for the transport properties, especially near the quantun
critical point.

In Section 6, we investigate the renormalization group approach for describing the critical properties in
some detail. Especially, we will emphasize here that one can use this as a starting point for the definition
of a truncated Chalker—Coddington model which can be treated numerically exactly and allows for
determining the critical exponent with high precision.

Sections 7, 8, 9 and 10 contain extensions to a number of equivalent Hamiltonians, to systems with
other symmetries, and to an equivalent field theoretical formulation of the random network model of
Chalker and Coddington, respectively. In these sections, we have attempted to provide some flavor of the
power and importance of the model in fields other than the quantum Hall phase transition. While we will
review much numerical and experimental evidences for the universality of the quantum Hall transition,
any attempts to classify it, like other two-dimensional phase transitions, based on the conformal invariance
at the critical point have failed so far.
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In Section 10 we review a very recent suggestion, namely that the quantum Hall critical point may
belong to a new class of critical points being described by a supersymmetric conformal field theory
[60,61] This is based on the fact that an anisotropic version of the Chalker—Coddington model as well
as the random Landau model at the critical point can both be mapped on the Hamiltonian of a chain of
antiferromagnetic superspin chains. We review its derivation, and the progress which has been achieved
towards the characterization of the quantum Hall transition that way, although an analytical calculation
of its critical exponents is still missing.

Generalizations to several layers and higher dimensions are briefly discussed in Section 11 before we
conclude by summarizing the status of the field and comment on possible future developments.

2. The percolation model

We start by describing the physics of the so-called percolation model for the Quantum Hall Effect. In
this model, which is valid in the limit of gery high magnetic fieldhe quantum mechanical wave functions
are assumed to percolate along the equipotential lines of a slowly varying random potential landscape, in
analogy to a classical percolating fluid in a random syg&2h Using this picture of a percolating wave
function, one can understand why localized wave functions may exist, and, in particular, why there may be
isolated critical points in the energy spectrum of the Hamiltonian where the localization length diverges.
This high-field limit is often denoted as the classical percolation limit, although what is percolating is
probability amplitude and not a classical fluid. In the quantum mechanical version of the model, tunneling
of probability amplitude between the equipotential lines is taken into account whenever they get close
to each other in space. In this version, the necessary competing ingredients—quantum tunneling and
interference—are included such that a generic universal guantum mechanical localization—delocalization
transition can be described.

The percolation model provides the physical background of the Chalker—Coddington network model—a
generic model which is assumed to describe Winésersal quantum mechanical properties of non-
interacting electrons in two dimensions in the presence of a random potential subject to a strong perpen-
dicular magnetic field.

2.1. Wave functions in a spatially correlated random potential in a strong magnetic field

The origin of the random potential in the plane of the inversion Iayér, y) of the electrons in a
GaAs/AlGaAs heterostructure or a MOSFET transistor is the impurities in the semiconductor material,
especially as a consequence of the doping. These impurities are distributed randomly at some distance
from the inversion layer. Thus, only the Coulomb tails of their potentials do influence the dynamics of
the charges. This implies that the distribution of the potential en&rgy y) is long-range correlated
in space. For convenience, we assume in the following that the spatial average of the random potential
vanishes. This can always be achieved by a suitable choice of the zero of energy. For the correlator
we assume

VO, y)V(x, y) = W2CH' —x,y — ), (18)
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with the correlation functiod’ (x, y) having an exponential or Gaussian decay lerigthuch longer than
the magnetic lengthg. Itis also assumed that the probability distribution of the poten®igV, (x, y)] is
symmetric and homogeneous, i.e. independent of the origin of coordinate system.

Fig. 4shows an example of such a long-range correlated random potential, together with several exam-
ples of the corresponding wave functions. They were obtained by solving numerically the Schrodinger
equation

[Ho + V(xvy)]!//v(x7 y):Elev(xsy) (19)

in the basis of the Landau states. An important characteristic feature to be kept in mind is that the wave
function amplitudes are essentially non-zero only along equipotential lines of the potential. In addition,
when two equipotential lines get close to each other near a saddle point of the potential, the amplitude
becomes highcrosshe saddle point. This can be taken as an indication of quantum tunneling as indicated
in Fig. 4 by arrows.

The qualitative features of the wave functiong-ig. 4 may be taken as the motivation for introducing
the concept of a percolating probability amplitude which we will now describe. The resulting model
is important because it allows for qualitative understanding of localization in two-dimensional electron
systems in the presence of a strong magnetic field. It allows also to understand why, within each Landau
band, there must be an energy where the localization length diverges. This energy corresponds to the
percolation critical point at which the wave function can percolate throughout the entire system. The
basic physical ingredients of the percolation model may then be used to establish as an idealized versiol
the random quantum network which allows for systematically dealing with certain universal localization
and transport phenomena, especially in the quantum Hall critical regime.

In order to introduce the essential idea, we consider the Schrodinger equation (19) in tligstidjt
that can always be achieved for very large magnetic figldy> oo [63]. In this limit, we will eventually
also fulfill the conditioniwp > W such that the disorder-induced mixing of the Landau bands can be
neglected.

It is of advantage to introduce new coordingte$3,64]

2
X=—k2, y=—iz L ._tBp (20)
ax T

They are called center-of-motion coordinates. This is reasonable Xiicthe center of the Gaussian
wave packet in the-direction of the Landau states (Eg. (6)). Furthermore, one observe§dpak)?
plays the role of y”) by calculating the matrix elements of in the Landau stateg (nteger). At finite
magnetic field, the electrons can be viewed as describing cyclotron orbits with £gdinsund the center
of motion. For¢ g < ¢ the diameter of the cyclotron orbit becomes vanishingly small suclitha) can

be replaced by center of motigi, Y).* The center-of-motion coordinates fulfill commutation relations
similar to position and momentum operators,

(X, Y]=il3 . (21)

4 Note that this limit has to be taken only after the thermodynamic limit oo has been performed which is necessary to
makeX a continuous variable.
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We start by writing the solutions of the Schrédinger equation for the system of thie isizee represen-
tation of the Landau states

Y, y) =) Ca(—L5h)(x, y) =Y (xylnX) Ca(X) . (22)
nk nX
This gives
Z(E Sx.x' + (nX|V|nX")Cp(X') = ECH(X) (23)

with inter-Landau band couplings neglected as a consequence of the high-field limik omdthe energy
E, of the Landau level omitted due to degeneracy, and the Kroneckerdgejta The potential matrix
elements are

(nX|VinX') fdx dyd, (x — X)V(x, 1), (x — X)&? X=X/, (24)

Since the potential is slowly varying on the scald pfit may be expanded into a power series near some
arbitraryyo(x) in EQ. (24). With this, one easily verifies that

/dyV(x,y)eiy(X_XW% =V( 'E%dx) /dye_ly(x O (29)

Finally, the integration with respect tomay be approximated by assumings X in the potential since
at high magnetic fieldg, (x — X)|? can be assumed to be very well localized néavithin a distance
£p. Now Eq. (23) becomes

VX, Y(X)NC(X)|x=x' ® EC(X) . (26)

Here,E is the energy corresponding to the equipotential line, and the indexs been suppressed.
Furthermore E, has been assumed to be the zero of the energy. This is justified since the distance
between the Landau bands increase8 and the disorder broadening of the bands is aaly/B such
that at high field the couplings between the bands due to disorder can be neglected.

The random Schrddinger equation (26) can approximately be solved by using the semi-classical WKB
(Wentzel-Kramers—Brillouin) Ansatz

X
C(E,X)O(exp[—i/ dX/k(E,X/)} , (27)

neglecting the derivatives of the local wave numbéE, X) with respect toX. This is possible for
sufficiently smooth randomness such that second order, and higher-order derivatives in the expansion
may be omitted. Under these assumptions, the dispeksionX) fulfills

E =VI[X, (2k(E, X)] . (28)

This establishes a most remarkable result, namely that the eigenfunctions can be considered as the
superpositions of the Landau states that are associated with the equipotential line associated with the

energyE.
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2.2. The form of the semiclassical wave functions

The general form of these wave functions which propagate on the equipotential lines may be conjectured
by considering the elementary example of a two-dimensional harmonic poténtial) = Vo(x2 + y2).
This represents approximately the situation far from the Landau band center near a local minimum or
maximum of the potential. Of course, this model can be solved exactly. However, it is instructive to look
at it using the above percolation viewpoint.

The equipotential lines are the circla® + ¢3k%(E, X) = E/ Vo := e By applying Eq. (26) and
calculatingC(X) from Eq. (27) one obtains

C(X) x exp|:—i2€7"; arcco{%> i X T — X2:| . (29)
B m

T o2
2%

The energy is given by the condition th@tX) must be a periodic function of. This implies for the
closed integral over the equipotential circle

e

%dX’k(E, X = 6—2'" = 2mm  (mintege) . (30)
B

This is consistent with the result one obtains for the lowest Landau level in the symmetric gauge with the
definition Vg := eZB§/8m*, andm being the angular momentum quantum nun{bé&t.

By inserting the result equation (29) into the expression for the wave function equation (22) one gets
for JZ% <hwp/ Vo, i.e. neglecting the inter-Landau level coupling, an expression for the wave function
which is a reasonable approximation %y ,/e,, <1,

em iX (x — X)?
5 Em - 2 T~ 5
U(x, y) « /_ dax exp|: 26% (Zy + vV X )} exp|: ZZ%

€m

2
202

x exp{—~kﬁlwm(xd} (31)

with ¢,, (X) = arcco$X/./e,). Approximate evaluation of the integral gives

Y(x, y) oc exp |:—|x—z} exp |:—i2(y +Ven — xz)z} g tkmu (32)
205 805
The wave number correspondsidp := m/,/e,; andu = ¢, /e, is the azimuthal coordinate on the circle
with the radius,/e,,. The phase factor mediates a gauge transformation to the symmetric gauge. The
Gaussian factor localizes the wave function along the circle within an interval of the aidlti2¢ 5.
This suggests that in general the wave functions corresponding to the equipotential lines can be written
in the form[66,67]

W(x, y) o f(v)gru (33)

with a local wave numbek(u, v) that depends on coordinatesand v which parameterize the dis-
tance along and perpendicular to the equipotential Wiiie, y) = E, respectively. The functiorf (v) is
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Fig. 5. (a) Scheme of a potential profile near the local potential minimum, and (b) the current density of a state localized along
an equipotential line. The current density circles within a region of diamétgraound the equipotential line. Only the net
current flows along the equipotential line.

non-vanishing only within a region of the approximate widghalong this line. Locally, the wave function
has the form of a wave propagating along the equipotential line. This is associated with an equilibrium
current density

j o i*eu|f<v>|2ﬁx(u, v) (34)
m

that yields a net current along the equipotential line

firc(u,
j o ic(u, v) 6 . (35)

m*

Perpendicular to the direction of the current density obviously must vanish (FBp.Classically, the net
current is produced by the cyclotron motion of the electron which drifts along the equipotential line in
the strong magnetic field and the local electric field of the potential that is directed perpendicular to the
equipotential line (Fig5). This visualizes that only superpositions of those Landau states can contribute
to the eigenstates which are located near the equipotential line at the corresponding eigenenergy.

The quantum mechanical problem of solving the Schrédinger equation of a particle in a high magnetic
field and a random potential has thus been replaced by the task of finding the equipotential lines in the
random potential landscape. This corresponds to a classical percolation pf6BleRecently, another
connection between quantum Hall plateau transitions and percolation, based on the classical limit of
quantum kinetic equations, has been discu$s@ 0]



228 B. Kramer et al. / Physics Reports 417 (2005) 211342
2.3. Localization in the percolation limit

The localization properties in this limit of a very strong magnetic field may now be easily discussed
[66,71] Consider the smoothly varying landscape of the random potential4fF-igvhen the energy is
very low (or very high), the corresponding equipotential lines are closed trajectories captured within the
minima (or maxima) of the potential (Figb). When the energy increases, these closed trajectories begin
to meander around several of the minima (or maxima) (#y.

The wave functions that correspond to these equipotential lines are necessarily localized superposition:
of Landau states. They are localized exponentially as has been sh¢v#].i@nly at a certain critical
energy, sayE, close to the center of a Landau band, an equipotential line can percolate through the whole
system. Only at this energy the wave function can propagate throughout the entire system in the limit
of infinite system size (Figdd). The energ\E. corresponds to the percolation threshold of the classical
percolation problem. For symmetric distribution of the poteni#dly) = P(—V), the critical energy is
at the center of the Landau barfg; = 0.

Thus, the percolation picture allows immediately for a very important conclusion: since the percolating
equipotential lines are closed for all energies except the critical energy of the percolation threshold, all
of the wave functions must be localized except for the one associated with the critical energy.

Let us define the localization length(E) as the correlation length of a percolating equipotential line.
Then, percolation theory says thg{(|E — E¢|) must increase according to a power law|As— E¢|
decreases,

Ep(E — Eo) o , (36)

|E — Ec|'™®

with a universal exponenp = 4/3 that has been calculated exagi].

2.4. Tunneling correction to the percolating wave functions

When two equipotential lines get close to each other near a saddle point of the potential, tunneling
processes will occur. In order to determine the localization length, these have to be taken into account
[74]. For a symmetric distribution of the potential, the tunneling, however, will not change the position
of the critical energy.

A general definition of the localization length in terms of the Green functi¢h7p

1 . (INIG(r, v E)])
WV E = —_—= I _— 37
B = i) T e =T 37)

with (. ..) denoting the ensemble average with the above probability distribution of the potBnttag

well known[75—79] that in weakly disordered systems, definedghs- 1, wherd is the disorder induced

mean free path ankk the Fermi wave number, the disorder averaged electron wave function amplitude
(y(x, 1)) decays on length scales of the order o$ince the random phase shifts associated with the
scattering at the impurities are averaged out. This destroys the information on multiple scattering, and thus
onlocalization. In order to describe localization, itis therefore necessary to average over disorder functions
containing higher moments of the propagaBiike the expression used in Eq. (37). Furthermore, it is
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well established that this quantity is self-averaging, namely its ensemble average coincides with its most
probable valug17] in the thermodynamic limit. Therefore, one can calculate instead of the ensemble
average the spatial average for a given realization of the random potential. We will now use this definition
of the localization length for estimating the correction to the critical expongndf the percolation
model due to tunneling at the saddle points of the potential.

Using the above implicit dispersion relation, Eq. (28), we first determine the Green function in the
mixed representatio(X, k(Eg, X)) whereEg denotes the energy of an equipotential line,

1
E — Eo(k,X) —in’
with » a positive infinitesimal real number. By Fourier transforming with respekoioe can determine

the behavior of the Green function along thaxis which is sufficient for estimating the asymptotic
behavior aty| — oo,

G(X, k(Eo, X); E) = (38)

1 .
GX. ¥ E) = / dke O G(X. ki E) | (39)
s
one obtains
G(X,y: E) Zefikj(E,X)y _ Zefi Rek;yg=Imk;(E.X)|y| ’ (40)
J J

wherek; (E, X) are the complex roots of Eq. (28) for givérand E = Ep. The asymptotic exponential
decay of the Green function foy| — oc is given by the spatial average of the smalleskht, X) > 0,

WE) = <mjn Imk;(E, X)> . (42)

d P
As described above (compdfa. 4), we need to consider saddle point regions of the random potential
nearE¢, since predominantly it will be here where the wave functions are connected between different
equipotential lines via tunneling, and for the critical behavior, energies cla8gdoe important. Near a
saddle point{ Xy, ko), the potential can be expanded (Fa.

V(X, £2k) = Ec — a®(X — X0)? 4 b%02 (k — ko)? . (42)

FromE =V (X, E%k) one obtains the solution

1 2
k_kozi%\/E—EchaZ(X—xo) . (43)

Due to symmetry, it is sufficient to consider, sayx< Ec. Then, Imk = 0 only for Ec — E > a%(X — Xg)?

Imk(E, X) = %/EC — E —a?%(X — Xp)?. (44)
B

Averaging this with respect t& yields

Xy
W(E) « f dX\/EC —E—a?X —X0)? x Ec— E (45)

with X1 = Xo &+ +/Ec — E /a.
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Fig. 6. Equipotential trajectories of a saddle point potential for an energy below the saddle point potential. Dashed lines:
equipotential lines exactly at the energy of the saddle point; shaded: region with potential energy higher than the saddle point
energyEc (after[80]).

The asymptotic exponential decay for energies iaan be estimated by using the following heuristic
argument. The equipotential lines representing the wave functions form percolation clusters with an energy
dependent correlation lengtih(E) ~ |E — Ec|~%3. Delocalization of the wave functions associated
with these clusters can occur via tunneling through the saddle points that connect different equipotential
clusters. The number of saddle points will be proportional to the size of the clusters at Eneegyely
x ¢p(E). Thus, the probability of finding the saddle point with the smallegtenergye connecting two
adjacent clusters will bég/ép(E). The saddle point with themallesty will dominate the asymptotic
behavior of the wave functions. All of the contributions of the other saddle points will be exponentially
suppressed with the diameter of the clusters. Therefore, we finally can write for the average inverse
localization length the power law

- 4/3
WE) x ——|E — E E — Ec[3t1 46
Y(E) o éP(E)| cl o< | cl ( )

According to this qualitative argument, the critical exponent of the localization length in a quantum Hall
system including the effect of quantum tunneling should ke7/3, without interactions.

It has taken considerable theoretifB,20,23,81-83hnd experimentgdB9-42] efforts to determine
quantitatively this exponent for two-dimensional disordered Landau system without interaction. The most
accurate numerical values obtained so fana#e2.35+ 0.03 by using a random Landau matrix model
[20], v = 2.33 £ 0.03 from a Monte Carlo calculation for chiral fermiof@8], and a renormalization
group approach based on a random network medel.39 + 0.01 [34-36] (cf. Table 1. Numerical
investigations were done for a variety of completely different models, including white [iis23] as
well as long-range correlatdd1,82] randomness and including also higher Landau b§2a83] All
of the results are consistent with these values within error bars. This strongly suggests that the critical
exponent of the quantum phase transition associated with the Quantum Hall Effect is indeed universal,
and does not depend on the microscopic details of the modePugdthough the near coincidence of

5For very long range correlated randomness there recently seems to be evidenchamate$84].
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this exponent with the value/3, as obtained from the simple heuristic argument outlined above, seems
compelling we caution that an analytical derivation of the critical exponents at the quantum Hall transition
is still lacking. Recent progress towards achieving this goal is reviewed in Section 10.

3. The random network model

Theresults obtained inthe above discussed high-magnetic field limit may be used not only for estimating
the critical behavior but also as a starting point for constructing a model that contains all of the necessary
physical ingredients—backscattering and tunneling—for describing the quantum critical points near the
centers of the Landau levels and the corresponding transport quantities. If the critical behavior could be
shown to be universal such a model should be of great importance. This would be especially true, if one
could use the model as a starting point for more rigorous theoretical formulations.

As argued above, percolation of probability amplitude along equipotential lines as well as tunneling of
amplitude between equipotential lines near the saddle points of the potential have to be taken into account
on an equal footing when determining critical properties. This suggests to construct a model consisting
of a regular lattice of saddle points that are connected via links along which probability amplitude can
propagate.

3.1. The scattering wave functions associated with a saddle point

Before doing so, it is instructive to consider saddle point tunneling more formally from the scattering
point of view, and establish an exact expression for the transmission probability. As a side remark, we
note that this is yet another illuminating example of a quantum wave function that can be treated exactly
in the high magnetic field limit80].

The most simple saddle point is defined by the quadratic potential considered in the previous section
with equal coefficienta? = b% = U [80]

Vsp(x,y):Ec—l—U(yz—xz) . (47)

The classical trajectories in such a potential for energies bé&lgare shown irFig. 6. For the corre-
sponding quantum mechanical wave functions the considerations of the previous sections apply when
neglecting tunneling between the trajectories. This can be justified for energies well below (or well above)
E:. However, wherE =~ E. this is no longer the case.

The total Hamiltonian including the saddle point

2
i
H = Hp + Vsp(x, y) = (TV + €A) + Vsp(x, y) (48)

2m*
is quadratic in the variables. It can be diagonalized in analogy with in the case of the two-dimensional
harmonic oscillator.

However, here we follow the very illuminating method used80]. For the vector potential, we
assume the symmetric gauge= (B/2)(—y, x). We perform first a unitary transformation that brings
the Hamiltonian into a separable form.
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By introducing the new variables

X 0
= — +lg— , 49
“ 253 + Bax ( )
y 0
=4+ 4{lp— , 50
ay ZEB + B ay ( )
that fulfill the commutation relations
lay, all = [ay, a;r] =1, (51)
.t 0 52
lax, ay] =[ay,ay] =0, (52)
the Hamiltonian becomes
hw hw
H = TB(aIax + a;ray + 1)+ TiB(aIay — a;rax)
+9l(ay +al)® — (ax + a))?] + Ec , (53)

wherey = UE%. The unitary transformation

<ax>_<icos¢ sing )(b1> (54)
ay) \—sing —icos¢) \by) "’

with tan(2¢) = —#wg /4y, transforms the Hamiltonian into a sum of two independent tefing1, bI)
andHy(by, b)),

OB 4o
Hi=(b; by)| 4 hog ( b%) , (55)
y T8 o) \™1
4
OB | o
fiop _ )
Hy=(by; bp)| 4 hoop ( b%) : (56)
-y — +#hQ 2
4
wherefiQ = /2 + (fiwp /4)?, and
Ty Ty
[b1, b2l = [b1, b31 =0 . (58)

These can be diagonalized by a Bogoliubov transformation,

bi\ _ (coshy; sinh0; (c; (59)
b )~ \sinho; cosho; ) \c]) "

]
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with tanh(201) =y~ 1(—#iwp /4+7Q), and tanli20,) :y(ﬁw3/4+h9)‘1, which gives for the Hamiltonian

H=E (cf + cf) + E; <c§c2 + %) + Ec, (60)
with

[cr, el =lca, chl =1, (61)

[c1. c2] = [c1. ¢}] =0 (62)

and the energy eigenvalues

Elz\/w/z— (f’“—B—m)z, (63)
4

2
i
Ey= 2\/<% + m) 2, (64)

Finally, we introduce variables

X=—=(cp—c1), s= —2(62 +c2) .

V2i V2 (65)
P = i(cJr +c1), p= i(Cz —c)
\/E 1 ’ \/Ei 2
and obtain
H = Hy + Hy = Ex(P? — X?) + 3 Eo(p® + 5%) + Ec (66)
with the commutation relations
[X, Pl=1s, pl=1i, (67)
[s,X]=I[s,Pl=[p,X]=[p, P]1=0. (68)

Thus, apart from the factdi% /f in Eq. (20), H1 corresponds to the center-of-motion part of the total
Hamiltonian, andH> is a one-dimensional harmonic oscillator which implies that the wave function is
harmonically confined in the direction ef

The eigenfunctions of the Hamiltonian can now be factorized

Y(X, ) =X, (s) , (69)

wherey,, corresponds to theth harmonic oscillator level.
In order to arrive at a scattering solution of the Schrédinger equation, we prepare a initial wave packet
at(X?) ~ (P?)> 1. Since

% =V2(11 X — Pos), % V2(BLP + 22p) (70)

B B
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with
s =cospe ¥ g =—singe” (i=12), (71)
we have asymptotically

N o

~

a1 B

Sincefiop >7, f1/%1 ~ —1, and the wave packet is centered near an asymptote of the equipotential line
of Vgpin the upper left quadrant of the, y)-plane Fig. 6).

In order to find the transmission probability, we need now to construct a scattering wave function. The
eigenfunctionp satisfies

H1¢(X) = E1(P? — X?)¢(X) = [E — (n + 3)E2 — Ecl¢(X) , (73)

or equivalently

2
(g2 + X2+ ) o0 =0 (74)

with the energy parameter

In the limit of high magnetic fieldE> = #wp and E1 = y. Thereforee measures the energy deviation
from the saddle point energy. in a Landau band normalized by a typical potential strength.
This Schrédinger equation is discussed in detdi8B]. The eigenfunctions even and oddXrare

; 1+iel|l].
b, —e X2p (22 2]ix2) |
* 4 |2
- 3+ie|3].
b_ = Xe X/2p (% E‘IXZ) , (76)

whereF is a confluent hypergeometric function. For laige they can be written in the form

r1/2) o i(1/2)Z

400 =175 Lrzrx)dX 2 yec.,
d_(X) = %e‘wmf f(z5: x)xeX*2 4 cc . (77)

with the definitionsf (z; X) = |X|™%, Z_ = (3+ie)/4,Z, = (1 +ie) /4.
The currents in these states are related to the derivatives

%eiin/ZziXeﬂ:ixz/Z. 78)
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Therefore, each first term in Egs. (77) corresponds to a currents in the pgsiiigztion. The conjugate
complex term represents a current in the nega¢ideection.

These solutions are linearly superpos¢d—= A®d, + B®_, to form the scattering wave functions
which must fulfill boundary conditions such that f&r> 0 only a transmitted wave function exists with
the current flowing away from the origin. This leads to the relation

ATAID sy gD gaws_ (79)
Ir(zy) Ir(z*)

One finds after some algebra for the transmitted wave for large valués<dl

_ oare8ix22 | T2 _ie TG/ _izys
p(X) = f(Zy; X)e /% [A—F Beies 5 2 (80)
and for the incoming wave
vy Cvvare/8amix?2 | LA/ e TB/2) jane
¢i(X) = f(Zy; X)e e [A—F(Zi)e B—F(Zi)e . (81)

This guarantees that f&f > 0 no incoming wave exists. The transmission probability is defined by

e (X)]2

T(e) = lim . 82
X—o0 |j(—X)|? (62)

One gets from the above equations by using the relations far-foactions

1 3 V2n
r)*=r* r\=+iy|r(-—iy)= 83
@ @, <4 + Iy) <4 Iy) coshry +isinhzy ' (83)
the final result
1
T(e) = ——— . (84)
1+ exp(—mne)

Fore — —o0, well below the saddle point energy, the transmission probability vanishes. The incoming
wave is completely reflected. For~ +o0, the transmission probability approaches unity. Exactly at the
saddle point energy,= 0, one hag'(0) = 1/2. For energies near the saddle point, one can expand

1 =
T ~ — — .
(e) 2+46+ (85)

3.2. Parameterizing the scattering at a saddle point

As we have seen, the percolating wave functions of the electron carry an equilibrium current den-
sity. Near the points where percolating wave functions approach each other closely, quantum tunneling
takes place.

A natural model for the description of the percolating quantum states can then be obtained by consid-
ering a network of current loops, occasionally inter-connected via tunneling near the saddle points of the
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Fig. 7. (a) Potential landscape near a saddle point with adjacent maxima (full equipotential lines) and minima (dashed equipotential
lines). (b) The corresponding idealized potential landscape with incongipgud y3) and outgoing , andy,) current
amplitudes flowing along equipotential lines. Note that the saddle point energy is denoted fgre by

potential (Fig.4). The simplest choice is a regular network. Disorder can be introduced either by ran-
domizing the relative phases of the current loops and/or the heights of the saddle points. The distribution
of the wave function amplitude is then closely related to that of the corresponding quantum currents and
the asymptotic behavior is essentially determined by the coherent interplay of the quantum transmission
and scattering near the saddle points.

Let us consider the region close to a specific saddle pointEgayhe potential landscape can be
modeled by two neighboring adjacent potential maxima and minima{f-ile assume that the directions
of the currents along the equipotential lines in the potential minima and maxima are clockwise and counter
clockwise, respectively. Let us consider energies clBseThere are four equipotential lines that enter
the region of the saddle point. The total current entering and leaving the saddle point region must be
conserved (Fig7).

The effect of the saddle point potential can be considered as a quantum transmission problem as
described abovi1]. In more simplified terms, we assume that the amplitudes which correspond to the
currents on the boundary of the saddle point region/are .y, with the amplitudes of incoming and
outgoing currentg, Y3 andy,, 4, respectively. The formal relationship between them can be described
by a scattering matris,

2 2
=S . 86
<¢4) <lﬂ3) (86)

In general, thes matrix can be written a86,87]

e’z 0 —r t\ /€1 0
S:( 0 eiw)(t r)( 0 ei(P3> ! (87)
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where 0<r <1,0<r<1,r2 + 2 =1, andr? ands? are the probabilities of the currepi to be reflected
to Y, and to be transmitted t@,, respectively. Note that the current conservation relation implies

W12 + Wal? = [Wol® + |4l (88)

which is always valid due to the unitarity of the scattering ma®ix

For iterative numerical calculations, it is useful to introduce the transfer matthat is equivalent
to S. It relates the amplitudes on the lefiy;, )T, to those on the right-hand side of the saddle point,
(Y4, ¥3)" (T denotes the transposed).

()="() e

Using Egs. (86) and (87) one finds the result

(€7 0\ (Lt r/t\ [ O
T_<0 é(”3)(r/t 1/;)(0 em)- (90)

For completeness, we only mention here, that due to the current conservatiorg &wenatrix T must
fulfill the symmetry condition (cf. Section 9)

e . (1 0
J=TUT with J_<O _1) . (91)
It is useful to relate the present description to the microscopic saddle point model introduced above. By
using Eq. (91), and imposing the correct asymptotic behavior from the scattering geontégrydrone

can write the reflection and transmission amplitudasdt in terms of a single parameter

1
= 92
" coshe (92)
and by the current conservation relatios /1 — r2,
t =tanheo . (93)

Eq. (90) can be written in terms of the varialale
+_ (€% 0 (cotanhe cosecto) (€’ 0
~ \ 0 €% )\ cosect® cotanhe 0 €
(€9 0\ (coshe’ sinhe'\ (€91 0 (94)
~\ 0 €7 )\sinh@ coshe’ 0 d%2)°
©' ando being related via

sinh@sinhe’ =1. (95)

By comparing with Eq. (84) one finds that the dimensionless paramatarst depend monotonically on
the energy of the equipotential line. It characterizes completely the transmission properties of the saddle
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point. FOrE < Ec andE > E¢, @< 1(r = 1) and@> 1(r ~ 1), respectively. This is because for< E¢,

Y1 & Yo for almost allyz3 andy,, and forE > E¢, 1 =~ 4. One can determine the energy dependence
of @ by comparing with the above microscopic result near0 where7 (0) = 1/2 := 1|2 = tanf @

and expanding fo® ~ @ since the model is only suitable for the region near the saddle point energy,
E¢. One finds (cf. Eq. (85))

e

2./2

with the saddle point value. = In(1 + +/2).

The characteristic feature of this model for the transmission through a saddle point is that incident and
transmitted channels are locally separated. The interplay between the saddle point potential and the higl
magnetic field introduces a spatial separation of the incoming and outgoing channels. This makes the
model particularly suited for describing the critical localization features in the quantum Hall region.

O(e) ~ O¢ + +.. (96)

3.3. Establishing the random network of saddle points

Starting from the smooth random landscape of the potential, the network model could now be defined
from a random system of circular, localized wave functions of the type Eq. (33), equivalent to circular
equilibrium currents. These would correspond to states associated with randomly distributed sites. For
technical convenience, however, it is preferable to assume the circular wave functions to have random
phases and being associated with the sites of a regular lattice. In addition, it is reasonable to assum
that nearest-neighbored wave functions are connected by tunneling contacts described by the abowv
transfer matrice§ (cf. Eq. (90)). This enables the particles to hop from one circular state to another.
A delocalization mechanism for the total wave function is introduced in this way.

The model constructed is the analogue at high magnetic field of a two-dimensional Anderson model
for a disordered systeli7,88,89] The site states of the latter are replaced by the circular currents of
the former, and the hopping amplitudes by the unitary transfer matrices. As in the Anderson model, the
network contains the necessary competing ingredients—Ilocalization within the circular current states and
tunneling between them—for describing a localization—delocalization phase transition. In the case of the
Anderson model, there is no phase transition in two dimensions. As we have already seen above, the
present network model must show a singularity in the localization properties which represents a quantum
phase transition point. This will be discussed in more detail in the next section.

But let us first complete the model by providing a more formal description, especially suitable for
numerical work. We consider a two-dimensional rectangular geometry Witlx 2L current loops on a
square lattice (FigB8). The structure of the current flow near the nodes describesl isyrotated byr/2
as compared with that of the nodes describe&Klyig. 8). We have

()= (%) @

with the n/2 rotated scattering matrix

e91 0 —t r\ (€2 0
s=(%" &) (7 1) (% o) 8)
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Fig. 8. Left: the network model in the quantum Hall regimeand— indicate the hills and valleys of the potential, respectively.
The scattering at the saddle points is characterize8 imatrices,S andS'. The arrows indicate the directions of the guiding
center motion. Right: the scattering describe@bgliffers from that ofSby /2 rotation in the incoming and outgoing channels;
L width of the systemM length of the system in the direction of the repeated application of the transfer matrix.

that results in a corresponding transfer matrixelating (4, ¥/3)" to (Y1, ¥»)’,

T (éw& _o/ (1/;» t/r (éw& _o/ | 99
0 &%) \t/r 1r 0 €7
or in terms ofe,
T (é% 0 )(cosh@ sinh@) (eiw& 0 ) (100
L0 €)\sinhe coshe/\ 0 d%2)"°
The transfer matrix ¥ that relates the amplitudes on the left of the saniptey, o2, - - -, Yo.2.)" tO
those on the righty s 1, ¥p 2. - - an,ZL)t (L integer) is then defined as follows. We divide the system

along the direction oM into slices, each containinlg of subsequent saddle point scatterers and the
2L corresponding channels (Fig). The latter are assumed to have completely random phases. The
amplitudes at the end of the system can then be written in terms of a transfer®matrix

Yma Vo1
Ym2 Yo,2

=74 ‘ (101)
Ym2L Yo.21

6 We use here the somewhat unconventional notationMrandL denote the length and width of the system, respectively.
The reason is that when discussing the numerical scaling in the next section, we prefek toute length scaling instead
of M.
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with the product of the transfer matrices

TV —7MTM=-D . 7@TD (102)
where
T®O =vOVVPV, . (103)
Here the matrin/4 is given by
cosh®@' i=j=n, n=1,...,2L,
(V4); j = { sinhe’ {:jftgz_ p n=L12...L, (104)
0 otherwise
andV; by
cosh® i=j=n, n=23,...,2L -1,
(VZ)i’f:{sinh@ {f=f+1=2”+1’ n=12....L—1. (105)
i=j—1=2n,

Assuming periodic boundary conditions in the transverse direction gives

(V2)1.1 = (V2)21 21 =cOsShe ,

(V2)1,20 = (V2)21,1 = sinho (106)
while for fixed boundary conditions one has to use

(V2)11=N2)2r 20 =1,

(V2)120 = (V2)21,1=0. (107)

All other matrix elements o¥» are 0.
When propagating from one node to the other, the probability amplitudes gain phase factors. This is

contained in the matrix elements\ziﬁk) andvék),
- (k)
VI =6;€% (1=13). (108)

Since the distance between the nodes is random, we assumﬁl(kt)hate independent and uniformly
distributed betweefi0, 2r). So far, this is the only source of randomness in the model. Note that the
phases and¢’ in Egs. (90) and (99) can be included in s in Eq. (108).

In this form, the transfer matrix methqd7,88,89]has been applied to the model for estimating the
critical behavior of the localization length in the quantum Hall regj81d to be described in more detail
in the following section.

Attempting some completeness, we mention at this point that some versions of the network, which
essentially reproduce features of the underlying classical percolation problem, and with random saddle
point potential value%. have been used to obtain detailed information about the longitudinal conduc-
tivity and several classical percolation proper{@a,90-92] A classical version of the regular network
consisting of coupled metallic wires has been used to calculate the Hall conductance. Quantization in
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integer (positive and negative) units &%/ 1 has been predicted consistent with earlier findings for the
pure quantum Hall case without any disor{@3,94] The model has been also used to study the local-
ization problem in two dimensions in the presence of a random magneti¢¥eRb]. As our emphasis

will be on the universal features of the network model in the forthcoming sections, we will not go into
the details of these works.

4. The localization—delocalization transition in the network model

In this section we will explore the localization properties of the original Chalker—Coddington network
introduced in the previous Section 3. As this has been a key issue for establishing the model, this will
be done in some detail. Necessarily, for obtaining quantitative information about the critical behavior,
numerical methods will be used. We attempt to provide a complete overview of the statistical properties
of the energy spectrum and the wave functions near the critical point, as far as it is presently available.

The model has been the subject of numerous numerical studies which are all similar in spirit but different
in the detaild32,97-100] We provide here results obtained recently by the numerical scaling method
[88,89] which have been undertaken in order to improve the treatment of corrections to scaling. For
obtaining reliable and precise results for the critical exponent, the latter has been shown to be decisively
important[83,101] To our great disappointment, however, as we will show below, up to now it has not
been achieved to remove corrections to scaling to such a degree that the precision of the exponent of the
Chalker—Coddington network model can compete with the results obtained for other models in particular
the random Landau model, séable 1

We will also discuss the critical properties of the wave functions as well as the eigenenergy statistics. Due
to its simplicity, the network model enables us to investigate them in detail, and because of universality,
they are supposed to be generally valid for two-dimensional electron systems in high perpendicular
magnetic fields.

To study the localization—delocalization transition, we investigate the scaling properties of the local-
ization length in a quasi-one-dimensional long strip for which the localization length is calculated by
the transfer matrix method and apply the finite-size scaling method developed earlier for estimating the
asymptotic value in the thermodynamic limit. The value of the critical exponanthe network model
[31,32,102,103]s consistent with, though considerably less accurate than, earlier results obtained for
several very different models such as the random Landau model with a white noise pfi8mzidland
the random matrix model including spatial correlations of the randonjh@s20] This supports strongly
that the model of Chalker and Coddington belongs to the same universality class as the models considerec
previously, in spite of the intriguingly large corrections to scaling which defy the high accuracy in the
estimate of the critical exponents.

4.1. Numerical scaling at the localization—delocalization transition

To determine the critical behavior quantitatively, we use the numerical finite size scaling approach.
We define a quantity;, which is a function of a set of parametefscharacterizing the system, such as
the Fermi energy, parameters characterizing the disorder, as the variance and the correlation length, the
magnetic field, and the system siz¢104],

Fp=f{x} L) . (109)
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We assume the existence of a scaling law suchfhatan be expressed as
Fr=FGLY, g1L%, §oL72, .. ) (110)

with y being the relevant scaling variable apiddenoting the irrelevant ones. The latter nevertheless can
cause corrections to scaling as long as the system size is finite. Therefore, in a numerical calculation
they must not be ignored. These variables characterize distances from the criticat gothg critical
exponent ang; < 0 are the exponents of the irrelevant scales. Eventually, in the limit of infinite system
size, only the relevant scaling variable survives, and Eq. (110) becomes

fL=F (%) , (111)

with ¢ ~ 4™". The quantityy as a function of some control parameter, agan be expanded near the
critical pointx.

1= 710x — x0) + 12(x —x0)% - - . (112)

Which quantity should be used as the scaling vari@pl2lt should be a quantity that shows a singularity in
the limit of infinite system size as one crosses the localization—delocalization critical point. Furthermore, it
should be a quantity to be determined numerically easily, precisely and effectively. There are several such
quantities, such as for instance the level spacing distrib{itids] or the conductance (see below). Here,
we consider the renormalized localization length infihige system (MacKinnon—Kramer variable),
introduced previously88] which we will now define.

Consider a very long strip of width. This is a quasi-one-dimensional system and all the states are
expected to be localized. The localization length; x1, x2, . ..) is a function of the width of the strip,
L. Now let us define

J(L; x1,x2, ...
A(L;X1,X2,...)=%

If the system parameters are such th@ — oo; x1, x2, ...) remains finite, the system is in the lo-
calized regime andi(L — oo; x1, x2,...) — 0. The localization length is then given lBy= A(L —
o0; X1, X2, ...). On the other hand, f(L — oo; x1, x2, ...) increases faster than L, the system is
in the delocalized state, andL — oo; x1, x2, ...), the correlation length in the metallic regime, cor-
responds to the inverse of the dc-conductijBg,89] The critical point is defined by the condition
A(L — o0; x1¢, X2¢, . . .) = CONSt= A (critical MacKinnon—Kramer variable).

The most efficient way to calculatgL) is the transfer matrix methdd 7]. We define the product of
the transfer matrices Eq. (102) and consider the limit

(113)

r= A}iLnOO(T’L”TfT)l/ZM . (114)

The theorem by Oseledf06—-109]guarantees thathas always positive eigenvalues, which are denoted
as exp+y;) wherey; (> 0) can be interpreted as the exponential change of the wave function for a single
slice. The smallest value ¢f is the inverse of the quasi-one-dimensional localization lefigth

1 = min{; 115
- {n:} - (115)
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This definition can be shown to be equivalent to the one in terms of the exponential decay of the Green
function which could also be used to study.) [110]. If one is interested only in the localization length
the transfer matrix method has been shown to be superior.

4.2. Numerical results near the quantum critical point

The two-dimensional electron systems in high magnetic fields are characterized by many control
parameters such as Fermi energy, magnetic fields as well as parameters describing the properties o
randomness. In the Chalker—Coddington model, however, all the informations are contained in a single
parameter, the transmission at the saddle point. In the actual simulation, it is convenient to use as control
parameter

x=—Insinhe , (116)
With this choice ofx, we obtain from Eq. (92)
1 1
f= . r= HE 117
e +1 Ve 11 ()

Due to the particle—hole symmetry & t) the localization length is an even functionxofComparing
Egs. (84) and (117) we note thatcan be interpreted as the energy measured from the center of the
Landau band.

In the actual simulation, we need to simulate not too small systems so that only a single relevant scaling
variable and at most one irrelevant variable are sufficient for fitting the data. In this case, the scaling form
Eg. (110) reads

A(L) = F(z LY, L) , (118)

wherey is related tox via Eq. (112). We consider in the calculation the regiocal so that; ~ x and
¢ = const.
As noted above, due to particle—hole symmetiig an even analytic function afas long a4 is finite.
By assumingxLY" to be sufficiently small in order to truncate the expansion after the second order,
Eg. (118) can be expressed as

A(L) = Ac + a1(xLY")2 + ao(x LY")* + boL? + coL® + - - -, (119)

Previously, this non-linear fitting scheme has been working perfectly well for the three-dimensional
Anderson transitiorf101,111-113]as well as in the case of two-dimensional systems with strong
spin—orbit couplind114,115]

High precision data are required for a precise determination of the exponent. As d&gnnfor
such data the corrections to scaling are not negligibl2]. Unfortunately, a stable fit that takes into
account these corrections has not yet been f¢Lh@,117] As a result, there has not been any significant
improvement of the precision of the estimate alver the original estimate of= 2.5 + 0.5 by Chalker
and Coddington31].

Fluctuations of the transmission properties of the saddle points cause another type of randomness in
addition to the phase randomness assigned to the wave function when traveling from one node to another.
These fluctuations are equivalent to randomness in the mass of the Dirac Hamiltonian to be described later
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Fig. 9. MacKinnon—Kramer variablé(L)=A(L)/L as a function ok for L=6, 8, 12, 16, 24, 32 and 48. The relative uncertainty
of the data is 0.02%. The curves are results of the fitting according to Eq. (119)wthl.23, v = 2.48 andy = —0.53. The
fitting, however, is unstable, so the curves should be regarded as guides to the eye.

in Section 7. It has been numerically demonstrated that this effect gives larger—but irrelevant—corrections
to scaling[102].

4.3. The critical properties of the wave functions

Exactly at the critical point = r = 1/+/2 (x = — In sinh ® = 0), the wave function is delocalized.
It is now well established that due to the divergence of the length scale, the wave function at the critical
point shows multi-fractal behavig18—120] This self-similar structure is in principle reflected in an
anomalous temperature behavior of the diffusion constant, the energy level statistics, the conductance
distribution, and many other properties.

Since the Chalker—Coddington model is characterized by the scattering matrices at saddle points rathe
than by the Hamiltonian, the wave function must be determined from the scattering matrices. Let the
amplitude on the linkbey,;. As explained above, the stationary states of the model must qaiesfyi 22]

lpm = tmklpk + tmll//l ’ (120)
wherer,,, andr,,; relate the amplitudeg, andy; to y,, (Fig. 10). This can be rewritten as
UE)Y =Y, (121)

with U(E)e =t (E)e, + ty(E)e,, € being the unit vector with thegh component unityi|2 =T =
1 — |t,u|? := 1/2 at the critical point, an&” the vector with the components,. Again, we assume for
simplicity that randomness enters only via the phases of the amplitudes.

Eq. (121) has non-zero scattering solutions only for certain discrete endfgi@gich determine
the eigenstates and eigenenergies of the syft@8]. Solving Eq. (121), however, is in general very
complicated for a disordered system. We will derive an alternative method by establishing equivalent
Hamiltonians later in Section 7.
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Fig. 10. The stationary wave function relation characterized by the scattering matrix amplitudes. Incoming waves and outgoing
waves arel;, y;, andy,,, ,,, respectively.

For the moment, we proceed by calculating instead the return probdii#ij from the equation
of motion determined by Eq. (121). We start by introducing the tigraturing which the incident wave
packet passes the scatterer and measurd timmits ofzg. We can then define the time evolution operator

U(r) =U'(E) , (122)

wheret is an integer.

The probabilityP(¢) of return within the period of timéis determined by the probability density of
the wave packet at timenear a given scatterer, say located at the origin, which was previously located
there at = 0. This is defined by

P(1) = (0]U(1)|0)]? . (123)

The return probability is related to the fractal dimensib(2) defined by the second moment of the
probability density, the inverse participation numipetL)

1
pa(L) = (PO « 5 (124)

with (...) denoting a configurational average. If we integras€l) over the two-dimensional system
and then take the inverse, we hav8® and we can interpret this quantity as the portion of space where
the wave function amplitude is significant.

Let the wave packet spread to the radiys) after timet, the number of sites occupied becomes
~ r(t)P?@ . On the other hand, the conductivity at the quantum Hall transition is finite, and from the
Einstein relation

o=e’pD (125)

(p the density of states per volume abdhe diffusion constant), we see tfits finite, hence (1) ~ /2.
One then find$125-129]

P(t) o t—P@/2 (126)
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In general dimension the diffusion radiug proportional ta1/4[130], hence
P(t) o t—P@/d (127)

For the spatial dimensiath= 2, we can estimat®(2) = 1.52+ 0.06 from numerical simulationd 24].
This is in agreement with the results in the continuum m@#i&B,131]as well as in the tight-binding
model[126].

A similar idea has been developed to calculate the local density of $i@2kfrom which one can
calculate the multi-fractal exponeni¥g) that are defined by the higher moments of the density,

1

— 2q
Pq(L) == (|P(N]) x [24@-DD(@ & [2+eo

The moments of the density characterize the degree of localization of the wave function. For plane waves,
pq(L) L~=% — 0 in the thermodynamic limit. For localized states(L) o Lazq — const # 0.
Generally, the fractal dimensionaliti€s¢) depend o andz(¢) is non-linear irg. This is the celebrated
multi-fractal behaviof133]. It means that the complex structure of wave function at the critical point can
not be described by single dimensi®(2) but infinite number of generalized dimensions are required
to characterize it.

A convenient quantity to summarize the behavior of the multi-fractal exponents is to introduce a
Legendre transformation atig) by defining[134—136]

(128)

. de(q) (129)
dg
and thef («)-spectrum
flo)=o0g —(q) . (130)

The physical meaning of the quantify«) can be understood by relating it to the probability distribution of
the random amplitudes &, Py (|%|2). Starting point is the identity between the latter and the distribution,
P, (), of the random variable

In|y|?
= — 131
YR (131)
P, () du = Py (|P|?)d|P)? . (132)
The inverse participation numbers are obtained in terms of these distributions
pq(L) = f d| w19 [% Py (|91) = f dee " L P, (a) . (133)

In order to obtain the correct dependencepgfL) on the system size the distribution ®must be of
the form

Py(a) o f@=2In L (134)

For very largel, the average in Eq. (133) is dominated by the maximunf @) at «g. Thus,«g is the
exponent of the system size dependence ofythieal value of the probability,

(PRYP(L) = e o L

o (135)
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Fig. 11. The f («)-spectrum at the quantum Hall transition determined numerically (full line) and the result of an analytical
conjecture (dashed line) withhy = 2.262. Inset: spectra of typical eigenfunctions for different system $izexl extrapolated
with L — oo (from Ref.[137]).

Fig. 11shows some numerical results ffrtx) together with the result obtained from the Dirac model
with random vector potentia[120], see Section 7.3 below) which is exactly parabolic

(o — ap)?
4(ap — 2)

with «g=2+ 44 /n where4 4 is the variance of the random vector potential which is in that case equivalent
to the random phases associated with the links of the network.

Again, this is in agreement with the diagonalization analjis34]. Together with the analytical results
from the Dirac model, which will be described below, this provides strong evidence for the overall conjec-
ture that the Integer Quantum Hall Effect is a quantum critical phenomenon. A graphical representation
of a multi-fractal wave function at the critical point is showrFiy. 12

The fractal dimensionality of the wave function can be related to the MacKinnon—Kramer parameter
A¢ by assuming conformal invarian§&l,139-142] The quantityxg, is related to1c by (see Section 5.3
for more details)

1
w=2+—, (237)

ndc

fl=2- (136)

which is in excellent agreement with the numerical reqlif®,137,142,143]

4.4, Energy level statistics near the critical point

Random matrix theory is a very powerful tool to characterize the properties of complex systems
[144,145] It can also be applied to the localization—delocalization transition. In the metallic regime,
the overlap of the wave functions is strong, which results in strong level repulsion. In the limit of large
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Fig. 12. Squared amplitude of a critical wave function in a Chalker—Coddington network of 256 saddle points. Darker
areas denote lower square amplitude. No characteristic lengths scale can be identified (figure takie38fjom

system size, the energy level spac#{@ units of the mean level spacing) is given approximately by the
distribution function

P(s) o« sPe=AB)s? (138)

This is often denoted as the Wigner surmise. The value of the parametet, 2, 4) is determined by
the symmetry of the system. The value of the constamiépends ors. When the system has both time
reversal and spin rotation symmetgy-1. This is called therthogonalsymmetry class. If the system has
only time reversal symmetry but spin rotational symmetry is broken by spin—orbit intergetioh, This
characterizes thgymplecticclass where level repulsion is strongesis ¥ 2, time reversal symmetry is
broken, irrespectively of whether or not spin rotational symmetry is present. Thisuaithey symmetry
class. Symmetries classes are indeed very important ingredients for characterizing the universal propertie
of a quantum phase transitions. We will discuss this in more detail later in Section 9.

On the other hand, when the states are localized, the correlations between eigenenergies vanish i
the limit of large system size. Then, the level spacing distribuftds) is PoissonianpP (s) = exp(—s).
When the system size is finite, the correlations between energy values are still present and the spacin
distribution deviates from the Poissonian. The deviation from the limit of infinite system size can be
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Fig. 13. Scheme of the quasi-energigsas a function oE. The conditionw, = 0 gives the eigenenergiek,.

described by using a single parameter scaling assumption Eq.[G0,1%6-148,105]

P(s)=f <s, %) : (139)

where¢ is the localization length. For the ordinary metal—insulator transition, the above equation has two
branches corresponding to metallic and insulating phases. In the Chalker—Coddington model, we do not
have a true metallic phase. Therefore, we expect to find only a single branch.

Exactly at the critical point; diverges andP(s) becomes size independent. It is neither a Poissonian
nor it corresponds to the Wigner surmise, but has both characteristics. It groW$oas <1 as in the
case of the Wigner surmise and it decays according to-eAp) for s > 1 like the Poisson distribution
[105,149,150]Fig. 13.

We now want to obtain the energy level statistics from Eq. (121). To achieve this, we need a method
to extract information about energy eigenvalues from the transfer matrix approach. This requires the
construction of an equivalent Hamiltonian which we will do below in great detail. For the present purposes
it is sufficient to consider the following.

First we note that the eigenvalue equation of the unitary opetatsy is

UE)Y, =€y, . (140)

The eigenenergie€,’s that correspond to the stationary states are obtained from the condition
exfio,(Ey)] = 1.

The statistics of the energy levels obtained from the conditioft) = 0 is the same as that of levels
obtained byw = @, since the latter correspond to the solution §6(E) = e '“U(E) which belongs
to the same universality class. This together with the level repulsion leads to the conjectusg@hat
obey the same statistics Bs[151]. The quantities, (0) are often called quasi-energies. This assumption
greatly simplifies the numerical calculation. The results, for example the foasofat the critical point,
agree in fact very well with those obtained for the continuum m@t&2]. Due to the simplicity of the
network model and the possibility of using the quasi-energy concept, the level statistics can be investigated
in detail.
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Another important quantity to characterize a random sequence of energy levels is the so-called numbeit
variance defined bji144]

22(N) = ((n — N)?) = (n®) — N?, (141)

wherenis the number of levels in a randomly chosen intetval (4 average level spacing),- -) denotes
the configurational average, add= (n). In the insulating regiony>(N) = N. In the metallic region, it
increases only logarithmicallg>(N) ~ In N due to the level repulsion that makes the spectrum rigid.
At the metal-insulator transition,

. 2o(N
im 2(N) _
N—o0 N

with 0 < y < 1[147].

The valuey = 1 implies that the system is an insulator with no level repulsion,aad is equivalent
to metallic behavior with maximal level repulsion. The fact that @ means that the level repulsion is
weakened as compared to the metallic limit. This is due to the fact that the wave function has a very
sparse multi-fractal structure. Thysreflects the multi-fractal behavior of the wave functions. In fact,
the quantityy and the fractal dimensioP(2) are related vig153]

d-D©
="

InsertingD(2) = 1.524 0.06 andd = 2 yieldsy = 0.120+ 0.005. Klesse and Metzler have estimaged
from the quasi-energieg=0.124+ 0.006, in agreement with Eq. (14R)51]. This agreement, however,
is not exact since Eq. (143) holds only approximately as has been discussed i1 B&fb5]

1 (142)

(143)

5. Linear electrical transport at zero-temperature

The linear electrical conductance of a quantum system at zero temperature is related to quantum
mechanical transmission via the Landauer formd/a6,157] Thus, the network model is perfectly
designed to provide quantitative information about the linear conductance. If the model describes the
physics near the critical point, one can expect also that it is especially suitable for the critical conductance.
The study of the linear conductance tells us the importance of the conductance distribution instead of
the averaged conductance, which converges to a form independent of the system size. The qualitative
behavior of the conductance distribution is expected to be valid even in different situations such as
4-terminal conductance measurement.

In this section we want to discuss the quantum conductance and its distribution function at the critical
point at absolute zero of the temperature. For the conductance, we use a slightly modified random network
model (Fig.14 and[158]).

5.1. The transfer matrix and the conductance

The general wave function on the left-hand side of the system is a superposition of the incident and
reflected amplitudeg;//}ji} and{n//(';’i}, respectively. These are related to those on the right-hand side,
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Fig. 14. The network model as modified for calculating the two terminal conductance. The ammiﬂl,ldeslwg ;(i=1...,L)

represent the incoming and the outgoing currents on the left-hand side, respeq)ﬁyeiyl,dx//oRi (i=1,...,L)represent the
amplitudes on the right-hand side of the sample. ' ’

{zpffi} and{xpgi}, via the transfer matrix of the system of the lengthand the width_, T,

Yoy Uiy
Ui Vo1
=T : | (144)
vy, Ui
Uy VoL

By introducing an operatdd which changes the order of the components,

lpiljl ’//=_,1 \ ‘pcril (‘/’51
V1 : vy :
L ) R
=U w'LvL , - |=u %Ff , (145)
Y1 : Yy
‘M‘L : wEL

lplc_),L WIE;,L ‘pi’?L l'biF,{L )
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one can write

R L
<¢%) _UTU (""L) , (146)
¥i s
where yi(i = R, L) denotes the vector of amplitudes’ ,. i ,.....v5 )" andyi (i =R,L) is
i1 W5 . 0 )T (T denotes the transposed vector).

The linear zero-temperature conductagis given by the quantum transmission probability through
the systenj156,157,159]

62
G:Zwuf (147)

Thus, a relation between the transfer matrix and the transmission matfix; = 1... L) is required.
In the following paragraph this relation will be established by writing the wave function on the left- and
right-hand sides of the scatterer in termd.ot L transmission and reflection matridesndr [160,161]

When a flux of probability amplitude is injected into thle scattering channels from the left and from
the right, represented m;{i andnpiFfl., respectively, the total scattering wave function initechannels
is a superposition of the incident wave and the reflected and transmitted waves from all of the channels.
This is described by the scattering mat8x

L L
()<
Yo i
with
rot’/
S= . 149
(t r/) (149)
By solving Eq. (148) foi] andy R and inserting into Eq. (146) one obtains straightforwardly
~ t—rth ryt Tu T
Foutru=( "5 T T ) o (2 2 (150)
—t'"r t’ Tor Too

In order to determine the. x L)-matrixt’ that one can use equivalently for the conductance instead of
t, it is sufficient to generat@ 12 andT22 by multiplying T to the 2L x L matrix which consists of the
zero-matrix0y, in the upper half and the unit matriy in the lower part,

T ~ (0
<~12> _F < L) . (151)
T22 1
Multiplying iteratively T® (k =0, 1, 2, 3, ..., M) is numerically unstable. Thus, after eanlsteps one
must perform @R decomposition,

T(i><m+m)-|-(i><m+m—1) . T(iXm-I—l)vi — Vi—l—lwi , (152)
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Fig. 15. Conductance distribution at the critical point. The number of incoming links is 128. The geometrical shape of the system
is a square. Left: for periodic boundary conditions; right: for fixed boundary conditions. Sgé %80

whereV’ are (2L x L) orthonormalized matrices and are (L x L) upper triangular matrices. This
eventually yields

?12 _ A k 2 1
(2)=(3)-

with matricesw’ generated during the iteration a(id x L)-matricesA andB the upper and lower blocks
of yM/m

Using this result, one finds for the transmission and reflection matrices from Eq. (150). Details and
generalization can be found jh62)].

t'=(hH D (BT r'=ABTL. (154)
5.2. The critical conductance and its statistics

The conductancé is a strongly fluctuating quantity with a broad distribution function. Therefore, not
the conductance but its distribution functi®{G) has to be considered.

In the metallic regime, the conductance is described by a normal distribution with its variance inde-
pendent of the details of the system as well as of the system size. This is known as the phenomenon of
reproducible universal conductance fluctuations (JTd3,164). In the insulating regime, the distribu-
tion function has a log-normal shape, reflecting the exponential localization of wave functions. At the
critical point of the localization—delocalization transition not only the variance but the whole distribu-
tion function becomes size independent. This reflects again the scale invariance of the quantum critical
point[111,165,166,110,167,168emarkably, however, the critical distribution depends on the boundary
conditions[112].

In the case of the quantum Hall transition, all the states except those at the band center are localized,
so that the conductance distribution is log-normal. As expected, at the band center the conductance
distribution function becomes size independent. However, it has the peculiar form sh&wgn irh It
neither is consistent with the log-normal distribution expected in the localized regime nor reproduces the
non-universal behavior of the moments predicted for the metallic rg@@®]. It also depends strongly
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Fig. 16. The system size dependence of the “bulk conductance” at the critical point. Solid line: fit to the scaling law Eq. (155),
Ge = 0.5702— 0.2150, ~0-5587  0.1486

on the boundary conditions. This is consistent with earlier results obtained for the level statistics at the
Anderson transitiofl 70,171]

From the distribution, one can calculate a configurationally averaged conduc¢t@nead its mo-
ments[172]. We consider here as an example only the two terminal conductance for periodic boundary
conditions. We expect, in addition to corrections to scaling, effects of the confia@fand of the
boundary condition§112]. Both of them can be expected to give rise to contributions proportional to
L~1. Therefore, we attempted to fit the average conductance to the scaling Ansatz

b
(G)=Getal” + . (155)

This fit yields the bulk L — o0) conductance

2
G.=(0570+ o.oz)%, y=—0.56+0.05 . (156)

The form of the distribution of the critical conductance is similar to that obtained from simulating
the conductance of the tight-binding model in magnetic fi¢ld®!]. However, there are quantitative
discrepancies. For example, the two terminal conductance in unifg bfis 0.506 for the tight-binding
model[169], but 0.57 for the Chalker—Coddington model. This might be due to the inter-band coupling
present in the tight-binding model.
In Fig. 16 we observe a continuous increasePai5) from 0 nearG = 0, and a kink nea6 = 2/ h.
The kink is expected in one dimensifiy5,176] in the two-dimensional symplectic ensem[dl67,177]
and in three-dimensional disordered syst¢éh@8]. It is related to the fact that for one transport channel,
one can achieve at best unit transmission. Fluctuations of the conductance to values laregfetittzae
related to the contributions from the exponentially smaller contributions of the other transport channels.
For better understanding the kinks in the distribution functions, the transmission eigentajlues
obtained by diagonalizing T have been analyzed in more detdi?2]. It has been found that for the
quantum Hall transition the critical conductance distribution is well approximated by taking into account
only the largesttransmission eigenvalue as demonstrakegl.ih7. This result suggests that the knowledge
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Fig. 17. The distribution of the critical conductance) (compared with the distribution of the largest transmission eigenvalue
Tmax(+) at the critical point (aftef172]).

of the distribution ofrmax would enable us to approximately predict the transport coefficients at the
quantum Hall transition.
In order to further investigat® (tmax), we transform to a new variablg,i, according to

Tmax = Wiin“ . (157)
It has been suggested|h78] thatv2min is Poissonian distributed,

P2 = BN Qe PN i (158)
or equivalently,

P (vmin) = 28N Qvine PN in | (159)

In Fig. 18 we showP,.(vmin) and fitted the data to Eq. (159) by assumiiig = 0.233.
From the very good agreement betwe®fmin) and the Slevin—Nagao forft78] one might conclude
that the distribution ofv;} is given by

P(v1, v2,...,VN)=C1_[e_ﬁQval‘21—[|vi2—v§|2 , (160)
i 1<jJ

which defines the Laguerre ensemfd&8,179] However, the distribution of second and higher values,

i.e.v; (i=2,3,...)as calculated from the Laguerre ensenjb&0] deviate from the result of the present

numerical simulation. This is not unexpected since the Laguerre ensemble has been proposed to be &

good approximation for the statistics of the metallic diffusive regime. At the quantum Hall transition, the

so-called eigenvalue “interaction” term may be modified,

PO1va...ovw) = C [P0 T F(h2 =2 (161)

i<j



256 B. Kramer et al. / Physics Reports 417 (2005) 211342

0.4t
0.35}¢
0.3}
0.25}¢
0.2¢
0.15¢
0.1+
0.05¢

P (Vmin)

0O 05 1 15 2 25 3 35 4 45

Vmin

Fig. 18. The distribution ofmj, compared with the Poissonian distributi®(vmin) = 2avmin exp(—avzmin) with a=0.233
(after[172]).

This form leads to the same distribution figkin but different distributions for higher; (i =2, 3,...)
[172].

Before concluding this section, we mention that the energy correlation function of the two terminal
conductance has been analyzed in detail by Jovanovic and A8

5.3. Conformal invariance at the critical point

We have presented above strong numerical evidence for the scale invariance of the wave functions,
energy level statistics and the conductance distribution at the critical point. Under a scale transformation,
the length scale is rescaled globally by some fabtauch that the coordinates of a given point transform
according to

' =b"1r. (162)

Scale invariance at a critical point means that correlation functions of scaling variables
(j=1,2,3...)are invariant under such a transformation which generally can include also a rotation and
a translation

(1) p(r2) ..) = [ 67" (92D 2(1h) ...} - (163)
J

The exponents ; are called scaling dimensions.

In analogy to classical phase transitions, one can expect not only that global scale invariance holds
but also that the more general concept of conformal invarigti@®,104]applies to the quantum Hall
transition[181,31] Generally, a conformal transformation correspondsdal translations, rotations and
dilatations of the coordinates which preserve angles.

In order to explain this in more detail, we consider the above general correlation function in two
dimensions,(¢1(z1, 27)¢2(z2, z5) - - ), with the scaling variableg; (j = 1,2,3...) and the spatial
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variables represented ag = x; + iy; and its complex conjugatej.. Now let us consider an arbitrary
analytic mapping

7 =w(z). (164)
Locally, close to some poinp, which is equivalent to the infinitesimal map
7 —z5=w'(z0)(z — 20) , (165)

with w’(zo) = dw(zg)/dzo. Comparing with Eq. (162) one notes that the global scale factbiof the
scaling transformation correspondsut&(zo).
In analogy to Eqg. (163), conformal invariance of the correlation functions can be defined by

($1(21, 21 b2(22,25) - . )

=[]w'G)" ' @) " (¢1(z1, 21V ba(2h, 257 ) - (166)

The exponents; andh; are real-valued conformal scaling dimensigh@4].

In order to show how powerful the concept of conformal invariance is for extracting properties of
the correlation functions we consider the two-point correlation function of only one scaling variable.
Conformal invariance requires

(p(z1, 2D (22, 23)) = [w' D" W' (22)*1"(P (21, 21 ) P(25, 25)) - (167)

It is a straightforward exercise to show that this implies a power-law decay of the correlation function
[104],

($(z1, 2D (22, 25)) ~ |21 — 22 72" . (168)

As a second example, we consider the mapping between the infinite two-dimensional plane and the
surface of cylinder with circumferende
L
7=—Inz. (169)

2n
This is motivated by our above numerical studies in which we have used systems of finite_vaiath
lengthM — oo. Itis easy to get convinced that variationxafy in the complete two-dimensional plane
implies—oo < x’ < ocoand 0< y’ < L. This corresponds to an infinitely long strip of widthvith periodic
boundary conditions in the direction bfwhich is equivalent to a cylinder. The correlation function on
the cylinder reads

($(z1, 21 ) P25 257))

27/ L)%
~ / / ( n/ ) / / ' (170)
{2coshi2n(x; — x5)/L] — 2co92n(y; — y5)/L]}"
Therefore, the quasi-one-dimensional exponential decay leggtandy are related via
L
Ey = —— . 171
Seyl 2mn ( )



258 B. Kramer et al. / Physics Reports 417 (2005) 211-342

0.1}

(T n+1."2)

0.01

Fig. 19. Average half-integer momen&"+1/2) of the two-point contact conductance of the Chalker—Coddington model at the
critical point as a function af.. Data sets (top to bottom) correspond to distances 5,10,15,20 (in units of the lattice constant) in a
cylinder geometry with total lengthf = 100 and circumference = 10. Solid lines are analytical results obtained by conformal
invariance. For best fit an exponexit = 0.54 £+ 0.01 was found. Inset: schematic view for the model. Two linlemydm, are

cut and connected to reservoirandm (after[183]).

If we assumep(z) to be the typical density of states defined via the square amplitude of the wave function,

2\typ
typ — (|l}/| ) 172
g AE (172)
whereAE ~ L~2 is the mean level spacing, we obtain from Eq. (135)
n=og—2. 173)

The transfer matrix estimates the exponential decay length by averaging@g(z)|. Therefore, it is

the typical amplitude of the wave function which is related to the decay length. Combining Egs. (171)
and (135)

B L
Soyl = 2n(og — 2)

which is the same as Eq. (137) sinte=2¢. /L. This example illustrates how powerful the requirement

of the conformal invariance is. Therefore, whether or not this symmetry holds for a phase transition is

very important and can provide useful information about the properties near the critical point.
Animportant transport coefficient which can be used to clarify whether or not the conformal invariance

applies is the point-contact conductait82,183] Consider a network with two linksandm cut from

the interior, and connected to two reservoirs (Aig). Then we can define a2 2 S matrix

o Su  Sim
s_( o Smm) (175)

and the point-contact conductance is given by (in unite’gt) T = |S,,|%. The S matrix is calcul-
ated by

(174)

Sij = (il —UPP,)TUIj) (G, j=1m), (176)



B. Kramer et al. / Physics Reports 417 (2005) 211-342 259

whereU is the time evolution operator introduced by Eq. (121) Bpek 1 — |1) (/| andP,, =1 — |m) (m]|
the projection operators which describe the nature of reservoirs8)g.

The point-contact conductand@és related to the wave function intensitylandm, |¥;|2 and|¥,,|?
via [183]

2mp(E){(|¥m |2 f (¥ 12/ 1¥117) = (F(T)) , (177)
where
2n d¢ . ) 5
F(T) :=/ 5 /(T 1—€9/1-T?, (178)
0 7T

Herep(E) is the density of states arid -) means the average over randomness. Assurmfiing= — In x,
we have

(INT) = 2rp(E)(|¥ 2 IN(1¥1 1%/ 1P %)) - (179)

Thus one can evaluate the typical conductafit® = exp((In T')) very efficiently using only the infor-
mation of the wave functions in an isolated system.
At the critical point, in the infinite two-dimensional plaff&P is expected to decay as

TYP ~ p=Xt (180)

wherer is the distance between the linkandmandX; a critical exponent related tdq) (cf. Eq. (128))
viat'(0) — /(1) [184].

From Egs. (171) and (180), the decay of the typical conductance on a long cylinder surface becomes
[183]

—Xt
Ty (x) = ‘Zn smh(f) , (181)

wherex is the distance between the linkandm along the cylinder axis.

Numerical results for the moments f(x), (T (x)"T%?) (Fig. 19) and the typical conductance
Tctzlp (x) (Fig. 20) coincide with the behavior expected from the conformal invaridaé,183] This
strongly supports the conjecture that the wave function at the quantum Hall transition is conformally

invariant[181].

6. The renormalization group approach

In this section, we discuss the application of the real-space renormalization group approach that is
widely used in classical percolation and spin systg§hdg,62]to the random network model. A closed
set of renormalization group equations is derived which describes the universal distribution of the con-
ductance. The numerical solution is used to estimate the critical exponent of the localization length and
the behavior of the moments of the distribution functjd®,185-187] Amazingly enough, by adopting
a slightly different point of view, eventually one can interpret the approach as providing an additional,
independent precision determination of the critical exponent. The agreement of this critical exponent
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0

Fig. 20. Logarithm of the typical two-point conductante 7') of the Chalker—Coddington network model at the critical point
as a function of the logarithm of the distancgahfor system widthsl. = 3, 4, 6, 9, 14, 20, 30 (bottom to top). Solid lines:
analytical result obtained using conformal invariance, Eq. (181). Inset: rescaled ¢ar¥est+ Xt In L versus Inx/L| with

Xt = 0.57 (after[183)).

with the earlier results obtained for completely different models confirms that the quantum Hall phase
transition is indeed a universal critical phenomenon.

The general idea is that near the quantum critical point all microscopic details of the system eventually
must become irrelevant since the correlation length diverges with a universal exponent which, however,
still can depend on the fundamental global symmetries. In order to detect such universal behavior one
must perform a well-controlled thermodynamic limit. An example how to do this in a controlled way has
been given above when applying the transfer matrix method and using the numerical scaling method.
This procedure is basically exact and suffers only from technical numerical errors, but it does in general
not provide analytical insight.

In classical phase transition theory, the renormalization group transformation is a well-established
procedure to approach the critical point. Generally, this method consists of a sequence of unitary and
subsequent scale transformations. The former are used to diagonalize relatively small systems. The latte
scale the system back to the original length scale. From the behavior of the coupling parameters undel
this repeatedly applied transformation conclusions can be drawn on the critical behavior. In principle,
this method would also be exact, apart from the fact that in each renormalization step couplings to states
that are energetically far away from the critical point are neglected. While this seems not to be crucial
for showing the very existence of a critical point, one needs quite substantial numerical efforts in order
to correctly obtain the critical behavior quantitatively.

There are many alternative possibilities for constructing the renormalization group transformation
which are all similar in spirit but may be different in the details. We will discuss here two of them. The
random network model of Chalker and Coddington is an example in which the renormalization group
transformation can most advantageously be used.

6.1. An illustrative example: the tile lattice
A particularly instructive example which resembles the procedure invented originally by Migdal and

Kadanoffis shownifrig. 22 [186] For a better understanding of this procedure, we firstintroduce different
graphical representations of the scattering matrices of the saddle points which are more convenient for
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Fig. 21. Representations of saddle point scattering. The scattering m&taicdS’ relate outgoing with incoming flux amplitudes
(top). The same information can be expressed by transfer matrices that relate top and bottom amplitudes (left) and left and right
amplitudes (right).

the present purpose (Figl). The original scattering matric&sand S’ relate outgoing and incoming
amplitudesy gt (//Out andyin, lﬁ;n, respectively. This is represented as in the top pdfigpf21 Rewriting

the equations such that the amplitudes on the right-hand side of the saddle point are obtained as functions
of the amplitudes on the Iefﬂg;n, Wout andvin, Yout, respectively, one obtains the usual transfer matrix
representation which we have used so far (Rify.right). The saddle point vertex is now represented

by a horizontal dashed line. F8f the corresponding representation is shown in the left paftgf21

With this, the original random network &ig. 8can be graphically represented as showfi(n 22a. For
simplicity, the system is assumed to consist of independent saddle points with randomly varying saddle
point energies. The phases associated with the links between them are assumed to be completely randor
and independent.

Starting from this a renormalization group transformation may be constructed by removing every other
saddle point line in a each row and column, and replacing the remaining single saddle point lines by
two. Thereby, one reaches the situation showhign 22b. One observes that every other closed loop of
amplitudes now is completely disconnected from the rest of the system and can be removed. On the other
hand, each of the remaining saddle points is replaced by two saddle points in series. By combining these
to new scattering centers as indicated-ig. 22X one arrives at exactly the same lattice structure as in
Fig. 22a but with renormalized saddle point scattering centers gzdj).

By iteratively applying this procedure, more and more of the network is incorporated into the scattering
properties of the scattering centers until eventually one of the latter in corporates the whole system. If the
energy is lower than the saddle point eneEjy the transmission probability will eventually renormalize
exponentially to zero. The system becomes completely localized since the closed loops labeled with
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Fig. 22. lllustration of the renormalization procedure on a tile lattice. (a) Lattice of original saddle points. (b) Second-generation
saddle point lattice where every other saddle point in the rows and columns are removed and the remaining saddle points are
doubled. Isolated rings of amplitudes can be removed. (c) By renormalizing the saddle point as indicated one arrives (d) at a
lattice that, apart from a scale transformation, is structurally identical to the original one[{8&).

E < E* (Fig. 23) will be completely disconnected. If on the other hand the energy is higher than the saddle
point energy, the transmission probability will renormalize to one. The states are again localized since
now the loops labeled witlk > E* in Fig. 23become disconnected. Thus, the transmission probability
has two stable fixed points = 0 and 1) which correspond to the localized phases. The transmission
probability becomes independent of the “size” of the scatterer exactly at the criticalfjoiktere, we
have anunstablenon-trivial fixed pointT* # 0. Even an infinitesimally small deviation of the energy
from the critical point localizes the system completely.

For the tile lattice, the calculation of the scattering properties of a new scattering center by combining
two original ones is an easy but nevertheless instructive exercise. The transmission matrix of the new
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E>E*

Fig. 23. lllustration of localization in the renormalized network for energies below the critical goiatE*, where the trans-
mission renormalizes to zero, and above the critical p@int, E*, where the transmission renormalizes to one. Extended states
can exist only afZ = E* where the transmission has a non-trivial fixed pdifit£ 0.

scattering center (Figg2c) can be determined in terms of the transmission matrices of the original
scattering centers by performing simple matrix multiplications. Consider, for example, the diagram at
the bottom ofFig. 2Z. First, one calculates the transmission of the two pairs of saddle points in series at
the top (A) and the bottom (B) of the graph. Second, the two resulting effective scatterers are combined

“in parallel” in order to obtain the transfer of amplitudes between chanigls,,) and @;n, x//;ut).
Eventually, one finds for thiypical total transmission probability := exp(In T') (with T =2 and(. . .)
the ensemble average) the renormalization reldii86]

T'=2T% - T*:= f(T;2) , (182)

whereT” is the typical transmission probability of the renormalized scattering center.
This scaling relation has three fixed points defined’by= 27*% — T*4, two stable ones &t* =0 and
1 and an unstable one &t = (/5 — 1)/2 = 0.618. The stable fixed points correspond to the localized
states at energies away from the saddle point energy. The unstable fixed point corresponds to the quantun
critical point. The localization length exponent is found by linearizing around the unstable fixed point
In2
V= —
In
with 2 = [0 f/0T 17+ = 6 — 24/5. One gets ~ 1.635.
In the general case, where one saddle point vertex is repladedtiginal vertices, the result is

T'=1—-1-T"" = f(T;b) . (184)

(183)
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Assumingb = 1 + ¢ one obtains the infinitesimal Migdal-Kadanoff transformation which has a fixed
point at7* = 1/2 and an eigenvalue= 1 4 2(1 — In 2)e. This gives an exponent

Inb 1
and the beta function
d
B(T) := % f(T:14+6)=TINT —(1-T)InA-T) . (186)
€

e=0

Although the result for the critical behavior is far from being satisfactory, it is nevertheless remarkable
that the very existence of a non-trivial quantum critical point is correctly predicted by the model even
in the crudest approximation for the renormalization group transformation. It is therefore worthwhile to
investigate whether one can obtain more reliable quantitative results by refining the approximations.

6.2. State-of-the-art results for the hierarchical lattice

A different procedure is outlined pictorially iRig. 24 This is the model of a hierarchical lattice. In
the first generation, the system consists again of the original, statistically independent saddle points. In &
first step, a certain number of these original saddle points (five in the examipig. &4 are combined
to form a new scattering center. The corresponding scattering matrix is calculated approximately as a
function of the original ones. This is repeated: the new scattering centers are combined again into new
units (Fig.24c). Their scattering properties are calculated as functions of the previous ones, and so on
and so forth.

The crucial approximation of the procedure is thatin each step only two incoming and outgoing channels
are taken into account (Fig4b) such that the new unit can be considered as a new, second-generation
saddle point. The exact scattering matrix of the units in each generation would of course contain much
more channels, and when repeating the construction, the number of channels would explode. Neglecting
all of these channels apart from four is in fact the most severe approximation of the method—as also
made in the previous procedure—since it cannot be very well controlled.

However, instead of viewing the hierarchical lattice as an approximation to the random network model
one may also consider it as a model in its own right for which the critical behavior may be determined
exactly. This would yield only an approximation to the critical behavior of the network model, but if
the critical behavior was universal—independent of the microscopic details—the exponent of this model
should be the same as for any other model in the same universality class. We will come back to this point
below in more detail.

For the derivation of the renormalization group equations of the hierarchical lattice, we closely follow
[33]. We consider the five saddle pointshig. 25 The amplitudes must satisfy the five relations

lpo,i . —r; t; ‘Pi,i o
(lﬁi)’l)_< ti ”i) (lpll’l) (l—l, 2,’5) , (187)
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Fig. 24. lllustration of the renormalization procedure on a hierarchical lattice constructed iteratively. (a) Saddle point represented
by a dot with two incoming and outgoing channels. (b) Second-generation saddle point consisting of five original (first-generation)
saddle points. A total of eight incoming and outgoing channels are here neglected. (c) Second level of iteration where five
second-generation saddle points are combined to form a third-generation saddle point consisting of 25 first-generation saddle
points. In contrast to the original network (R the hierarchical network contains considerably fewer saddle points and links
(after Ref.[186]).

where i and o denote the input and output channels, respectively, ands;, (=,/1 — rl.z) i=1,...,5)
are real quantities. The first goal is to replace the five saddle points by one.
Some of the amplitudes differ only by a phase factor. For example,

Vo =€y, 4, (188)

whered, 1 is the random phase factor gained when traveling from the saddle point 1 to 2. The phase
factors are related to the Aharonov—Bohm flues (i = 1, 2, 3, 4) obtained when traveling around a
closed loop via

051+ 035+ 01.3= ¢ ,
032+ 043+ 024= ¢y,
021+ 032+ 013=¢3,
03,4+ 053+ 045 = ¢4 . (189)

Since the phasesare assumed to be randomly and uniformly distributed betvi@ge2r), so are the
fluxese;.
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Fig. 25. lllustration of a transformation that can be used in arenormalization group transformation. Five original (first-generation)
saddle points indicated here by dashed lines (right) are renormalized into one single second-generation saddle point. This relate
(Vo.2, % 5) 0 (Y 1, zpi’ 2)- The quantitie$; .. . ¢4 are random independent Aharonov—Bohm-fluxes that penetrate closed loops

as indicated.

From relations (187), one can derive that the total outgoing amplittides %,5) are related to the
incoming amplitudesy; 1, i ,) according to formally the same relation as Eq. (187)

7 7 .

(-7 )
Vo5 t 1) \Vig

The new reflection and transmission coefficieits, characterize the scattering properties of the renor-

malized “super” saddle point. The new transmission and reflection amplitudes can be obtained straight-
forwardly by solving Eq. (187). One obtains after some tedious algebra

1115 + 12146 (P3P0 — torare@ b3 — 111314604

f=

D
11r2r3rats€?? — ritgratarse P34 o (191)
D
The corresponding reflection amplitude is obtained fiom+/1 — 72
- rqrs — rlrzei(¢1+¢2) — r1r3r4ei¢1 + r2r3r5ei¢2
r =
D
111>t e"/)3 tafat ei(¢1+¢2_¢4)
_ NI3rars + rirat3tats ’ (192)

D
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whereD is the abbreviation for
D =1— rir3rs€® — 111213693 — 1314156894 + rorgrae 2

+ t1t2t4t5ei(¢3+¢4) — r1r2r4r5ei(‘7’l+‘7’2) . (193)

Transformation (191) allows one to generate the new probability distribution of the transmission coeffi-
cient P(7) from the distributionP (¢). A certain distribution is unchanged by this transformation, which
corresponds to the fixed point distribution. Slight deviations from the fixed point distribution increase
after the renormalization transformation. This can be used to define the critical exponent

The renormalization group transformation of the distribution of the transmission amplitudes has been
determined numerically by using this appro48#,188] From P (¢) the distribution of the conductance
G = 12 can be determined,

1
P(G) = Z—IP(t) . (194)

This may be transformed to the distributigi(z) of the heights of the saddle poirgsneasured relative
to the critical energy = 0 (cf. Egs. (75), (84)). This can be obtained from Eq. (194) by using the relation

1
=1 (195)
The resultis
dG 1 1
=P | = P ) 196
Q@) = P(G) ‘ dz | 4cosH(z/2) (eZ + 1) (196)

The distributionsP (G) and Q(z) are shown irFig. 26

The scaling properties of the distributi@(z) may be used to determine the critical exponent with
very high accuracy. The idea is that an initial shift of the distribution by an amgumiil be amplified
during the renormalization procedure since the quantum Hall fixed point is unstablenAtegps, the
maximum of the distribution will be shifted by an amoupfax, = 4" zo. After a certain number of steps,
nr, the saddle point will be no longer transparent. This limit can be defined by

Zmaxn, =A"tzo~ 1. (197)

By defining the localization lengthwith the length 224 (a lattice constant of the original lattice) one
finds that¢ diverges forzg — 0,

¢ocazy” (198)
with the exponent =In2/In / (cf. Eq. (183)). The critical exponent can then be determined from

In2"

== 199
! IN(zmaxn)/z0 (199)
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Fig. 26. Top: the fixed point distributior) of the conductance? (G), at the quantum Hall transition obtained by starting from
different initial distributions denoted by squares, diamonds, triangles, and the distribution after the 16th renormalization step
(4). Bottom: the corresponding distributions of the heights of the saddle pahit$,(From[188]).

With zmax»/z0=4". Fig. 27shows results of the numerical calculat[84,188] The numerical analysis of

the data yields the resul=2.39+0.01, in excellent agreement with previous direct numerical simulations

for the localization lengtf{34,188] As mentioned above, by assuming the model as an independent
realization of the fixed point ensemble, one can interpret this result as an independent corroboration of
the universality hypothesis for the quantum Hall phase transition.

Though the value of the critical exponent is extremely precise, the form of the critical distribution of
the two terminal conductance is qualitatively different from the one of the Chalker—Coddington random
network. Instead oP (G) — OinthelimitG — 0 (Fig.15), the renormalization group approachindicates
divergenceP (G) — oo. Also nearG = 1, the present approach suggeRts;) — oo, while the actual
P(G) is constant. FoiG > 1, P(G) = 0 in the case of renormalization group, but in the simulation
for the original modelP (G) shows a tail in this region. This indicates that the renormalization group
approach in fact doasot approximate the Chalker—Coddington network model although the underlying
truncated-network model belongs to the same universality class.

This renormalization group has recently been extended to the calculation of the energy level statistics
[35]. The finite-size scaling analysis of the energy level spacing, Eq. (139), has been applied to estimate
vto be 237+ 0.02.
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Fig. 27. The critical exponentdetermined from the scaling behavior of the distribution of the heights of the saddle paints
with the effective system sizé'2n thenth renormalization step. Dashed line= 2.39. Inset: maximummax» as a function of
zg- The slopes yield” and thereby the critical exponent@) (From[34]).

7. Hamiltonians related to the network model

The model defined above is not only suitable for quantitative studies of the critical behavior. By
constructing effective Hamiltonians starting from the transfer matrix, one can recognize that it is of much
more general importance. In the present section we will achieve such a construction. We first introduce an
equivalent tight-binding Hamiltonian. In effective mass approximation, this will be shown to be equivalent
to a Dirac Hamiltonian. For the latter, some analytical results are summarized which put the quantum
Hall phenomenon in a new perspective.

In this and in the subsequent sections, we will use units suchi thdt, m* = 1, ande = 1, in order to
simplify notation. However, in results for the conductivity tensors, the correciedpit is reintroduced
since it is of physical importance.

The above network system has been completely specified in terms of its transmission or scattering
properties at given energyf the original model of an electron moving in a strong magnetic field and
a slowly varying random potential. By using this as a starting point for defining a Hamiltonian, we fix
an entire spectrum dfjuasijenergiesvhich contains as a parameter the original energy value. It is not
obvious whether or not there is some arbitrariness in such a procd@%je

7.1. Atight-binding Hamiltonian

We first want to establish a connection with a nearest neighbor tight-binding Hamiltonian. We start from
the unitary matriceSthat describe the scattering at the individual saddle points, Eq. (87). We first rewrite
S by redefining phases,; — ¢1 + = and¢, — ¢4 + =, again in order to avoid unnecessary notation.
This does not change the physics, as it will be seen below that one of the relevant system parameters is the
total phase accumulated around a unit cell of the Iat&ce,zquj, which is the number of flux quanta
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Fig. 28. The network model rearranged as a tight-binding model on a two-dimensional square lattice with four states per site.
The links between saddle points are associated with the four directed site states (arrowheads) in the unit cell. These site state
are connected by tunneling through the saddle points represented by

in the unit cell multiplied by 2.

S e 12 0 —r —d¢1 0
- 0 —é& ror 0 elfs

—i¢o 0 —dh 0
_ (eo _é¢4>50( e e_i%)_ (200)

Then, we rearrange the network in the way showRigh 28 The loops that are connected by the saddle
points, described by their scattering mat8x, are arranged in the form of a two-dimensional square
lattice such that the centers of the loops are associated with the lattice points

Ryy = xe, + ye, (201)

with x, y integer numbers. This notation might appear unconventional, but is convenient for emphasizing
the connection with the real space. Theandy-directions are assumed to point into the directions of

the links that connec® andS'. The four links between adjacent saddle points within each of the loops
(denoted by arrowheads labeled with 1,2,3,4ig. 28 [189) are now associated with four site states
within a unit cell of the lattice. The site states are characterized by a lattice vector and a quantum number
J.in the lattice cell, and they are assumed to form a complete set,

4

Dy Ay, Al =1 (202)
x,y,A=1
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These site states are connected via the tunneling and reflection matrix elements through the saddle point:
within a given unit cell, and between nearest neighbor cells.

In order to determine the matrix elements of the effective Hamiltonian, we adopt the method used in
[121,189] We write for the vector of the amplitudes in the lattice celRat xe, + ye, after M + 1
iteration steps

4
Yri(M +1) = Z Urpri¥r (M) . (203)
R/=1

The unitary operatdd can be interpreted as describing the evolution of the wave function between steps
M andM + 1. The eigenstates of thd.4ddimensional matridJ (L number of sites)
Uly,) =By )y (a=1...... 4L) (204)

with eigenvalues 1« (E) = 0) are the stationary states of the network with an energy parameterized by

the energy-dependent reflection parameter of the saddle poiats;(E) = /1 — t2(E).
Formally, one can interpret the above Eq. (203) as a “time-dependent” Schrédinger equation by writing

4
YoM + 1) —yry(M) = >~ (U= Dy Yrs (M) . (205)
R, J/=1

This suggests
1
U=1- i—H . (206)
As the HamiltoniarH must be self adjoint we define
1
H=2(u-u"). 207
2i ) (207)
Note that the Hamiltonian is here dimensionless, since it contains a fagtgrwith Ar = 1 the width of

the time step in Eq. (205).
The Hamiltonian has quasi-energy eigenvalues

&y =SIN Wy . (208)

Since each lattice cell is connected via four saddle points to its nearest neigbboust have a 4« 4
block structure. The midpoints of the links form a bipartite lattice. This means that each ofxthke 4
blocks can consist only of two non-zerox22 blocks. By arranging the amplitudes according to the
sequencéyry, Yrs: Yro: Yra)| ONE gets for the 4« 4 block connecting with each other the site states
within a given lattice cell aR, and with the states in the nearest-neighbor cells,

0O M
u;(N 0), (209)

such that the % 2 blockM connects the statefgq, yr3 With Yo, Yrs and the blockN links the states
VRo, Yra With Yr1, Yrs.
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This gives for the 4x 4 block of the effective Hamiltonian

1 0 NT — M 0 H,
- — , 210
2i (MT—N 0 ) (H; o) (210)

The matrices

tei‘f’lrfrﬁ_ red1 (211)
N res —tei‘/’3riry_
re®2 teid’Zrirﬁ_
N= (teid’%fry_ —re®a ) (212)

contain the translation operatars that connect nearest-neighbor cells,

VR = VRies TaVRi = VRie - (213)

The Hamiltonian is then given by

Hy =

1 <re"d’2 —1enld el —réh > (214)

2i \reriaet ) e —reita g iddarie

This means that within a given cell, say Rt the tunneling matrix elements are proportional to the
reflection amplitudes of the saddle points

hriRa =€, (215)
hror1 = %ei% : (216)
hrare = €%, (217)
hrar3z = —%eid)“ - (218)

On the other hand, the eight coupling matrix elements to the nearest neighbor cells are proportional to
the transmission amplitudeThey are

hRr2,[R+(1, 113 = % 92 (219)
hR3,[R+-(L-1)14 = —éei% : (220)
hRa[R+(-1 D11 = %ei‘/"‘ : (221)
hRL[R+(-1,1))2 = éei‘t’l (222)

and the four remaining matrix elements are the conjugates of these.
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(b) 2

Fig. 29. The band structure of quasi-energig& — A) of the Hamiltonian representing a network with identical saddle points
and equal phases in all of the cells of the tight-binding lattice such that there is half of a flux quantum in each uhitegll (

In this case, the four bands (Eq. (224)) are degenerated with respectad The spectrum exactly at the saddle point energy,
r=t=1/+/2, (b)forr =0.5.

It is useful to consider as a starting point for the discussion of the properties of this Hamiltonian the
periodic limit. This will also yield the Dirac Hamiltonian in the limit of small wave number, i.e. in effective
mass approximation.

The periodic case is achieved by assuming the phases in each of the unit cells and all of the saddle
points as identical. The Hamiltonian can be diagonalized exactly with the Bloch Ansatz

v, (R) = €%y, (q) . (223)

The resulting band structure is (F2P)

ej(q) = (—1)j«/§ [1 — 2rt C0S¢ C0Sgx — Ay) COSqy — Ay)

1/2
+ sin (;S\/l — 4r212cof(qy — Ay) COR(qy — Ay)] (224)

with j=1,2,A, = (¢1— ¢3)/2,Ay = (¢4 — ¢2)/2 andep = Zj}zlm the flux through the cell multiplied
by e/#. Exactly at the energy of the saddle pointss r = 1/+/2, there is no gap between the bands. For
r£tragapA=ec1 — ez isopened. Fop =0itis

A=22/1=2rt) ~m (225)

forr =1/v/2 4+ m/4 (m <1).
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The formation of the gap can be discussed in better detail by expanding the band structyrevead.
On finds for smalm

(@) =m? + (q— A? | (226)

Thus, the existence of the gap is closely related to the deviation from the saddle point.

In the following, we discuss briefly the disordered version of the network.

If the reflection amplitude is unity-(= 1, t = 0), i.e. if the energ\E is well below the saddle point
energy, the unit cells decouple. The system consists then of independent wave functions localized within
the grey unit cells ifFig. 28 On the other hand, if=1 (» = 0), i.e. for an energy well above the saddle
point, the independent cell states are localized in the complementary lattice of the white unit cells. The
guasi-energy eigenvalues in these decoupled limits are

1/2

G R §) = (-1 ﬁ[l F - cos¢>l/2} (=12 (227)
< V2

and¢=¢(R) is the flux through the loop & For completely independent and random phases, the fluxesin

the individual cells, and thus the quasi-energiese statistically independent and random. When varying

the energyE, i.e. varyingr (E) close to the value of 1, the quasi-energi@s) will perform random walks

inthe(E, ¢)-space. The energies of the original probldip(e, =0), will then be statistically independent

and random. They correspond to the localized states associated with the valleys and hills in the potentia

landscape.

If we assume that all saddle points have the same paramatet the phases are independently and
randomly distributed one can see that the localization lengths of the eigenstdteareffinite and
independent of,. As r — rc = tc = 1/+/2, the localization length diverges uniformly throughout the
spectrun{189]. This reflects the singularity of the localization length as a function of the etieofyhe
original problem.

We note that with disorder, i.e. assuming the phases to be independently and randomly distributed,
the matrix elements of the Hamiltonian remain nevertheless strongly correlated. These correlations intro-
duce peculiar features into the localization behavior of the corresponding eigenstates. In particular, they
are responsible for the localization—delocalization transitions occurring in the sub-bands induced by the
magnetic field. A very similar observation has been made earlier for the random matrix model where the
matrix elements of the banded matrix are also strongly correags.

7.2. The Dirac Hamiltonian

One can also relate the network model with the two-dimensional Dirac equation. This can be done
most straightforwardly by considering the effective mass approximation of the tight-binding Hamiltonian.
Alternatively, one can consider the two-step unitary operdi@o]

2 (MN 01\ (Vv O
(8 =(5 )
The system of four equations decouples into pairs, and one can deal with, say, only the upper. block

Furthermore, by assuming that the displacement operators act on smooth functions one can replace

=149, ryizl:izay . (229)



B. Kramer et al. / Physics Reports 417 (2005) 211-342 275

Table 2
Symmetry breaking by disorder in the various parameters of the Dirac model

Symmetry g-p may ¢ g-A
Parity Yes No No No
Time reversal Yes No Yes No
Particle—hole Yes No No Yes

(p—momentum operatom—Dirac mass parametesi—vector of the Pauli matricesy, oy, ¢ scalar potentialA—vector
potential).

For small phases and with the definitioa= rc + m/4 (t ~ tc — m/4) one can expand
V=e~1_iA (230)

with the unit matrix1. This is justified for smalH. From the matrix elements &f andN, Egs. (211)
and (212), one finds

—0, +iAy 0, —iAy+m
ay—iAy—m 0, —iAx
With the unitary transformation

R = \ifz (: _11) (232)

one can transform

v:x1+( )—i¢1=1—i|3|. (231)

H=RHR™! (233)
such that one obtains finally the two-dimensional Dirac Hamiltonian
H=(px —Ayax + (py — Ay)oy +mao; + ¢1. (234)

Here,p; = —i0; (j = x, y) are the components of the momentum operator and

0§ o-(3) (%)

are the Pauli matrices. In this Hamiltonian, randomness can be introduced in different ways. Via random-
ness in the individual phases one can make the components of the vector potential random. Randomizing
the total Aharonov—Bohm phases in the loops produces randomness in the scalar pptétitially,
assuming the tunneling parameters of the saddle points to be random gives fluctuations in the mass
parametem.

Introducing disorder in the various parameters of the model leads to breaking of symmetries, as noted
in [120] and indicated iMable 2 The first term in the Hamiltoniatjo =6 - p [6 = (ox, 6y), p=—iV =
—i(0,, ay)], is invariant under an effectivime reversabperation

Ho=0o.Hgo: . (236)
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This means that there is a Kramers degenetfa@ndos,y* are degenerate eigenstates as is easily seen.
Similarly, it is easy to see that and s,y are eigenstates to energiesand — E, respectively. This is
equivalent tgparticle—holesymmetry

—Hp =a;Hoo; . (237)
Finally, Ho is parity invariant undex- andy-reflectionspP; j P ; = —j, (j = x, y), for instance
Ho = PyoxHoo, Py . (238)

The Dirac mass terid,, =mao, possesses none of these symmetries, as is easily seen. The vector potential
termHa = —A - ¢ preserves only particle—hole symmetry, and the random scalar potegptiakp1 only

time reversal symmetry. These symmetries are very important for understanding the quantum phases o
the system as will be seen below in more detail.

7.3. Some results for the two-dimensional Dirac model

In this section we discuss briefly some instructive analytical results obtained for the Dirac Hamiltonian.

The correspondences between the quantum Hall problem, certain tight-binding models and the two-
dimensional Dirac model have been noticed by several aufha@s191-193]Fisher and Fradkifl91]
have obtained the Dirac model by starting from a two-dimensional tight-binding model with diagonal
on-site disorder in a perpendicular magnetic field with half a magnetic flux quantum in the unit cell. They
constructed a field theory for the diffusive modes which was shown to be in the same universality class
as the orthogonab (2n, 2n)/ O (2n) x O(2n)(n — 0) non-linears-model. This implies that all states
are localized as in the absence of a magnetic field. It suggests that if delocalization occurs with magnetic
field, it must be a direct consequence of breaking time-reversal symmetry instead of some other properties
of the field. Generalizations to the several-channel scattering problem have also been d[{d¢&4gsed

Ludwig and collaborator$120] have used a tight-binding model on a square lattice with nearest
and next-nearest neighbor coupling, half a flux quantum per unit cell and a staggered potential energy
u(=1)*tY as a starting point. At low energies, the model was shown to be equivalent to a Dirac model
with two Dirac fields. They found that without disorder this model exhibits an integer quantum Hall
phase transition as a function of some control parameter which is essentially thenrob#®e lighter
Dirac field. This is similar to the transitions of the Hall conductance between integer multipdég/of
obtained in the original clean Landau model as a function oftreni energyand does not mean that a
plateau exists when the electron density is varied. The transition of the Dirac model has been shown to
belong to the two-dimensional Ising universality class. The associated exponents and the critical transpor
properties were determined.

The density of states,

E
p(E) = |2*|@(|E| —m), (239)
T

vanishes af = 0. It can readily be obtained from Eqg. (226) with= 0 using

p(E)—(z z/dz [ < q +m)+b(E+\/6]2+m2>] : (240)
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Fig. 30. The phase diagram of the ordered Dirac m§t20] showing regions of non-zero density of state§E| > |m|) and
non-zero Hall conductanes,y = i—e2/2h (IE| < |m)).

Applying linear response theory to the Dirac system one can determine the Hall conductivity by calculating
the ratio of, say, the current density in tkelirection, j, and the electric fieldf,, in they-direction

Jr € m / d2qde

Ey  h2n? ] [(io—E)?—g?—m?%?
Itis found that at zero energy, where the above density of states vanishes, the Hall conductance jumps by
e?/h atm = 0 (Fig. 30)

(241)

Oxy =

sgn(m) 2
2 h
The heavier Dirac field contributes towards the Hall conductance &fijtBh such that the total Hall

conductance jumps from 0 &/ k. Simultaneously, the magneto-conductivity, is non-zero only at
this critical point,

(242)

Oxy (m) =

o2
Oxx = 0075m,0 ) (243)

with the Kronecker-symbai,, o equal 1 form = 0 and 0 form # 0, and the constanf is n/8. The

critical point shows time-reversal, particle—hole and parity invariance. Thus, the clean two-dimensional

Dirac model exhibits a quantum Hall transitionfat=m = 0, i.e. a step in the Hall conductivity.

According to our above derivation of the Hamiltonian, introducing spatial randomness in the Dirac
mass,;n = m(x, y), IS equivalent to introducing randomness in the saddle point energies. This breaks
all of the above symmetries (cfable 2. However, this kind of randomness alone, if it is sufficiently
weak, does not introduce a non-vanishing density of states at zero energy. This means that it cannot
place the system into the quantum Hall universality class, in contrast to what one might suspect. For
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sufficiently slowly varying mass, the zero-energy wave functions are argued to be confined along the
contoursn(x, y) = 0 since for any region with a non-vanishing Dirac mass the energy must be non-zero.
When the mass varies slowly in space, the transition can be interpreted in terms of the percolation of these
states. In the absence of randomness of the phases (i.e. the vector potential), the corresponding critice
exponent of the correlation length is that of the classical percolation model. The analysis [h2Rgf.
for weak randomness using the replica trick and perturbative renormalization group analysis strongly
suggests that the random Dirac mass term is always marginal for the critical properties of the quantum
Hall transition. The system scales to vanishing disorder, and the transition is described by the free Dirac
theory. The replicated effective action is formally equivalent to that of the random-bond Ising model (cf.
next section) with the randomness in the Dirac mass corresponding to the randomness in the Ising bonds
Randomness in the scalar potential is equivalent to assuming random fluxes piercing the plaquettes
of the network. For small random scalar potential one can use the perturbative results obtained for the
random Dirac mass. This can be suspected from the form of the Hamiltonian

H=o0-p+mo,+ ¢l. (244)

Specifically, it can be shown that the problem with real disorder in the Dirac mass is formally equivalent to
a problem with a purely imaginary random scalar field which corresponds to a negative disorder strength,
(¢?) < 0. Equivalently, a positive scalar disorder strength maps ontmativedisorder strength for the
Dirac mass. Since randomness in the Dirac mass was found to be marginal, the opposite is true for the
scalar randomness, and the renormalization flow of the scalar disorder will nawdydrom the fixed
point instead of towards it. Thus, the scalar randomness drives the system to some strong coupling regime
Eventually, one then expects the generation of a non-vanishing density of states. It is further argued by
considering two-particle properties that the transition very probably has to be described by a symplectic
non-linear sigma model due to the time reversal invariance of every member of the enfit@ible

The case of only a random vector potential was found to be particularly interesting since it can be
treated to a large extent analytica[ty20,195—-200] This limit has several remarkable properties. The
Hamiltonian is

Hy=06-p+o-A (245)

and according to what has been said before, the random vector potential is due to to the random phase
along the links of the network. We assume thaatisfies a Gaussian white noise distribution with zero
mean and variancd,. The corresponding random magnetic figdd= V x A, is then also Gaussian
distributed with the variance

(B()B(K')) = (2m)*k?A40(k + k') (246)

with the Fourier transfornB (k) of the magnetic field (perpendicular to the, y)-plane). As the Dirac
mass is assumed to vanish, this Hamiltonian is expected to implement a critical theory. In fact, the model
exhibits a fixed line corresponding to multi-fractal wave functiong at 0 [120].

For non-vanishing uniform Dirac mass the squared of the Hamiltonian is

H?=H2 +m? (247)

for each realization of the random vector potential. Thus, the energy eigenvalues Batisfy2. The
gap in the pure Dirac model witlh # 0 is thus not closed by the randomness in the vector potential, at
least as long as the disorder is small.
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For this model, several single particle and two-patrticle properties can be determined exactly. As an
example, we consider the zero-energy wave function. It is useful to use the Coulomb gauge; O.
This implies thatA can be written in terms of a scalar fieldx, y)

Ay =0,0, (248)
Ay=-0,0. (249)
By inserting the real Ansatz wave functions
e(P
Py o (L+07) (e_¢) (250)

into the Schrodinger equation of the Hamiltonian equation (245) one easily verifies that they are exact
nodeless eigenfunctions correspondingte- 0. Furthermore, it follows from the symmetry properties
of the Hamiltonian and the assumption of zero fluxes in the plaquettes that thedeo&tke zero-energy
eigenfunctions.

These random wave functions aret localized, anchot normalizable in the thermodynamic limit. In
order to quantify their statistical nature it is useful to introduce their counterparts normalized to a square
of the sizeL?.

Y(x,y) = %e‘”"*” (251)
with
Cc?= f 22V dx dy | (252)
LZ

where the integration is over the squdréand to consider the moments of the corresponding density,
the average inverse participation numbers introduced in Section 4.3

pg(L) = (y[?7) 2 (253)

with (... ); 2 denoting the configurational averagelif.
For the above-normalized zero energy wave function, Eq. (251), with Gaussian distrifjutieel
average inverse participation numbers can be deternfilr®201-204]One finds fogyc=+/2n/44 > 1

2 - V(1 —q/9d). lql<qc.
w(g) = N (254)
29(1—-sgng/qc)*, gl >qc -
Forgc<1 one gets
_2 1_ 2’ < )
q) = ( 61/615)1 lg1<qc (255)
4q —lgDhqe ™ lgl>qc -

The non-linearity ing indicates multi-fractal scaling of thextendedvave function. The resulting («)-
spectrum is parabolic with

. {2<1+qc2>, ge>1,
o =
4/qc, ge<l.
depending on the variance of the random vector potenfiaEq. (246) (see Section 4.3).

(256)
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Ay

Fig. 31. The global phase diagram of the Dirac model including randomness in the vector potenttake Dirac massd,,,
and the scalar potentiad,; (after[120]). The generic fixed point of the Integer Quantum Hall Effect corresponds to all of the
three different kinds of disorder nonvanishing, and seems to be inaccessible analytically.

The density of states was found to show a power-law dependence of the energly|rredy with the
exponent varying continuously upon moving along the fixed [RG5],

o(E) o« E@9/7 (257)

with

(258)

{1+2/%2’ ge>1,
4/qC—1, chl

For small disorder, the density of states vanishes.420& =, p(E — 0) = const, and it diverges for
Ap > T

The diagonal conductance was found taeBgrh along the fixed line.

The Dirac model with only randomness in the vector potential belongs to the Alll symmetry class to
be discussed in Section 9 (see alale §. The critical wave functions at = 0 for randomr phase
gauge field206—208]as well as for arbitrary random gauge fi§k9] have been investigated in detail.

If the phases along the links of the network are assumed to be independent and random, the equiva
lent Dirac model has randomness both in the vector potegmidin the fluxes through the plaquettes.
Such a system has none of the above symmetriesTétiie 2 and obviously belongs to the original
Chalker—Coddington class with a fixed point that corresponds to the quantum Hall phase transition.

The scaling picture of the Dirac model with all of the three different kinds of disorder—random Dirac
mass (parametet,,, random saddle point energies), random scalar potential (paramgteandom
fluxes through the plaquettes of the network) and random vector potential (parametandom link
phases)—has been qualitatively sketched by Ludwig and collaborators on the basis of their analytical
results[120] (Fig. 31). The phase diagram consists of a critical g, = 44, =0, 44 # 0) which is
unstable with respect to botty,, and4,, a two-dimensional Ising fixed point at,, = 44 = 44 =0
which is only stable fou,, # 0, and a fixed point at som#;, # 0 which was argued to belong to the
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universality class of the symplectic non-linear sigma model. According to this scenario, the fixed point of
the genuine integer quantum Hall transition is in a strong coupling regime with all of the three different
kinds of disorder present. Until now, this has not yet been accessible analytically. It will be the subject of
subsequent section to review the approaches to extract nevertheless analytical information on the GIQHE,
and to shed some light on the obstacles which have still prevented an analytical derivation of its critical
parameters.

8. Relation to the two-dimensional random bond Ising model

Inthe last section we have seen how mapping to different Hamiltonians can help to provide new insights
into the properties of the quantum Hall phase transition. In this section we will address in addition the
opposite question: given we know the network model and know how to use it for understanding the
quantum Hall critical scenario, can we use this knowledge for understanding better the nature of phase
transitions in two dimensions? As the random two-dimensional Ising model for a system of interacting
spins is a fundamental prototype for phase transitions in two dimensions, for answering this question it
is useful first to establish a relation between the random network and the Ising model. Such a mapping
has been performed by various authf2@9a,210,211]We describe here the elementary route that has
been worked out in the seminal paper by Merz and ChaEz].

8.1. The Ising model

The Ising maodel in two dimensions is defined by the Hamiltofi2drB]

H:—Z JijSiS; . (259)
ij

The exchange integralg; connect the sitesand]j of a regular square lattice. The variablgsare the
z-components of the spin operators associated with the lattice sites.

We consider the simplest case, whéyeconnect nearest neighbors only, and spid.1n the ordered
limit all of the exchange integrals are the same. This has been solved exactly by Onsager in classical papel
using Lie algebrag214]. A comprehensive treatment using the transfer matrix method is described in
[215]. The basic reason for the Ising model to be an exactly solvable many-body problem is that eventually
it amounts to nothing else but the diagonalization of a quadratic form.

However, in the disordered case, when the exchange parameters are chosen at random, the mode
cannot be treated exactly, in spite of being quadratic. We congjdess independent random variables
with a distributionP (J;;). Specifically one can assume a two-component distribution,

P(Jij) =péJij +J)+ A= p)olJij —J) . (260)

This is the random bond Ising Model. Edr= 0, it corresponds to a lattice containipgntiferromagnetic

and (1 — p) ferromagnetic bonds. In this simple case, the model shows a phase transition between an
ordered ferromagnetic phase at low temperatures and a paramagnetic high-temperature phase for smal
p. At larger p the ferromagnetic phase is destroyed in favor of a spin glass phase in high dimensions,
d >3, with a multi-critical point, also called Nishimori poif216—218] where the three phases coexist

(Fig. 32) [219-224] In two dimensions the spin glass phase becomes unstaldiefo0. However, the
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Fig. 32. Schematic phase diagram of the random bond Ising Model. For small fraction of antiferromagnetic bonds one observes
a transition from a ferromagnetic to a paramagnetic phase with increasing temperature. For larger fraction of antiferromagnetic
bonds, the ferromagnetic phase is changed to a spin glass. At the multicriticdVipbimthree phases coexist (dashed: Nishimori

line; arrows: renormalization flow).

multi-critical point survives. Along the Nishimori line which crosses the phase boundary at the Nishimori
point, the internal energy can be calculated exactly.

The disordered Ising system has been studied using Monte Carlo simulations and the transfer matrix
method in the spin basi222-230] Mapping the random Ising model to fermionic models can have
technical advantages: one can avoid the random-sampling errors of the Monte Carlo technique and it
is possible to avoid the exponential growth of the transfer matrix. Pioneering work in this direction has
been done by starting from the solution of the two-dimensional Ising model using a Pfagia237]

In this approach the statistical properties of the system are written in terms of the spectral properties of
the corresponding matrix. The latter is essentially a tight-binding Hamiltonian on the underlying Ising
lattice with random hopping matrix elements. Thus, a link between the random bond Ising system and
the non-interacting localization problem is established. Alternative approaches have been formulated by
using Dirac fermions which eventually have been condensed into a random network model with a special
symmetry[120,158,210-212,238]

The mapping of the Ising model to a random network model is done in three steps. First, one intro-
duces the conventional description of the partition function in terms of transfer mgRiteks In the
second step, the transfer matrices are written in terms of fermion operators instead of spinors. Finally,
the network model is introduced by using the equivalence of second- and first-quantized forms of lin-
ear transformations. In the next sections, we establish the random network version of the Ising model
following [212].

8.2. Transfer matrix formulation of the Ising model

We consider the two-dimensional Ising model on a square lattice of |&reytkd widthM with random
nearest-neighbor exchange couplidgg, m) (Fig.33). The pair ofintegerd, m) denotes the coordinates
of alattice pointirL- andM-directions, respectively. The indéx 4, nindicates whethers(/, m) couples
to a nearest neighbor in the directions aldngr M, respectively.
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Fig. 33. The two-dimensional Ising model on a square lattice of lebgthd widthM with exchange matrix elemens(n, m)
between nearest neighbors.

In order to introduce the transfer matrix description we start by considering the one-dimensional case
M = 1[215]. The Hamiltonian in suitable units is

L-1

H(o1...00) =— Z Ji(Dojo141 (261)
=1

with independent random, (/). The partition function is

Z =Tre PHG100) _ Ty expz K, (Dororp1=Tr l—[ T, (262)
/ I

with the “bond strength;, (1) = pJ, (1) (p inverse temperature) and the transfer matrices
Ty = Do (263)

Since the spin can take only valu£4 on the lattice sites the transfer matrices can be rewrittena® 2
matrices with the matrix elements given by, [ + 1| T | &, 1),

Ty =€ Dgy+ e Vg (264)
With the definition of the Kramers—Wannier duglof the bond strength

*

1
K=—3 In tanh« (265)

the transfer matrices may be written in the diagonal form

1/2
T = # / g Doz (266)
sinh 2% (1)
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Here,s; (j =0, 1, 2, 3) are the complete set of Pauli matrices denoted earliép,as,, o,, ando; (12
two-dimensional unit matrix).
In the two-dimensional case the Hamiltonian is

L-1 M L-1 M
H({orm) ==Y LiOormorsrm — Y_ Y Ju()otmormi1 (267)
=1 m=1 =1 m=1

and we assume periodic boundary conditions in the directidhgich that/ + 1 — 1. Also in this case
one can write the partition function as a product of transfer matrices, Eq. (262), but now these consist of
two factors

n=VvViw . (268)

The matrixW; is the obvious generalization of Eq. (266),

M 2 1/2 M
W, = _ e — *(, sl I 269
: l_[ [smh Zcf(l,m)] xp[ Z il m)as} (268)
m=1 g m=1
but with the 2/ x 2M matrix
05 =00Q00® - ®63Q - ®op, (270)

which is the direct product af — 1 unit matrices ands at positionm. The 2V x 2M matrix V; contains
the Hamiltonian of thdéth column of the system

M—-1
v,:exp[z K(;(z,m)aTag"“} . (271)

m=1

The formulation in terms of transfer matrices has two implications which are of immense importance
for practical purposes. First, one can show that it is the largest eigenvalue of the total transfer matrix
that determines fof. — oo the partition function and thus the physical properties of the syg2és.
Second, one can write the transfer matrix of a system of lehgthl as a function of the transfer matrix

of the system of the length. We will see below, that these two properties are essential for numerical
evaluation of the phase diagram and critical properties.

8.3. Transforming to fermions

The above transfer matrices involve linear and quadratic forms of the spin operators. The raising and
lowering operators fulfill mixed commutation and anticommutation relations

[67, 64 1=0 (m#1),
{o'}, dy=1,
(@")?2=(a")?=0. (272)

In one dimension, itis well known how to transform these operators to ones obeying fermion anticommu-
tation relations. This is done by the Jordan—Wigner transform§2i@®-242] Annihilation and creation
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operators are introduced by

m—1 o
cn=|explin Y oo ||,
i =aa

m—1
CL = | exp|in Z ool oy . (273)
I =
It is easy to show that these operators obey fermion statistics and
el en = aia” . (274)
The inverse transformation is
B m—1
" = | exp inz c}cj- Cm s
L j=1
- o -
oy =|exp|in cjcj- CL . (275)
L j=1 A
This gives
_ - -
o] = |exp|in cjcj- (C;L +cp), o3 = 2c;rncm —-1. (276)
L j=1 A
The fermion representation of the above transfer matrices is
a 2 12 u o1
W, = _—— exp| —2 *(, - = ,
=11 [smh 2. m)] p| =2 wid.m) (Cmc’” 2)
m=1 h m=1
M-1
Vi = exp{z kol m)(eh, — em)(cl g + myn)
m=1
— (L, MYE™e(c] — epp) (el + cl)i| , (277)

with the number operataV; = Z,’,‘f:l c,Tncm. The last term in (277) represents the periodic boundary
condition in the direction oM.

The matrixV; is biquadratic in the fermion operators. It does not conserve the number of fermions
since it contains terms that create and annihilate fermions in pairs. Thus, diagonalization of the transfer
matrix in principle should be possible via a unitary Bogoliubov—de-Gennes transformation.
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Itis illustrative for the disordered case to consider first the ordered limit in wiich m) = «% and
Kku(l, m) = k. First one notes that evenness and oddne$& aommute withw andV [215] smce the
latter contains only quadratic forms of the fermion operators,

(=DM, Wl=[(-D", V]=0. (278)

Therefore one can classify the eigenstata&/waccording to whether they contain even and odd numbers
of fermions. One can then write

M
* —exp [xu Z(C,L — cm)(c,f,ﬂ + Cm+l):| , (279)

with cyr41 = Fe1 anch+1 = q:cI where+ denote the operators acting on the even (with anticyclic
boundary condition) and odd states (with cyclic boundary condition), respectively. The task is then to
find the eigenvalues and eigenvectors of the transfer operators

2 M2 1 X .
TE=V*wW = |:S|nh 2€*i| exp|:§ Ky Z(cfn — cm)(an_l + cm+1)]
m=1

M 1
X exp|:—21cjf Z (c;rncm — §>j|

m=1

1 M
X exp|:§ Ku Z(c; — cm)(c;+1 + cm+1)i| . (280)

m=1

The diagonalization can be straightforwardly performed by introducing plane wave operators via the
canonical transformation

1 .
— Sy, (281)
VM 4 1

whereg < is given by the odd and even multiplesgfM for anticyclic and cyclic boundary conditions,
respectively i is assumed to be even). The resulting quadratic forms in the transfer operator which has
four eigenstates is very reminiscent of the pair Hamiltonian in the BCS theory of superconductivity. It
can be diagonalized by transforming to new variables

Eaq = COSP g £ SINGNL, | (282)
with tan 2, = 2C,/(B, — A4) containing

A, = e %% (coshx, + sinh k, cosq)? + €/ (sinh «, sing)? ,
B, =€ 2% (sinh x, sing)? 4 € (coshi, — sinh k, cosq)? ,
C, = (2sinhk, sing)(cosh 2 coshk, — sinh 2 sinhk, cosg) .
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With these operators one obtains the diagonal form of the transfer operators

+ 2 e te 1
TH=| s exp| — > g ehe, - 5) (283)

q

The energy dispersion is given implicitly by the solution of
coshe, = cosh %, cosh X7 — sinh 2, sinh 2} cosg . (284)

The four eigenstates in terms of teoperators are the vacuupy, 4, = élqwo and the pair state

T .t

The partition function is given by tHeth power of the largest eigenvalue®t . The critical temperature
T¢ is defined by’ = «,. We do not want to discuss here how to use the results for obtaining the critical
properties. The important lesson to keep in mind at this stage is the importance of the parity of the fermion
number for the structure of the eigenvalue problem.

8.4. Mapping to a localization problem for non-interacting particles

In the case of a disordered Ising system, the unitary transformation for achieving the diagonalization of
the transfer matrix depends on the disorder, and the different transfer steps are not independent. Therefore
a different approach must be used. This consists of mapping the Ising problem to a localization problem
for non-interacting particles.

Starting point is the rewriting of the transfer matrix in terms of Dirac fermions fulfilling particle
conservatiorf158,211] In order to achieve this, an identical copy of the Ising model is introduced. The
corresponding fermions are denotediésdm. New Dirac fermions are then defined by (suppressing the
indices for the sake of simplicity)

1 i
c=5f+fT+g—gh d=5(T-f-g—¢gh (285)
and the inverse of these,
f=dlc+cT+id+dN, g=3e—cT+i@-dh. (286)

The Hamiltonian of the doubled system is the sum of the two Hamiltonidns, (H® + H%)/2. This
implies that one deals eventually with products of the corresponding transfer matrices. In terms of the
new fermion operators they are given by

M
chwld — eXp|:—2 Z Kj«j(l, m)(gj,;fm + f,Igm)i| y
m=1

M-1
Ve Vld =exp |:2 Z il m)(g,tlferl + fnt+1gm) + b] (287)

m=1
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and they are particle conserving. The term

b= —wu(l, MIE™ + &™) (gl i+ flgm) + @™ — &™) (el £ + frem)]  (288)
is due to the boundary conditions in the directioMfThis contains the two boundary operators
B* = ™e 4 gNa (289)

In order to perform the mapping to the network model it is required that the transfer operator conserves
the number of fermions. This implies that the Hilbert space for first quantization of the transfer matrix
must be constructed from the Hilbert space of the two copies of the Ising model in such a way that the
term involving B~ in Eq. (288) vanisheR12].

In particular, one may consider the parity opera®uefined by

M
R=T] (290)
m=1

which change the sign of a complete column of the spins,

RoR=—c,, R°=1. (291)

These obviously commute with the transfer operators and have eigendgludée transfer matrix of

the two copies of the Ising system written in the basis corresponding to the product s@ace Bf; can

then be cast into a block-diagonal form where the four block matrices describe the transfer of amplitudes
in the subspaces corresponding to eigenvalues of the parity operators operating in the Hilbert space:
of the two copies of the systertl,., 1), (1., —14), (-1, 14), and(—1., —1,). Since the eigenvalues

of exp(irN) are+1 depending on whethé/l is even or odd, the boundary operators can be written as
B* = R. + R,;. Then, in the subspaces corresponding to the same eigenvaiuesp. The number of
fermions is conserved.

8.5. The equivalent network model

In order to construct the first quantized form of the transfer matrix, we start by comparing first and
second quantized forms of an operator in a Hilbert space, say of the dimevisioBM with a basis
{1j)}. Assume that the operator can be written in the second quantized form [a§(¢m|k)ak] with

the creation and annihilation operat@?s andoyg, respectively. The first quantized form of this operator
isthe(2M x 2M)-matrix (j| expG k).

Byidentifying{oa, ..., con}={f1, ..., fm, g1, - . . , gm} ONefinds that the first quantization equivalent
of the second quantization transfer operator corresponding ta-bieds, exp—2x«;(, m)](g,;r,fm +

fhgm), is given by (Fig34)
Wim = expl—2x« (I, m)a1] = cosh[2«5 (I, m)] — o1 Sinh[2«5 (L, M)] . (292)
By analogy, the first quantized form of tlhebonds in the transfer matrix is

Vim = expl2i,(l, m)a1] = cosh[2k, (I, m)] + o1 sinh[2k, (I, m)] . (293)
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Fig. 34. Graphical representation of the scattering nodes of the first quantized form of the transfer matrix of the Ising model.
Left: 2-bond,; right:u-bond.

In terms of right- and left-moving amplitudg‘% andg;, respectively, the transfer operators of the lattice
sites can be written as

< fgut) _ ( Co_sh 2% —sinh 2@%) (iém ) (294)
fin —sinh 2% cosh 2% 8out
and
( fi” ) _ (c9sh Z, sinh Zcﬂ) <g’~out> . (295)
fout sinh 2, cosh %, 8in

The relations
osWTos =W, 53VTigg=Vv~1 (296)

ensure flux conservation (Fig5).

The network model constructed in this way is completely analogous to the U(1) network of saddle point
scatterings used in the previous section for describing the critical localization behavior of the quantum
Hall system, with plaquettes of definite senses of circulation of the fluxes which can be clockwise and
counterclockwise. Disorder can be introduced in the former network by random quenched phases and
random saddle point energies. In the present case, randomness enters only via the randomness of th
exchange integrals represented in the Ising model by the bonds. The latter have been mapped to the node
of the network represented by the parameteasd«*. An antiferromagnetig-bond leads ta: < 0. An
antiferromagnetia-bond, however, leads to a complek where* denotes the Kramers—Wannier dual
defined by the function, Eq. (265). It implies the relation

(—ll)* = [il" +i 5 . (297)
This gives a minus sign in the matricéé representing the scattering at the nodes. Starting from an
Ising system with ferro- and antiferromagnetic bonds distributed randomly, one arrives at an equivalent
network model with node®/ that have random signs. In the node matrigeghe off-diagonal matrix
elements sint2«) acquire random signs. Thus, scattering at the nodes only causes real phasetfactors
Taking into account the topology of the network (F&%), this means that a single antiferromagnetic
node introduces phasesn both of the anticlockwise plaquettes that are linked at this node.
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- m+l

- m-1

Fig. 35. The network model equivalent to the random bond Ising model. Arrows indicate the propagation of flux. The transfer
matrix relates flux amplitudes from the left to the right. The Ising lattice of spins (arrows) with the exchange matrix elements
(dashed) are also shown.

This specific property of the disorder determines the symmetry class of the model. In the classification
scheme introduced recently by Altland and Zirnbd2di3,244]this network model belongs to the class
D (see belowJable 4in Section 9). Hamiltonian matrices of this class are purely imagirfafy= —H.

The corresponding time evolution operator expHt) is represented by a matrix with real elements
and can introduce only scattering phase factetsin accordance with the above network model of the
random bond Ising model.

The total transfer matrix of the doubled Ising system is then obtained by combining the node matrices
WandV. Itis a 2M x 2M matrix which can be arranged in such a way that propagation in one direction
is described by the fird¥l rows and propagation in the other direction is contained irMHast rows.

In the former case of the U(1) network the transfer matrix was unitary. In the present case it is real and
orthogonal. For a random network, it has the form gkpvith a real diagonal matrix. The fluctuations

arex +/L. It can be calculated numerically recursively for very long stfips88,89] L — oo, and
converges according to the theorem by Oselgd€6] to a diagonal matrix with diagonal elements

V1 oo PMs —V1s - - - » —Vr With the Lyapunov exponents.

The above random-bond Ising network model has been analyzed exhaustively numerifzdig]in
for systems containing as many &sx L = 256 x 5 - 10° lattice sites including scaling analysis along
the phase boundary where systems of size U te L = 32 x 2 - 10P lattice sites were used. From the
scaling behavior of the data a critical indexyof 1.50 + 0.03 has been extracted along the Nishimori
line at the multicritical point. On the other hand, along the phase boundary, the scaling analysis gives a
critical exponenvy = 4.0 + 0.5.

Also other network models, but belonging to the same symmetry class D, have been studied
[209a,210,238]Most strikingly, these different choices seem to yield different localization properties.
This will be reviewed in the following section.
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9. Symmetry classes

Having established above a network model belonging to a certain symmetry class corresponding to the
quantum Hall transition, one may ask the question if one can generalize the model taltexésting
symmetry classes.

Conventionally, random electron systems are classified into three universality ¢ld$esccording
to their symmetry with respectto reversal of time and rotation of spin. Systems belonging to the orthogonal
class have both time reversal and spin rotation invariance. Models belonging to the unitary class are not
invariant under time reversal. The symplectic class contains models that have time reversal symmetry
but the spin rotation symmetry is broken. This is realized in random electron systems with spin—orbit
interaction. The notation originates from the fact that a distribution of random mattiockthe orthogonal,

unitary, and symplectic classes is invariant under transformatiéns, U~'HU, OTHO, WRHW
with unitary, orthogonal, and symplectic (commuting with the antisymmetric Pauli mgfyimatrices,

U, O, W, respectively. HereQ" is the transpose @, andWR, the time reverse o [144], as defined

by WR = KW TK ~1, with the unitary matrixX which can be symmetric or antisymmetri¢ * = +1,
corresponding to integer spin and half-integer spin, respectively. Any random matrix in each of the classes
can be diagonalized by a unitary, orthogonal, and symplectic matrix, respectively.

The symmetry properties of arandom Hamiltonian have strong impact on the distribution and statistical
correlations between its eigenvalues and the distribution of moments of local eigenfunction amplitudes.
The level repulsion of extended states increases as the symmetry is changed from the orthogonal to uni-
tary to the symplectic class. At the same time the tendency to localization decreases, accompanied by an
according decrease of local wave function fluctuatiddg,245] As reviewed in Section 4, these proper-
ties have been studied in detail for the Chalker—Coddington network model. By construction, the model
belongs to the unitary symmetry class, since the links are directed, and correspond to scattering paths
which have a well-defined chirality (handedness). This breaks the time reversal symmetry. The question
arises, whether or not the integer quantum Hall transition as modeled by the Chalker—Coddington net-
work model is uniquely characterized by being identified as belonging to the unitary symmetry class.
This would lead one to the conclusion that all quantum Hall-type transitions had the same critical
exponents.

Since there can be a strong overlap between spin split Landau f®]sthe question is of great
experimental importand@47] whether or not the delocalization transition is sensitive to the spin rotation
symmetry. When the time reversal symmetry is broken, the conventional unitary class makes no distinction
whether or not the spin symmetry is broken. However, for a modified Chalker—Coddington model with
two spin channels, fixing the scattering phases and introducing random SU(2) mixing between the spin
channels—which corresponds to spin flip scattering by spin—orbit interaction—the critical exponent has
been found to be ~ 1.1 [248,249] This is close to the one of classical percolatios; vp = 4/3, see
Section 2.4. On the other hand, one recovers the critical exporei(2) close to that of the quantum
Hall phase transitiof97,98,248](Table 3 by choosing in addition the scattering phases at random. In
the latter case, the unitary matrices mixing the two spin channels are randomly chosen from the group
U(2) = U(1)x SU(2) where Uf) denotes the group of complex unitaryx n)-matricesA, and S stands
for the special condition that its determinant is one, det 1.

Recently, it has been realized that there can be two additional discrete symmetries in Hamiltonians of
disordered electrons. These symmetries have been found to give rise to four distinct transitions of the
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Table 3

Classification of network models (NM) according to their symmetry: the Wigner—Dyson class with no discrete symmetry

Wigner—Dyson class

Property Orthogonal Unitary Unitary Symplectic
TRS Yes No No Yes
SRS Yes Yes No No
Cartan class Al A A All
B 1 2 2 4
my 1 1 1 1
s 1 1 2 1
NDNM Insulator Insulatc? Insulator MIT[76]
DOS (E — 0) Constant Constant Constant Constant
Phase factor U(1) U(E)
in DNM
PT in DNM — IQHT IQHT® —
v — 2.5(5) [31] 2.4(2) [97,98] 2.8(1) (Section 9.2)
[20]°
o0 — 2.261(3) [137] 2.174(3)[260]
Ac — 1/m(og — 2) 2/n(ag — 2) 1.83(1) (Section 9.2)
Equivalent models RSVDM RSVDM

Abbreviations: TRS time reversal symmetry, SRS, spin rotation symmgteyel repulsion exponenty; multiplicity of
long root on symmetric spa¢256], sspin factor, IQHT Integer Quantum Hall Transition, MIT metal—-insulator transition, DOS
density of states, (N)DNM (non-)directed network model, PT phase transitwitical exponentyq position of maximum of
f (o), Ac MacKinnon—Kramer parameter, RSVDM Dirac model with both, random scalar and vector potentials.

8Electrons in a random magnetic field belong to this unitary class. The U(2) network model proposed by Chalker and Lee
[97] describes electrons in random magnetic field with large correlation length, and does not show a delocalization transition.

bSpin degenerate levels with spin—orbit interacti@n].
®Two IQHTS at two distinct energig97].

quantum Hall type with different critical exponents and different behavior of the quasi-particle density of
states. In the next section, we introduce these symmetry classes before we review the present knowledg
about the properties of the corresponding random models. In particular, we will concentrate on the nature

of the quantum Hall-type transitions.

9.1. The additional discrete symmetries

In addition to the invariance under time reversal and spin rotation, there can be at least two more discrete
symmetry operations in condensed matter systems. One is realized in two-sublattice [RE@e253]
It corresponds to an interchange of the two sublattices together with a sign change of the Hamiltonian. A
physical realization is a tight-binding lattice Hamiltonian with randomness only in the hopping amplitude.
Disordered systems with such a symmetry belong tathiel class
The other one is the electron—hole symmga¥4] arising from Andreev scattering in normal metal
wires attached to a supercondudi@44] or in superconductors with a gapless quasi-particle density of
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Classification of network models according to their symmetry: the Bogoliubov—de-Gennes—Oppermann class with particle—hole

discrete symmetry

Bogoliubov—de-Gennes—Oppermann class

Property Orthogonal Unitary Unitary Symplectic
TRS Yes No No Yes
SRS Yes Yes No No
Cartan class Cl C D Dl
B 2 4 1 2[261]
my 2 3 0 0[261]
S 1 1 4 2
Transport Sl Sl ™ ™
DOS (E — 0) |E| [244,262] |E|? [244] |E|P |E|[244]
VIn(L/|ET)
C[263]
Phase factor SU(2) Zo
PT in DNM — SQHT TOQHT —
DOS at CP |E|Y7 [264,265]
v — 4/3[264] —d ?
%0 — 2.137(3) [184] —d ?
Ac — 1/n(og — 2) —d ?
Equivalent models CP RBIM

SQHT spin quantum Hall transition, TQHT thermal quantum Hall transition, CP classical percolation model, RBIM random

bond Ising mode]158].
Abbreviations: Sl spin insulator, TM thermal metal.

aCritical metal for uncorrelated disorder of arbitrary strength, MIT for correlated disorder.
bDOS in the localized phase.

°DOS in the metallic phase.

dLine of critical points, on the Nishimori line= vp = 4/3 [158].

stateg254]. Disordered systems with such a particle—hole symmetry are in the Bogoliubov—de-Gennes-
Oppermann (BdGO) class.

Both of the discrete symmetries share the property that the eigenenergies of the corresponding Hamil-
tonians come in pair6—E,, E,), whereE = 0 is the center of the band of eigenvalues for the chiral
models, and the Fermi energy for the BAGO-models. Random Hamiltonians with either of these two
discrete symmetries show very different behavior in their density of states and transport properties. Their
properties are presently the subject of intensive ongoing researtables 3—5and we have attempted
to summarize what is presently known about the properties of the non-directed and directed network
models for all of the existing symmetry classes.

There are strong arguments, based on a classification of Lie Algebras by {2&%a266] that these
symmetries make the classification of possible random systems complete. In a perturbative renormaliza-
tion group study in 2 ¢ dimensions, the corrections to the conductance in the bosonic and the fermionic
replica formulations have been obtained to 3-loop order for all of the symmetric 42&3¢s
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Table 5

Classification of network models according to their symmetry: the chiral class with bipartite discrete symmetry (two sublattices)
Chiral class

Property Orthogonal Unitary Symplectic
TRS Yes No Yes

SRS Yes Yes(no) No

Cartan class BDI Alll Cll

B 1 2 4

my 1 1 1

s 1 1(2) 1

Transport £ = 0) Metal Metal ?

DOS (£ — 0) p(E) p(E) ?

Phase factor X Zo 2x U@ 2 x SU(2)
PT in DNM — Yes (a)

v —

o0 —

Ac _

Equivalent models RXY266] RVDM

Abbreviationsp(E) = exp(—c| In E|Y/*)/|E| [252] (x = 3/2 for BDI [204,205]and possibly also for Alll, CI[205]), RXY
random XY model, RvDM Dirac model with random vector potentials.
(a) The phase diagram is shownRig. 46

There is an ongoing debate whether or not this symmetry classification is sufficient to characterize the
quantum critical properties of random systef2$0,258,204,259]As we will review below, there are
some results which do not seem to fit into this scheme, since the critical properties sensitively do depend
on the spatial correlation of the disorder. As discussed above, the conventional quantum Hall transition
is insensitive to the correlation length of the disorder potential, unless the disorder has an extremely
long-range correlation leng{B4].

In the following, we first discuss the properties of quasi-one-dimensional disordered wires, and how
their transport properties depend on the symmetry properties. Then, we consider the critical properties in
two dimensions. We present an overview of the network models studied for the various symmetry classes.

For a quasi-one-dimensional wire, where the localization leggghlarger than the wire widtid,

a beautiful formula, valid for all of the 10 symmetry classes has been derived recently by solving the
Fokker—Planck equatiodi261,267]

5:1[s£(N—1)+1+i] (298)
mj mj

Here,m; is the multiplicity of the root on the symmetric space (see belgnihie level repulsion co-
efficient,N the number of channels proportional to the width, attte spin factor. This formula displays
explicitly the importance of the symmetry properties of the disordered Hamiltonian for the localization.
We have seen already that the transfer matmt the Chalker—Coddington model fulfills the commutation
relation equation (91), which is a result of current conservation. Thereby, transfer matrices form a group.
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Since they are parameterized by continuous variables, such groups are called Lie groups. For the
Chalker—Coddington transfer matrix this group is=GJ(N, N), the group of non-compact\2 x 2N
matrices, which fulfill Eq. (91). For the other ensembles additional conditions are imposed, restricting the
corresponding transfer matrices to be in different Lie groups. Now, all the powerful tools of representation
theory of Lie group$268] can be used to analyze these transfer matrices systematically. There is a further
simplification, that a transport property like the conductance equation (147) does depend only on products
TTT andT*T [160,162] As a result, there is a subgroup K of matrigelsy whichT can be multiplied

from right T — KT or left T — Tk, without changing the conductance through the system. For the
Chalker—Coddington model this subgroup is found to be KI(N) x U(N), the group of 2/ times 2V

matrices which consist of two blocks of unitak¥yx N matrices. Thus, this subgroup is not relevant for a
physical property like the conductance, and can be divided from the group G. The resulting group G/K is
for the Chalker—Coddington mode)/& =U(N, N)/(U(N) x U(N)). Thisis a so-called simple Lie group

and is also called a symmetric space. There is a full classification of all symmetric spaces by Cartan. The
way to characterize a symmetric space is to consider the corresponding Lie algebra, that is the properties
of matricesA, defined byl =exp(A). Now, one defines eigenvectot®f A, by the commutation relation

[A, X]=aX. The degeneracy of the eigenvalue 0 defines the rankof the Lie algebra. The set of eigen-
vectorsH;, i=1, ..., r witheigenvalue: =0 forms an Abelian subalgebra, the so called Cartan Algebra,
since[H;,H;]=0foralli =1,...,r. Since every matribA commutes with itselffA, A] =0, it can be

written as a linear superpositiédn= Z::l /iH;. There aréVv —r eigenvectorg;, i=r+1,..., N ofH;,
i=1,...,r with non-zero eigenvalues, ..., o.. The vector of non-zero eigenvaluges= (a1, ..., o)

is called the root of the algebra. These roots can be characterized by their length, and their degener-
acy, the so-called multiplicity. If there is only one eigenvector to a rodtis called a simple root.

Now, it can be shown that the parameters entering in the above formula for the quasi-one-dimensional
localization length, Eq. (298p andm; are the multiplicities of roots on the respective symmetric space
G/K [255,256]

We have listed their values ifiables 35. The factors accounts for the fact that spin flip scat-
tering from magnetic impurities mixes the two spin channels, and thereby can double the effective
number of channels. Thus,= 1, without spin scattering, and= 2 with spin scattering. The inte-
gerN is the number of transverse channels in the quantum wire| t#redelastic mean free path. This
formula, Eq. (298) coincides for the ordinary symmetry classes with the well-known result derived
independently by Efetov and Larkin, and by Dorokhov, namely that the localization length is propor-
tional to the symmetry parametgr[87,269—274] For the ordinary and the chiral classesakes the
well-known conventional valueg = 1, 2, 4, m; = 1 for the orthogonal, unitary and symplectic class,
respectively.

For the Bogoliubov—de-Gennes—Oppermann class, howg\ard s have quite unexpected values.
Moreover, in the classes D and DIlI, the multiplicity vanishes. This implies a diverging localization
length. For weak Gaussian disorder the conductance in classes D and DIl has the broad distribution
typical for a critical stat§261]. Accordingly, in a gapless superconductor with broken spin symme-
try the quasi-particles are delocalized for weak disorder. Since both, the charge and the spin, are not
good quantum numbers in such a system, the metallic character of the quasi-particles can only be
measured due to their finite contribution to transport of heat which can be measured via the thermal
conductanc§263].

In order to understand this better, it is enlightening to generalize briefly the concept of the quantization
of the electrical—charge—conductance to the thermal and the spin conductance.
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The defining relations of charge, spin and heat conductivities are

o (°

= (;) VieV), (299)

o (-2 e

*= () ¥ (57) (390

9= <£> V(keT) , (301)
ks

with electron charge-¢, voltageV, Bohr magnetomg, Boltzmann constarkiz, and temperaturé. The

charge, spin and heat conductivities are denotett a&® andx, respectively. One can easily verify that
these are consistent with the usual linear response definition apart from rewriting the current densities ac
the responses to gradients of energies instead of fields. We also recall that thermal and electrical current
are related via the Wiedemann—Franz law

2 1,2
Kk _nTkg
o¢T 3 ¢2

The quantization of the charge conductance in ternag efe?/ h implies that the conductance per charge

is given by the ratio of the elementary charge and the Planck consfgat= ¢/h. Analogously, the
quantum of the spin conductance will then be given by the ratio between elementary spin and the Planck
constantgy/(ugf/2) = (#i/2)/ h. This implies

(1/2)
0y =B /h . (303)
The quantum of the heat conductance should be given by the ratio between the heat per freeparticle

and the Planck constant. The heat per charge carrier can be deduced from the therr@opower

2
i kgT
T=—kgT |— | , 04
eS 3 B (ZEF) (304)

where the last factor accounts for the fact that only electrons in a temperature wig@dowear the surface
of the Fermi sea contribute. Note that the fact®f3 is the first Sommerfeld expansion parameter in the
expansion of the energy integral around the Fermi surface, which does not depend on dimensionality.
From this one concludes

2

(302)

Qo= % ksT (305)
and from

xo _ Qo (306)

kg h
follows that

72 k%T
- B 307
o= = (307)

In the following, we apply this to the case of a quantum Hall system. We use units sugh tadit.
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When a temperature difference smaller than the Landau gap is applied to two opposite edges of
a quantum Hall bar, there is no thermal transport between the edges, if the Fermi energy is pinned to
localized bulk states. Still, the total heat current perpendicular to the temperature gradientis non-vanishing,
since the quasi-particles on the hot edge of the sample carry more heat in one direction than the quasi-
particles on the cooler edge in the opposite direction. This results in a finite thermal Hall condugtance
defined by

12 = i,y ART (308)

whereAy T is the temperature difference between the edgesigrtde total heat current. One finds that
one edge channel contributes towards the thermal Hall conductance with the quantized amount given in
Eq. (307)[275],
78 kéT
oy = (309)

As thechargeHall conductance, thtnermalHall conductance is non-zero only for broken time reversal
symmetry and broken parity. Non-vanishing values can thus only be obtaideddrednetwork models.

There has been some debf@88,263,276,271f this critical metal phase of classes D and DIl persists
due to the particular symmetry even at strong disorder as arg(i26@4h or if there could be a regime of
localized phases characterized by a quantized thermal Hall conductance parameter, in units of the thermal
conductance quantury,

O—T _ 3hK)cy
Y nzkéT

, (310)

with quantum Hall-type transitions between phases ngh: 0 andaly = 1[275]. One could refer to
this transition, accordingly, as the thermal quantum Hall transition.

Recently, several investigations have concluded that the phase diagram of models belonging to class D
critically depends on the spatial correlations of the disorder potential and that the metal phase persists to
strong disorder only for uncorrelated, white noise disofa#£0,258,261,278]f there is at strong disorder
atransition to a localized phase, and the time reversal symmetry is broken, as itis the case in class D, there
can be a finite thermal Hall conductaneg . Fig. 36shows schematically the suggested two-parameter
flow diagram for correlated disordf238,263,277hs a function of the thermal conductance parameter

O-T _ 3hKXX
o nzkéT

(311)

and the thermal Hall conductance parametfr. Such a thermal metal insulator transition and the
corresponding thermal quantum Hall transition are expected to have very different critical properties
from the integer quantum Hall transition (Talle

When the time reversal symmetry is broken but global SU(2) spin rotation symmetry is not, then the
quasi-particles in a superconductor can be studied both by their contribution to thermal and to spin trans-
port. In two dimensions this class, denoted as Tdble 4 can be studied in d-wave superconductors.
Here, the order parameter vanishes at four nodal points on the Fermi surface. This allows to study the
peculiar properties of the quasi-particles which occur close to the Fermi energy due to the particle—hole
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Fig. 36. Scheme of the quantum Hall flow diagram of class D systems in the plane of the local thermal conductance and thermal
Hall conductance paramete@x andaly, respectively, for correlated disorder where an insulating and a quantum Hall phase

can exis{238,263,277] For weak disorder (large], ), the critical metal phase is stable for all values of the Hall conductance.
For uncorrelated disorder, this is the only possible phase for any vadnlg aEorrespondinglyy” * =0 for uncorrelated disorder.
For strong correlated disorder there is a flow towards an insulating phaséyf@rl/Z, and a flow to a phase with quantized

Hall thermal conductance f@rly >1/2, respectively.

symmetry in class C. As seen from Eq. (298), the quasi-particles in a quasi-one-dimensional wire belong-
ing to class C are localized. From results of perturbative renormalization group studies, one can conclude
that they stay localized in two dimensiof2y 9.

However, in close analogy to the quantum Hall transition, a localization—delocalization transition is
possible in which the quantized Hall conductance fordpig, o3, is quantized.

The spin transport is caused by a gradient in the perpendicular magnetic field which results in a gradient
in the Zeeman energy. In linear response the spin curr¢28¢ (Eq. (300)),

iS=0¢°VB , (312)

wheres®is now a 2< 2-matrix with components; . anda)scy. When the Fermi energy is pinned to localized
bulk states, the edge states carry a finite spin current perpendicular to the gradient of the magnetic field,
Jr=0%VyB . (313)

X

When the quasi-particles carry the spif21the spin Hall conductance, turns out to be quantized in
two dimensions in multiples of the quantum of the spin conductap¢Eq. (303)),

s (/27
ny - m:uB ]’l 1

wherem is found to take only values, @2 [277], very similar to the quantization of the charge Hall
conductance in units @/ k. The spin angular momentufi2 is substituted for the electron charge
Changing the Fermi energy one finds spin quantum Hall plateau transitions where the spin Hall conduc-
tance changes by two units. This transition is in a new universality class, and callgpirhguantum

Hall transition (SQHT). When a strong Zeeman term is introduced which reduces the SU(2) symmetry
of the spin to U(1), this transition splits into two, each of them being in the usual universality class of the
integer quantum Hall transitid264,265,279-281]The spin quantum Hall transition can also be probed

(314)
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by the thermal conductance, which in a metal phase is related to the spin conductance by the analogue of
the above Wiedemann—-Franz law

2 2
K i kg

T~ 3 (#/2?

Recently, a model belonging to class C has been mapped on the classical percolatiof26#a8P]
This made it possible to determine the exact critical exponents of the spin quantum Hall transition, like
the exponent of the divergent localization lengths v, = 4/3. The mapping is reviewed below, when
the Class C network model is introduced in more detail. We note that disordered d-wave superconductors
also have been argued to be in the chiral class Alll, yielding delocalized quasi-particles close to the
Fermi energy262]. This situation arises for a slowly varying disorder which has negligibly small Fourier
components for scattering between the four nodal points where the gap in the quasi-particle density of
states is vanishing. For each node, the quasi-particles independently can be modeled by Dirac fermions.
In a magnetic field, which breaks the time reversal invariance, this leads to the sub-lattice cl§a82l11
Sub-lattice models exhibit some similarity to a quantum Hall transition, since they have one extended
state in the middle of a band of localized states. Their Hamiltonian is given by a tight-binding model
on a two-dimensional bipartite lattice. There are no on-site potentials, and the hopping matrix elements
are random. Thus, they have perfect particle—hole symmetry. In contrast to the models for the integer
Quantum Hall Effect, two-sub-lattice models have a divergent density of states in the center of the band
where the extended states appear. For the unitary (Alll) and the orthogonal (BDI) chiral classes, the
density of states diverges,

(315)

p(E) x L geneps , (316)
|E|

with constant. By using field theory, Gade obtained= 2 for both classes, Alll and B[OR51,252] By
considering random Gaussian surfaces, and numerically, the valu@/2 was obtained for class BDI
[204]. This result for BDI was also derived with the supersymmetry mefB68] and was argued to be
a direct consequence of the freezing transition of the dynamical expop[&d#,205,283-285Wwhich is
related to the fact that the multi-fractal spectrum is bour{@88]. While it has been suggested that this
freezing transition is not sensitive to time reversal and spin symmetry and therefore the valB
could be valid for the chiral classes, Alll and ClI, as Welb5], a derivation is pending.

The model of Dirac fermions in a random vector potential (Section 7.2) is another member of the
symmetry class Alll. Although a divergence of the density of states has been found here as well, the
corresponding exponent is varying continuously with the disorder str¢hg@j. When moving away
from the band center, the sub-lattice models acquire the properties of the ordinary models, and the states
are localized for the orthogonal and unitary models. Sub-lattice models with directed bonds have recently
been establishef@59]. Their critical properties still have to be studied in detail. So far, the symplectic
sub-lattice class has been studied only brigZB6].

According to the above description, the delocalization transition of the Chalker—Coddington network
model without particle—hole symmetry should be insensitive to the spin rotation symmetry, since the
conventional unitary class makes no distinction whether or not that symmetry is broken. This argument
does not take into account that the lifting of the spin degeneracy can result in a change of the statistically
relevant density of states and thereby also a change in the localization behavior. This has been first noted
for localization in quasi-one-dimensional disordered wires without time reversal symmetry, where the
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localization length is doubled when the spin degeneracy is broken, Eq. [288274] Recently, it

has been argued within a semi-classical percolation m@agl, that spin—orbit scattering can change

the universality class from the one of the conventional quantum Hall transition to the one of classical
percolation. In short, the argument is that the Hamiltonian with spin—orbit scattering and random scalar
potential reduces—in an adiabatic approximation—to the Hamiltonian of electrons with opposite spins
moving in the effective potential which is the sum of the scalar potential and the positive/negative locally
varying random Zeeman fields for the electrons with spin up and spin down, respectively. Thus, the
electrons with opposite spins do see different randomness. Close to saddle points in the effective potential
the electrons have the choice of either to tunnel while keeping their spin or to flip their spin using the
non-adiabatic part of the spin—orbit interaction, and then continue to propagate in the potential landscape
corresponding to the opposite spin. For a potential with a sufficiently short correlation length, the potential
landscapes for the electrons with spin up and spin down should be sufficiently different that this argument
applies. This argument suggests that the critical exponent of the localization length in that situation is
close to the one of classical percolations vy, = 4/3 [287]. The obvious similarity of this model to
models of the Bogoliubov—de-Gennes—Oppermann class, when identifying the spin flip scattering with
the anomalous pairing amplitudie coupling electrons with holes may be used as a heuristic explanation
for the change of the universality class to the one of the classical percolation transition, in class C models.
Indeed, the network model of class C with SU(2)-scattering phases at the links has been first studied as
model of spin degenerate Landau levels with negligible random potential and strong spin—orbit scattering
[248]. Another realization would be Landau levels with strong magnetic impuf&3. This was found

to have a single guantum critical point with~ 1.1 [248].

In order to study quantitatively the localization properties of the metal-insulator transitions and the
guantum Hall transitions it is necessary to formulate specific network models for the various symmetry
classes. In the next section, we introduce non-directed network models for the three ordinary symmetry
classes, of which only the symplectic one is expected to have a metal—-insulator transition. Next, we review
unitary network models with two spin channels that describe the transition of quantum Hall systems with
mixing between spin split Landau levels. Then, we review the network models for transitions of the
quantum Hall type belonging to the Bogoliubov—de-Gennes—Oppermann class. Finally, we provide an
overview on the network models for sub-lattice systems.

9.2. Non-directed network models

In order to construct network models belonging to the orthogonal and symplectic classes, one should
assume links that are not directed. Following early work on the scattering matrix formulation of the scaling
theory of Anderson localizatiof288], an example of such a model has been established and studied by
using the real space renormalization group method by Shapiro in [P882 Recently, such network
models have been explored numerically for all of the three conventional symmetry ¢&&3290] The
results of the scaling theory of localization have been reproduced: a localized phase exists for the unitary
and orthogonal classes, and a metal—insulator transition occurs in the symplectic class. The correspondin
S matrices are unitary, symmetric, and symple{8ic].

The fact that the links are not directed, but nevertheless the time reversal symmetry is broken for non-
directed unitary network models, makes these models equivalent to two-dimensional random fermions
in a weak magnetic field that does not affect the classical motion of the electrons. Accordingly, extended
states are not expected to exist. This has been confirmed by extensive numerical28@jies
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3

Fig. 37. Comparison of the nodes of a directed (left) and a non-directed network model (right).

In non-directed networks, the scattering matrices representing the nodes relate four incoming to four
outgoing currents (Fig37),

v3 Vi
v v
wé = Sorth wi (317)
vy v

With time reversal invariance, tti&matrix is symmetrig87]. By assuming isotropy of the scattering, it
can be cast into the forif260]

d d

Sorth = (318)

t
d )
r

Q. ~ Q=
QU X~

7
d
t

wheret, r andd denote transmission, reflection and deflection amplitudes, respectively. It is assumed here
that the deflection to the left and to the right are equal, as it should be for a network without chirality.
The scattering parameters are complex and satisfy the conditions

P2+ 112+ 2d> =1,
d*r +dr*+d*t+dt* =0,
21d]® +r¥t +rt*=0. (319)

From the 1st and the 3rd condition one finds the relations
r2+1e2<1, 1<l 411 (320)

The second inequality is violated when the time reversal symmetry is broken.

Due to random phases attached to links, we can alwaysbtedie a real positive number. Then, once
|r| and|¢| are giveny, r andd are uniquely determined by Eq. (320).

Though the transfer matrix, at first sight, seems to be complex, the calculation can be performed with
only real (or quaternion-real) numbers after a proper unitary transforma@dn

In order to construct a model belonging to the symplectic class, we first establish a scatterer that rotates
the direction of the spifi260]. The S matrix relates the currents with spin up)(and spin down ()
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Fig. 38. Schematic view of a scatterer that provides spin rotation. Solid arrows correspond to spin-up currents. Broken arrows
indicate spin-down currents.

according to Fig38

‘pcl),T Wilﬁ
Vi, Vi,
4| = Soym 1 (321)
9. ymp W,
wg,$ w|2¢
with
0
Ssymp= (a g) . (322)

This choice of symplectic scattering matrices mixes only different spin channels moving in the same
direction, but does not have backscattering matrix elements. Backscattering occurs thus in this model a
the orthogonal nodes only. Hewgis a quaternion-real number,

3
g=Y qu. w=io k=123 wn=1. (323)
k=0

The coefficientsy; are real numbers that satisfy

Y ai=1 (324)

and the 2x 2-matricess; are the Pauli spin matrices. The quaternion conjugate is denoted by

3
g=q0l— ) qiti . (325)

i=1
The strength of the spin—orbit scattering is characterized by the distributign Wfhengo = 1, g1 =

g2 = g3 = 0 there is no spin—orbit scattering. The spin rotation is most random when

g0+ ig3 = €* cosp

g1+ igo =€7sinp (326)
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Fig. 39. Network of nodes realizing the symplectic class. White boxes describe scattering with orthogonal symmetry. Shaded
boxes rotate spin, thus breaking spin rotation invariance.

with « andy distributed uniformly betweef®, 2z), andp distributed according to the probability density,

sin(2p) 0<p<n/2,

P = { 0 otherwise. (327)

As before, one attaches random phases between the nodes describe8 mathiz
0 €
Siink = (e‘¢ 0 ) . (328)

The resulting network is shown Fig. 39 This model is similar in spirit but different in the details as the
tight-binding Hamiltonian on a square lattice including spin—orbit scattering propo$284r293,114]
A similar model also has been proposed284].

Fig. 40shows some results for the localization length) in a two-dimensional strip of the width.
The renormalized localization length= A(L)/L as a function ofr| is plotted for different_. When
|r| is smaller than 0.614 increases with increasing It is decreasing function df for || > 0.63. This
behavior indicates a delocalization—localization transitiof}. For the symplectic symmetry there occurs
a metal—insulator transition in two dimensions as has been conjectured [#96jeBy analyzing the
data using the finite-size scaling method the critical exponent can be extractEb{efd. The estimates
with 95% confidence interval,=2.81+ 0.05, 4. = 1.836+ 0.027, agree within the uncertainty with the
result of numerical studies done for the tight-binding Hamiltonian2.746+0.009, A.=1.843+0.001
[114,115]

To construct orthogonal and a unitary nondirected network models, we ass@qgpy = 1. In the
unitary caseSink is no longer symmetric,

i ¢
uniary _ < & é0> , (329)

In both cases, we have spin degeneracy, and the dimension of the transfer matrix is halved.
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Fig. 40. MacKinnon—-Kramer variablet as a function of|r| for |¢| = 0.6; |d| is determined according to Eq. (320);
L =6,8,12,16,24,32 and 48; precision of the data is 0.2% excejit 48 where it is 0.4%. Curves intersect approximately at
|r| = 0.62, which indicates the presence of an Anderson metal—insulator transition in two dimensions.

9.3. Network models of the Bogoliubov—de-Gennes—Oppermann class

9.3.1. Class C

As mentioned above, systems belonging to the Bogoliubov—de-Gennes—Oppermann class have :
particle—hole symmetry, and the spectrum of eigenvalues consist ofpak’g, E,). The zero of energy,

E =0, is the chemical potential in the superconductor. Class C describes quasi-particles in a spin-singlet
superconductor in which time-reversal symmetry is broken, but spin rotation symmetry is conserved. This
corresponds to systems with negligibly small Zeeman splifi2¢dg]. Far away from the Fermi energy,

the transport properties show a crossover to the conventional unitary class A. Therefore, class C behavio
can only be studied in gapless superconductors or in metals closely attached to superconductors, wher
quasi-particles close to the Fermi energy exist. As summarizédhbte 4 the quantum states of quasi-
particles in non-directed models of the class C are localized. This phase is hamed spin insulator, becaus
the insulating behavior reveals itself only as a vanishing spin or thermal conductance, since the charge
is not conserved in a superconductor. When parity symmetry is broken, as in directed network models,
there can be a quantum Hall-type transition to a phase with a critical state and an integer-quantized spir
Hall conductances, . This is called the SQHT.

Thus, we are now looking for a generalization of the Chalker—Coddington model which satisfies the
particular symmetries of class [264,265,281] In the simplest case, one has two-component wave
functions, which propagate on directed links through the lattice, and which scatter at nodes between
adjacent links. All the nodes in the lattice have two incoming and two outgoing links. It turfi2a]t
that the SQHT can be determined from the properties of the perimeters, or hulls, of classical percolation
clusters on a two-dimensional lattice constructed of such nodes and links. This classical problem is much
simpler than the original quantum problem, and can be solved exactly, for example by mapping it on an
integrable super-spin chaja64] which will be introduced below in Section 10.

In the following, we review the models for class C, as introduced by Beamond[268]. A similar
network model with SU(2) scattering phases at the links has been studied before in the context of the
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Quantum Hall Effect of spin degenerate Landau lej248]. We consider a set of nodasonnected by
links 1. Each node is assumed to be of the degree four, such that at each node two directed links enter and
two leave. A two-component wave function is assumed to propagate along each link. This propagation
may be described by a unitary evolution operddorhich describes the evolution of the wave function
one unit forward in “time”, as the particle moves from a given link to a neighboring one. The evolution
operator plays a similar role in defining the network model as the time evolution operator corresponding
to a Hamiltonian, for example, of a tight-binding model. This procedure has been discussed in detail
before for the U(1) network model {i21,189](Section 7).

The model can be constructed by associating each hvikh a unitary 2x 2-matrix U;. This matrix
specifies the phase accumulated when traversing the link. Eacli®dssumed to be represented by a
scattering matrix (Section 3.2)

—sinf, cosb, (330)

S -1, ( cosb, sin@n)

wherel; is the 2x 2 unit matrix. TheS matrix describes scattering at the node from the incoming links
to the outgoing ones. If the network hisislinks (and thereforéd/ /2 nodes), theld is anN x N matrix,
with N = 2M. It consists ofM /2 blocks, each associated with a particular node and of sizéd 4The
block at the nod@ has the form

ug> o s uy” o @31
0o uy? o uy?)’

where(1, 2) and(3, 4) label the links which are incoming and outgoing at the given node.

So far, we only have assumed the links to be directed, so that time reversal symmetry is broken.
To identify a network model to belong to class C, one can $2&1] from the defining property of a
HamiltonianH with this symmetry[244]

H*=—o,Hay , (332)

with the Pauli matrixs,, acting on the spin variables. The operatbt is the complex conjugate &1,
With this Hamiltonian, and using that can be written as

U=et, (333)
Eqg. (332) implies

U=o,U", . (334)
From this, an equivalent restriction follows for the phases of the links,

U, =0,Ujay (335)

which are therefore unitary Sp(2)-matrices equivalent to SU(2)-matrices, Wh€2&') is defined to be

the symplectic group of ¥ x 2N matricesA which fulfill the conditionATayA =0, [265]. The wave
function consists of two components in each link. The space of states on each link may be viewed as
consisting of a two-dimensional subspace, within whigloperates.
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Fig. 41. Decomposition of the scattering at a given n&teatrix elements ca%, and+ sind, are associated with the transitions
(1,2) — (3, 4) as indicated on the left. The two decompositions are weighted with fagtorscos 0, and 1— p, = sin? 6,
(figure taken fronj265]).

One possibility to introduce randomness into the model consists of assuming the link phases to
be random variables drawn independently from a distribution which is uniform on the invariant
(Haar-)measure of Sp(2). The ensemble average of a physical quantity in the network model, denoted by
(...), is the mean with respect to this measure.

As reviewed in Section 5.1, the conductance of an open network of a finite length can be expressed
by the multi-channel Landauer formula in terms of the transmission probability. Specifically, the spin
conductance measured between two contacts in units/@f?/ 1 is given by Eq. (147),

g=Trtt". (336)

Here,t is the rectangulalV x N transmission matrix containing the matrix elements#es 1 of the
propagation operator

1
1-zU

G(z) = (337)
between the incoming and outgoing link stakesnd/,.

One can now show that the disorder averagéGl)) taken over the Sp(2)-phase factors of the Green
function

G(z: 1,1 = (I|(L— zU)~ Y1) (338)

can be expressed in terms of classical p§2i6d,265]

To llustrate this, we define for the same netwodkasssicalscattering problem as follows. The scattering
at each node may be decomposed into disconnected processes in two differerlways8, 2 — 4)
and(1 — 4,2 — 3) (Fig. 41).

A two-dimensional model exhibiting the spin Quantum Hall Effect is obtained by taking the network
to be the so-called L-lattice shown ifig. 42 The two possible classical decompositions of a node may
be associated with the presence or absence of a bond, with probapiéitiesl— p between neighboring
sites on an associated square latfiz4]. The latter is rotated by 45elative to the L-lattice, and has a
lattice spacing increased by a factd2. In this model, closed loops of the classical problem form interior
or exterior hulls of bond percolation clusters on the larger lattice. It is known that such loops are finite
with characteristic sizé(p) < oo except at the critical poinfy = p., which for bond percolation on the
square lattice occurs at = 1/2. When approaching the critical poidtdiverges ag ~ |p — p.|~" with
v=vp =4/3 (Section 2), while at the critical point the distribution of the hull lengthB (&) ~ L™ at
largeL, with y =8/7.
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Fig. 42. The network model for the spin Quantum Hall Effect. Scattering amplitiaeso, and+ sing, are indicated bytc
and=+s (figure taken fronf265)).

The quantum localization length in this class C model diverges with the same value of the exponent,
v =vp =4/3, as the plateau transition is approached. The density of states

p(E) = . Tr{G(E)) (339)

varies for smalE as

p(E) ~ E? (340)
in the localized phase, and as

p(E) ~ |E|YT (341)

near the critical point (Tablé).

9.3.2. Class D

As described in the introduction to this section (TablendFig. 36, models in class D have particu-
larly rich phase diagrams in two dimensions. The symmetry is realized in superconductors with broken
time reversal invariance, and either broken spin rotation invariance, as in d-wave superconductors with
spin—orbit scattering, or spin-less or spin-polarized fermions, as in certain p-wave states. Since the spin
rotation symmetry is broken, and the charge is not conserved, the quasi-particles can only be measurec
by their contribution to thermal transport. Eq. (298) shows that quasi-particles are delocalized in quasi-
one-dimensional guantum wires belonging to class D. In the two-dimensional case, the flow under the
renormalization group is towards larger thermal conduct§®8®,276,277,296]Thus, there is a phase
in which there is a diverging density of extended eigenstates at zero excitation energy4(Ta&s3.
A superconductor described by this model is in a thermal-metal phase. A phase with localized quasi-
particles is a natural possibility, although it has only been found so far for models with correlated disorder
[238] which gives rise to a phase with a quantized Hall conductance 36jg.
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Fig. 43. The phase diagram in the, ()-plane of the model of Cho and FisH209a]obtained by numerical calculatiof238].
Here,o-ly is the thermal Hall conductance parameter defined in Eq. (p10§ disorder parameter, and in) is the tunneling
probability (figure taken fronf238]).

In analogy with the network models belonging to class C introduced in the previous section, one can
formulate a directed network model with the symmetries of cla@&38]. Disorder appears in the network
model in the form of random scattering phases, and the symmetries of the class D restrict scattering
phases to the values 0 andmultiplying the wave function at each node at random with phase factors
+1. Remarkably, within this framework, different particular forms of disorder result in quite different
physical behaviors. Depending on the level of correlations between the random phases three cases ha
been found so fg238,258,297]

The first of these was introduced by Cho and Fid@é®a] with the intention of modeling the two-
dimensional random bond Ising model (RBIM) (Section 8) which possesses a fermion representation
with the symmetries of class D. Subsequently, it has been r[@H2298]that a precise mapping
of the Ising model leads to a second version of the model which accordingly is denoted as random
bond Ising model. In both of the models, scattering phasagpear in correlated pairs. A third model
[238,276]denoted by O(1), can be established if one assumes the scattering phases to be independer
random variables. Each model has two parameters: the disorder concenpdfiery <1), and a tun-
neling amplitude sia (0<a<=/2) which controls the value of the thermal Hall conductance at short
distances.

A phase diagram for the Cho—Fisher model in ¢hex)-plane is shown irFig. 43 It contains three
regions: a metallic phase, a localized phase, and a thermal quantum Hall phase. While the randorr
bond Ising model has been shown to have no metallic pf2d€ the O(1) model has been argued to
have no insulating and thus no quantum Hall phg&¥]. Only the Cho—-Fisher model has all three
phases. It features three potentially different critical points: a quantum Hall-type transition, an insulator-
to-metal transition, and a multi-critical point at which all three phases meet. This phase diagram has
the form proposed generically for clasg[263]. The phase diagram is very complex. The correspond-
ing critical parameters remain to be determined quantitatively. The network model reviewdd38jre
will certainly be central in achieving a better understanding of this phase diagram in future investi-
gations. An attempt of understanding the implications of the all-orders beta functions has been made
in [299].
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9.4. Chiral network models

In the following, we shortly summarize the network models of the chiral symmetry classes introduced
recently[259]. The network models presented here are connected in two distinct ways to the models
without chiral symmetry introduced in the previous sections. Class Alll is connected with the U(1) network
model, while Cll and BDI belong to the SU(2) and O(1) network models, respectively. They describe
the plateau transitions in dirty superconductors, as briefly explained above. In each case, the model with
chiral symmetry is constructed by coupling two copies of the partner model. After a transformation, this
coupling is equivalent to introducing absorption and coherent amplification in the original models. This
equivalence parallels the established [jBRO] between the chiral symmetry classes and non-Hermitian
random operators.

We formulate the network models for each of the chiral symmetry classes by treating in some detail the
chiral unitary class (Alll), and outlining the equivalent steps for the chiral orthogonal (BDI) and chiral
symplectic (Cll) classei®59]. The strategy is to construct the two-dimensional internal space associated
with chiral symmetry using two related copies of a network model without that symmetry.

The symmetry may be discussed in terms of a Hamiltolarma scattering matrixs, or a transfer
matrix T. We consider systems which conserve probability density. The Hamiltonian is Hermitian and
the scattering matrix is unitary. The equivalent condition for the transfer matrix involves the operator of
the current), and is imposed by current conservation as in Eq. (91),

HT=H, sf=s?1 T1=J77]. (342)

Chiral symmetry is implemented on a two-dimensional internal space in which the Pauli opgrator
operates. For the Hamiltonian this is equivalent to

oyHoy =—H . (343)
By assuming the scattering matrix to have the symmetry 8t gone has
0xSo, =S71. (344)

Systems in class Alll have no other relevant discrete symmetry. Those in classes BDI and ClIl are also
invariant under time-reversal, in the presence and absence of spin rotation symmetry, respectively.

9.4.1. Class Alll

We recall first the essential features of the U(1) network model for the integer quantum Hall plateau
transition (Section 3), and put them into the present context. The forms of the transfer matrix and of the
evolution operator follow from the properties of the elementary building units, sketcheid.id4 A
wave function in this model takes complex valygson the linksl of the lattice illustrated by the full
lines of Fig. 45 A particle acquires a phage on traversing link, so that in a stationary state amplitudes
at either end are related by

Y =€y (345)



310 B. Kramer et al. / Physics Reports 417 (2005) 211—-342

W W, W,

Y v, Vs

Fig. 44. The elements of the network model: a link (left) and a node (right) (figure taker{2&97).
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Fig. 45. The structure of the Alll network model. Full and dashed lines indicate the two U(1) models from which the system

is constructed, with nodes located at the vertices of the two lattices. Scattering that couples the sub-systems is represente
schematically by boxes (upper left plaquette), as parameteriz€ghy Eq. (350). In one step of time evolution, flux propagates
between successive points marked with filled circles, in the directions indicated by the arrows (figure tak@5%fpm

In a similar way, stationary state amplitudes on the four links which meet at a node are related 2y a 2
transfer matrix

Y1\ _ [(cosha sinha V3
<zp2> N <sinha cosha ) \ Yy )’ (346)
whereais real and all phase factors are associated with links. This equation may be rewritten in terms of
a scattering matrix as

Y3\ _ [cCOosx —sina) (yq
<zp2> N <Sinoc cosu > (W ’ (347)
with sine = tanha. The transfer matrix that results from assembling these units is described in detail in
[31], and the time evolution operator ih21,189](cf. Section 3).
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Introducing a two-dimensional internal space associated with the chiral symmetry results in a doubling
of the number of wave function components. Thus, starting from two copies of the U(1) model the link
amplitudes become two-component complex numberinstead of Eq. (345), the scattering properties
of a link now are characterized by a2 transfer matrixT jink, with

¥ = Tink¥ - (348)
Requiring
ox Tlinkox = Tlink » (349)
the transfer matrix must have the form
¢ (coshb sinhb
Tiink =€ (sinh b coshb )’ (350)

where¢ is a real phase arldlis a real hyperbolic angle. It remains to discuss scattering at nodes of the
doubled system. We replace Eq. (346) by

V1 cosha sinha V3
(zp2> =Lle (sinha cosha) (W) ’ (351)

wherel; is here the unit matrix in the two-component space introduced on links. This choice is the most
general one which is compatible with chiral symmetry, since scattering within the two-component space
may be included in the link transfer matriCEg .

By combining these elements into a two-dimensional system, we arrive at the model schematically
shown inFig. 45 The transfer matrix for the system as a whole acts irjth&] (or [1, 1]) direction and
may be written as a product of factors relating amplitudes on successive slices of the system. Alternate
factors in the product represent links and nodes, and consist, respectively, of repeated versions of the
2 x 2 and 4x 4 blocks appearing in Egs. (350) and (351). Disorder is introduced by assuming thephase
in EQ. (350) to be independently and uniformly distributed on the links. The parametearacterizing
scattering at nodes, is assumed to be non-random (Section 3).

Two possibilities have been considered for setting the value of the coupling between the chiral sub-
spaces. They are parameterized in terms of either the hyperbolic angle in Eq. (350) or the compact angle

B related tab by sing = —tanh . Eitherp is assumed to be uniformly distributed, lois assumed to be
normally distributed with a varianag A disorder parametercan be defined by

siny =tanh /g . (352)

It is guaranteed that the system is statistically invariant ungizrotations of the lattice. This constrains
the node parametex; exactly as in the U(1) model: nodes lie on two distinct sub-lattices, and the node
parametea on one sub-lattice is related to the paramet@mn the other sub-Ilattice by the duality relation
(cf. Eq. (95))

sinha sinha' =1 . (353)

As before (Section 4.3), the system can alternatively be described using a time evolution operator instead
of a transfer matrix. In order to specify this unitary operator, which has the symmetry of a scattering
matrix, it is convenient first to consider the lindit= 0. Then, the two copies of the network model are
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Fig. 46. Phase diagram of the Alll network model in they)-plane (figure taken frorf259]).

uncoupled. One denotes the time evolution operator for one copy Bynce from Eq. (350) link phases

are the same in both copies but propagation directions are opposite, the evolution operator for the othel
copy isUT. The dimension ofJ is equal to the number of links in the system. It is useful to define a
diagonal matrix of the same dimension, with angle$or each linkl as diagonal entries: we ugeto

denote this matrix. The time evolution operator for the system with chiral symmetry can then be written

_ (Ucosp —Usinpgu?
=\ sing cosput  )-

One can straightforwardly verify that Uts, = U7 and thatul = U7,

For this model, two regimes of behaviors have been identjfléél]. For smally, there is a localized
phase. Foy close tor/2, one finds a critical phase. By identifying the value e@fhich divides the two
regimes and studying its dependencexpone arrives at the phase diagram showfig 46 The line
o = n/4 corresponds to the critical-metal states studied by Gade and We&2érOn the line without
hopping between the sub-latticesias a single critical point at= /4 which is in the universality class
of the Integer Quantum Hall Transition.

(354)

9.4.2. Classes BDI and ClI

A model in class BDI can be obtained from one in class Alll simply by imposing time reversal
invariance as an additional symmetry. This condition is conventionally written in theHdrea H, but
for a discussion based on scattering matrices it is more convenient to transform

H — QHQ ! with Q=é7/4. (355)

This transformation leaves the chiral symmetry relatighls, = —H intact. In the transformed basis
one has

H*=-H, S=S", T'=T. (356)

To ensure a real time evolution operator, we restrict the link phadeghe values 0 and. Choosing
these values randomly, the BDI model consists of two coupled copies of the class D models reviewed in
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the previous section. Alternatively, one could assynze0 on all links, and introduce disorder only via
the chiral coupling®.

For class Cll, Kramers degeneracy is a defining feature of the class and requires the introduction of
an additional two-dimensional space arising from the spin. The time reversal operation includes reversal
of spin direction. Definings = is,, wheres, is a Pauli matrix acting in the additional space, it is
conventionally written in the form

$H* ¢ 1=H . (357)
As for the class BDI, it is again convenient to transform according to Eq. (355). This gives
GH*¢ 1=—H, ¢S'¢'1=S T*¢1=T (358)

as equivalent expressions of time reversal invariance. Applying these ideas to a network model, four
channels propagate along a single link which, generalizing Eq. (350), is transferred according t a 4
transfer matrixT ik with the generic form
coshb sinhb >

(359)

Tk = ® (sinh b coshb

wherev is an SU(2) matrix and a real hyperbolic angle. Adopting this form, the time evolution operator

for class ClIlI has the structure given in Eq. (354), but vidthepresenting a network model of class C,

as reviewed in the preceding section. The links of a such a model of class C carry two co-propagating
channels, coming from two spin components, and the evolution operator satisfies

U 1=U . (360)

10. Supersymmetry and localization

In the present section, we comment on recent developments which open new perspectives for better
understanding of the field theoretical models that have been developed during the past two decades for
describing the quantum Hall phase transition. This development is closely related to a mapping to a chain
of superspins starting from the random network model.

While the numerical and experimental evidences for the universality of the quantum Hall transition
appear to be striking, the quantum Hall critical point has so far successfully escaped any attempts to be
placed into a classification of two-dimensional phase transitions, based on the conformal invariance at
the critical point. Recently, it has been suggested that the quantum Hall critical point may belong to a
new class of critical points being described by a supersymmetric conformal field {6€o8yt] Much
progress has been achieved towards the analytical derivation and characterization of the quantum Hall
transition. Nevertheless, an analytical calculation of its critical exponents is still missing.

Soon after the discovery of the Quantum Hall Effect afield theory has been derived from the microscopic
Hamiltonian of the random Landau model with short-range disorder, the correlation length of the disorder
potential,f¢, being much smaller than the magnetic lenfH{301-304] It has been shown to have two
coupling parameter@ﬁx andogy, the longitudinal and Hall conductance as defined on small length scales
of the order of the elastic mean free patiThis field theory is based on the theory of localization of
electrons in weakly disordered systems.
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Fig. 47. Sketch of the development of the analytical proofs for the equivalence of the critical theory for the random Landau
model and the Chalker—Coddington network model.

Subsequently, it has been shown rigorously that this field theory is indeed critical at half integer Hall
conductance parametej%, [301,305,306]and that it has a spectral gap to fluctuations at other values of
4%,. This indicates the localization of the electron eigenstates of the random Landau model in the tails of
the Landau band807]. Since the longitudinal conductance at the critical peiris known to be smaller
than 1 (in units o2/ #), the critical point is located, quite unfortunately, in the strong coupling limit of
the field theory. Thus, it is outside of the validity of the available analytical methods which can be used
to extract quantitative information on the critical exponents.

Recently, an anisotropic version of the Chalker—Coddington model has been mapped directly onto
the Hamiltonian of a chain of antiferromagnetically interacting supergpifid92,308,309]it had been
shown before that the non-linear sigma model for short-range disorder atthe critica&goirﬂz?/Zh, and
in the strong coupling limit, can also be mapped onto the Hamiltonian of a chain of antiferromagnetically
interacting superspif810]. This provides strong analytical support for the notion of universality of the
quantum Hall transition as sketched schematicallyim 47. Thereby, the problem of the quantum Hall
transition has been transformed to the task of finding the ground state and the dispersion of the excitation:
of the chain of antiferromagnetic superspj&g,309,311]
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Fig. 48. The network model with counter-propagating chiral fermions with random on-site potgptjalescribing the propa-
gation along edge states around Hall droplets with random tunneling amplifugdégtween them (dashed).

The model of antiferromagnetically interacting superspins has been shown to be ¢&8@6al
Numerically, the critical exponenthas been obtained from a finite length scaling of superspin chains,
by means of the density matrix renormalization group method, and foundite-t#4(4) [37].

So far, no analytical information could be directly obtained on the critical parameters, the localization
exponent, the MacKinnon—Kramer parameteg of the scaling function, and the multi-critical exponents
D(q). However, starting from the model of a superspin chain, a class of supersymmetric conformal field
theories has been suggested to be relevant for the quantum Hall transition, which ultimately should
yield the critical parameters of the quantum Hall transitj6@,61]. In yet another development, the
Bethe—Ansatz method has been applied to the Hamiltonian of superspin chains. Still, it is not yet clear if
that model is integrable and a closed solution for its ground state and its excitations can be obtained in
this way[312,313]

In the next section we will provide a derivation of the Hamiltonian of an antiferromagnetic superspin
chain starting from an anisotropic version of the Chalker—Coddington model, following closely the
original derivations by Le¢192], Zirnbauer[308], and by Kondev and Marstof37]. In the second
section, the derivation of Pruisken’s non-linear sigma model in supersymmetric form is summarized
[301-304] Finally, the connection between that model and the superspin chain is discussed following
the work of Zirnbauef60,308,310]

10.1. From the network model to the antiferromagnetic superspin chain

We start from a modification of the network model, recently proposed by1954, where the random
scattering matrices are replaced by a Hamiltonian which describes a quasi-one-dimensional array of
counter-propagating edge states in the presence of disorded@Figihe x-coordinate is discretized,
the integer indexi enumerates the discrete vertices of the network model. The fact that the direction of
propagation alternates between siesill be shown in the following to result in an antiferromagnetic
interaction between superspins. A one-dimensional array of edge states, which propagate all in the same
direction, has accordingly been mapped to a ferromagnetic super spin[8ha|nThis is an effective
model of the surface states of a layered quantum Hall system, a so-called chiral metal (Section 11).
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In terms of electron creatiofinT and annihilation) operators the Hamiltonian may be written as

A ot . . N N
H[l,b ) !//] = Z [l//n’y((_l) IvFay + w}’l,y)wn,y - (tn,yl//n’ylprh}»l,y + t:,yl//;1+1,yl//n,y)] ’ (361)

n,y

where the sum is over the discrete vertices of the network model. This Hamiltonian reflects the chiral
nature and the linear dispersion of the edge states, with alternating propagation forward and backwarc
in they-direction with Fermi velocitiestvr. The complex tunneling amplitudes, between the edge
states are assumed to have random phases. These represent the random Anaronov—Bohm phases of
electrons, accounting for the fact that in a network of edge states, closed orbits vary randomly in size and
thereby encircle randomly varying magnetic fluxes. There are also random on-site potgntialhese
random terms are assumed to be Gaussian distributed with zero means, and the variances

(wn,y wn’,y’) = 2U5n,n/ 5()’ - y/) )
(t;f’y by y) = 2000w 6y — '), (362)

with J, = J[1+ (—1)" R]. The staggered modulation in the paramdieallows to trace the differences in
tunneling between counter-propagating electrons in adjacent columns of plaquettes as delpigtd@in

At R = —1, there are disconnected pairs of counter-propagating edge states, such that electrons circulat
only clockwise around thet)-plaquettes. Inthe opposite cages 1, electrons circulate counterclockwise

only around the(—)-plaquettes. AtR = 0, there is tunneling between all sites, and critical quantum
percolation is expected, corresponding to the transition between the quantum Hall plateaus.

Critical behavior consistent with this scenario was found from the disorder averaged two-particle
Green function describing transport corresponding to the Hamiltonian equation (361) by Wang and Lee
[38]. From a Monte-Carlo treatment of the replicated Hamiltonian they obtained a correlation length
exponenty = 2.33(3), in good agreement with other numerical simulations and experiments. It can
furthermore be shown that the Hamiltonian equation (361) can be identified in the continuum limit
with the Hamiltonian of two-dimensional Dirac fermions with random mass and random vector fields
[192], which is in the universality class of the integer quantum Hall transition, as discussed previously
in Section 7.

It is well known [75—79] that in weakly disordered systenig/ > 1, one needs to go beyond lowest
order perturbation theory in the disorder potential in order to describe quantum localization. One also has
to take full advantage of the symmetries occurring in the calculation of correlation functions of disordered
systems. This can be traced back to the fact that the disorder averaged electron wave function amplitude
(y(r, 1)) decays on length scales of the orded afince the random scattering phase shifts associated
with the scattering at the impurities are averaged out. This destroys the information on quantum coherent
multiple scattering, and thus on quantum localization. In order to describe quantum localization, one needs
to consider higher moments of the wave function amplitudes such as the impurity averaged evolution of
the electron density(r, 1) = (Jy(r, 1)|2).

The time evolution of the electron amplitudes can be written in terms of the retarded prop@@ator

W(r, 1) :/dr/GR(r,t; v O, ), (363)
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with > ¢'. The electron density becomes

(n(r, 1)) =/dr’/dr”l‘(r,t; v O Ot ) (364)
where the quantum diffusion propagator is given by
L@ 0 ) =GRt OH)GRA" ) (365)

After performing a Fourier transformation from time- ¢’ to energyE, a non-perturbative averaging of
products of retarded and advanced propagat6f3(E)G” (E')) is needed in order to obtain information
on quantum localization.

In a useful analogy to the study of spin systems, the field theoretical approach contracts the information
on localization into a theory of Goldstone mod®s arising from the global symmetry of rotations
between the functional integral representation of the retarded propagattspin up”) and the advanced
propagatoiG” (“spin down”). The field theory can either be formulated by means of the replica trick,
where theN replicas are represented either lyfermionic orN bosonic fields, yielding a bounded or
unbounded symmetric space, respectively, on which the mQdee defined301].

Because of the necessity and the difficulty to perform the delicate Mmit> 0 at the end of the
calculation in the replica formulation, a more rigorous supersymmetric field theory has been formulated.
This technique represents the product of Green functishg?) G” (E’) by functional integrals over two
fermionic and bosonic field components, composing a supersymmetric field yeTtor supersymmetric
representation enables one to perform the averaging over the disorder potential as a simple Gaussiar
integral[302—304]

Thus, in order to study the localization—delocalization transition in the network model as described by
the random Hamiltonian, Eqg. (361), we consider the average of the quantum diffusion propagator

K(1,2) = (GR(1,2G% 2, 1), (366)
where
R.A _ 1
Gy (12 = Ur— Hiinm : (367)

are the retarded and advanced Green functions. The parapistaipositive infinitesimal number. We
have introduced here the usual shorthand notation for the coordinates:wittnl, y1) and 2:= (n2, y2).
For non-zero disorder parametfive expect the quantum diffusion propagator to decay exponentially

K(1,2) ~ e &2/< (368)

wherer2 is the distance between points 1 and 2. This defines the localization lengtheflecting the
finite extent of the electron wave functions near endggyt the critical pointR = 0, the localization
length is expected to diverge like

En R (369)

By introducing a pair of complex scalar fields

$(n,y) = (?ﬁ*gzg) , (370)
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with 4+ and — denoting the retarded and the advanced sector, respectively, the advanced and retardec
Green functions, Eq. (366), can be rewritten. One obtains for the two-particle propagator

1 X
(Ka.2) = f DI4IDI#*] 6, (D™ (2 (2" (1) & 51941 (371)
with the action

S[g, ¢*1="Y Y liodd}(n, »)(—Ey + (—1)"ived, + wn, ), (1, )

n,y o=+
— [tn,y ¢y (n, )by (n + 1, y) + 1 ¢, (n + 1, ¥) ¢, (n, )]}

+ 1o, (n, y) s (n, )] . (372)

Here, we have defineH,—, _ = E, E’. The choice of the signs guarantees that the Gaussian integrals
are convergent fof > 0. The normalization factor

z— / D[4ID[¢*] e S16-9T (373)

is an inverse spectral determinant. Therefore, its inverse can be lifted to the numerator by introducing
another Gaussian integral, this time o@massmann fieldg314]

1 _
5 = [ b e, (374)
with the anticommuting fields
24 (n,y)
1(n,y) = (; o y)) . (375)

that are the supersymmetric partners of the scalar bosonic fields. Using Egs. (374) and (371) the correlatior
function, Eq. (366), can be written as a combined Gaussian integral over scalar and Grassmann fields

(K(1,2) = f D[¢1D[¢*ID[xID[7] 4 (L)% (2p_(2)$* (1)e~ SLo-¢"I+Sxh (376)

Now the average over the disorder can be performed as a simple Gaussian integral.

Before considering the full Hamiltonian, let us look first at the correlation function of a single chiral
edge stata, which is expected to behave metallic for any disorder strekg#ince its Hamiltonian
contains no backscattering,= 0.

Performing the ensemble averaging as the Gaussian integral over the random petentialleads
to the functional integral

Z= / DLy, ] exp / [P (AvEd, — n + i)y — UGAD?] (377)

We have here introduced a four-component supersgi@orwith componentg y whereX=RB (retarded
Boson), X = RF (retarded fermion)X = AB (advanced Boson), and = AF (advanced fermion).
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Fig. 49. Schematic view of the supersymmetric spack 1)2)/(U(1]|1) x U(1]1)) on which the Hamiltonian of supersymmetric
operatorsQ is defined. The point at which the compact sphere (corresponding to that gamvbich arises from decoupling

the fermionim/;,‘é-term) and the hyperbolic (arising from the decoupling of the bosnpéicterm) meet, is the classical point

which yields the classical correlation function. Diagrammatic expansion around that point would miss the curvature, and the
non-perturbative integral over the whole supersymmetric space is needed to describe quantum localization. The compact sphere
is parameterized by € [0, 2r) and A € [—1, 1], and the non-compact hyperbolic is parameterized.py [—1, co] and

0 € [0, 2n). The unitary rotations between the sphere and the hyperbolic are parameterized by Grassmann §arables
indicated by dotted lines.

The 4x 4 supersymmetria is defined by

lz/h// = Z (&RolpRo - l}AﬂlpAa) . (378)

o=B.F

Since the energies in the retarded ano_l advanced sectors are different, we haveugdefied E’ # 0.
One candecouple the interaction tepnty)? by introducing a Hubbard—Stratonovitch fi€dtoupling
to yy A and then integrate outandy.. The resulting effective action f@ is

S[0] :/dx STr|:—£2 02 +1n (ax ez, % Q):| . (379)
dvg UF VE

The next step is to simplify th®-field functional integral by means of the saddle-point approximation.

As a resultQ gets restricted to the non-linear spage= gAg 1. It belongs to the supersymmetric space

U, 112)/(U(1]1) x U(1]1)) which is sketched schematicallykig. 49 Here the notation is reminiscent

of the notation for a two-dimensional hyperbolic spadd. 1) and the group of Z 2 unitary matrices

U(2). Accordingly, the supermatricese U(1, 1 | 2) have the form

ABB ABF
AZ(AFB AFF> s (380)

whereAB8 c U(1, 1) andAfF e U(2) andAF B, ABF are parameterized by Grassmann variables, and
transform between d, 1) and U2).

This step, being in general only an approximation, here bec@xastin the limit U — oo. By
expanding If4g 1@, + A)g + U/vé] to linear order ing~%(8, 4+ A)g, one obtains the action of the
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Wess—Zumino functionatyz[A],
A .
Zwzlw] = f DO exp{f dx STr |:§ g_l(w:@x + Iu)/l)gi| } : (381)

Higher orders are suppressed by powerséthxU, with L, the system size.
By interpreting the integral overas an integral over time, one can rewrite this in terms of a Hamiltonian

Zwzlw] = STre LyHs(@) (382)
where
. A1
Hy(w) =i STrE —Ag . (383)
8

This s identical to the super Hamiltonian which one obtains from the unitary ensemble of random matrices
[302], typical for a random metallic system with extended states. Thus, as expected, we recover the result
that a single disordered chiral line supports only metallic states.

Let us next discuss the case of many counter-propagating chiral modes that are coupled by hop-
ping matrix elements between neighboring modes, with varidntais corresponds to the anisotropic
Chalker—Coddington model. The Gaussian random hopping matrix elements give rise to an additional
term in the Lagrangian,

P L +2] Z(‘Zn/llpn-i—l)(&n-l—l/hpn)

n

=% +27 Y STty D) Wi1¥ni14) - (384)

This is obtained by averaging Eq. (376) with Eq. (372) duesing Eq. (362). By using the bosonization
rule veyyA — Q/2 forU — oo, the additional term can be cast irﬂﬁ/ZUE)ZnSTr(Q,, QOn+1)- The
condition for the validity of this step i& > J. As a result one obtains ti@-field action

A J
n F

This is the actiofj311,315]of the coherent-state path integral for a quantum superspin Hamiltonian. The
resulting effective supersymmetric (SUSY) Hamiltonian describes interacting spin-up and spin-down
fermionsc, and bosong,. The two spin species formally correspond to the retarded and advanced Green
functions introduced abo\8&7,309,316]

L—-2 4 8 16
H=Y U |:)~H D 2aSISh g+ D aS4St HAn (=D Y gaSS ;‘H}
j=0 a=1 a=5 a=9

L-1
Y 1S4+ 524 824 59 (386)
j=0
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The signsg,, are given by

1 fora=1,21012 14 16,
g“_{—l fora=3,...,9,11,13 15. (387)
Eq. (386) contains 16 spin operators, the components of & 4uperspin matrix,
Sti=blby +1/2. $®:=cley —1/2. §%:= by, sBi=byer
2._ 1 6. . _ 10._ .t 14._
S = b¢b¢—|—1/2, S° = CicL 1/2, g4V = CTI_bT’ S blci s (388)
) 15._
$3:=blb], §7 = cle]. SMi=bicy, SP=bjcp,
Tt
S4 = bl«bT’ S8 = C\LCT Slz = b$CT, Sl6 = chwl/ .
The boson-valued operatass, . . ., S8 constitute the symmetric sector of the Hamiltonian. The fermion-
valued operators®, . . ., S16form the anti-symmetric sector. Despite thhis non-Hermitian, it only has

real-valued eigenvalues. Foy =0 one has only fermionic spin operators. One does arrive at this Fermion
model directly from the Chalker—Coddington network model when calculating the disorder averaged auto
correlation function of spectral determinafi®,306] Another derivation via the Landauer conductance
formula was recently reported in RE816a] This yields the antiferromagnetic spin-1/2 Heisenberg chain,
which is critical[317]. The crossover to the integrable superspin chain of the spin Quantum Hall Effect
[264,280] which is critical in the universality class of the classical percolation model, can be studied
by freezing out 8 of the 16 spin componef@48]. This raises the question whether or not the critical
parameters vary continuously, as for the crossover from the antiferromagnetic Heisenberg spin chain to
the XY model[319,317]

The Hamiltonian commutes with four fermion-valued supersymmetry generators,

[H, Q1,1 =[H, Q2,1 =0 (389)

with the supersymmetric charges

Q15:= Y [bl,cjo— (—Dcl bl
J

020 = ) [(=Db],cjo+ ] bjol (390)
J

One can see that the supersymmetric Hamiltonian must have a unique, zero-energy ground state. All
excited states appear in quartets or larger multiples of 4, half with odd total fermion content. These
cancel out in the partition function by virtue of the super-trace, yielding the correct value of 1 that we
have encountered above when introducing the functional integral over Grassmann variables to cancel the
normalization factor of the bosonic integral

Z=STre Pt .= Tr(-1)Nee P =1 . (391)

Here, N¢ is the total number of fermions. The ground state of this supersymmetric non-Hermitian an-
tiferromagnetic Hamiltonian is very complicated. The ground state oHtenitian supersymmetric
ferromagnet that describes a chiral metal with all edge states propagating in the same direction is simply
the vacuum stat811].
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The Lieb—Schultz—Mattis theorem proves that for half-odd-integer spin antiferromagnets on a periodic
chain of length_ sites ;. := So) either the ground state is degenerate or there are gapless spin excitations
in the thermodynamic limiL. — oo [240]. In the supersymmetric problem, Marston and Tsai were able
to make even a stronger statemg39,316] because its ground state is unique by supersymmetry. For
n > 0 they showed that low-energy excitations are gapless in the thermodynamic limit. This proves that
the antiferromagnetic superspin chain is critical.

In the following section the field theory of the quantum Hall critical point is approached starting from a
model of electrons in uncorrelated disorder in a strong magnetic field. The resulting supersymmetric field
theory, with the action of a non-linear sigma model was used as a basis of the two parameter scaling of the
Quantum Hall Effect. It has recently been shown that it can in a long wave length limit be mapped onto
the Hamiltonian of the superspin chain, Eq. (386). This, together with the derivation of the spin chain
from the opposite limit of a model with long-range potential as sketched above, provides very strong
support to the surmise that the Chalker—Coddington model is a good model for the universal quantum
Hall transition[308].

10.2. From the Landau model to Pruisken’s non-linear sigma model

The Hamiltonian of non-interacting electrons in a magnetic field in the presence of uncorrelated disorder
is (Section 1)

1 2
H = %(p—l— eA) + V(r)+ Vp(r) . (392)

Here,V (r) is assumed to be a Gaussian distributed random function with a distribution
dr dr’
P(V]) = exp[— / 55 - r/)vmva/)} , (393)

whereQ is the volume of the system. Impurity averaging is thus givet by)y = [ T], d[VIP([V]) ... .
We assume

Jor—r)=q4 f S5(r—r) (394)
T

for uncorrelated impurities, wherg4dis the elastic scattering rate ang= 1/(pQ) the mean level spacing
of the mesoscopic sample with volunie It is related to the variance of the disorder potentiat)
according toW? = 4#/2zc. The functionVy(r) is the electrostatic confinement potential defining the
width of the wireL.

In order to describe localization, we consider again the correlation funkti@n2) studied in the pre-
vious section for the Chalker—Coddington model, but using this time the Hamiltonian equation (392). For-
mulating the supersymmetric field theory by representing the product of Green funGtieasG* (E’)
by functional integrals over two fermionic and bosonic field components, composing a supersymmetric
field vecton), as in the previous section, the averaging over the disorder potential can again be performed
as a simple Gaussian integf@D2-304] As a result of the averaging one obtains a locally interacting
theory of the fieldsy containing an interaction term y#, where thenteraction strengtlis proportional
to the variance of the disorder potenti@f. This term is next decoupled by introducing another Gaussian
integral overQ-matrices. Clearly, the fiel® should not be a scalar, otherwise we would simply reintro-
duce the Gaussian integral over the random potevitigbther, in order to be able to describe the physics
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of localization, the fieldQ should capture the full symmetry of the functional integral representation of

the correlation function. Therefore, the Gaussian integral is chosen to be ovdmaatrixQ which itself

is an element of the symmetric space defined by the mati¢kat leave the functional integral invariant

under the transformatiop — Ay. In the supersymmetric formulation, this matrix consists of two blocks

of 2x 2 matrices whose parameter space consists of a compact (bounded) and a non-compact (unbounded
sector, Eq. (380) (Figd9). The off-diagonal blocks, so to say the rotations between the compact and the
non-compact sector, are then found to be parameterized by Grassmann (fermionic) variables. Now, the
spatial variations o) are governed by the action

. nh dr 2 1 A A
S[Q]_E/ﬁTrQ (r)+§/dr (rITrInG(, p)r) , (395)
where
1 (oFinds  @teA? o in
G (r,p= 5 o Vo(r) + > o . (396)

The 4x 4 matrixA3 is the diagonal Pauli matrix in the sub-basis of the retarded and advanced propagators,
n>0andw = E — E’ break the symmetry between the retarded and advanced sector.

It turns out that the physics of diffusion and localization, which arises on length scales much larger
than the elastic mean free patlis governed by the action of the long wavelength modé&3.dthus, one
can simplify and proceed with the analysis by expanding around a homogeneous solution of the saddle
point equationgS = 0. Form = 0, this is

. - -1
Q=LMP—%—%m+l4 " . (397)
Tp 2t

This is solved byQqo = 43P, which corresponds to the self-consistent Born approximation for the self-
energy of the impurity averaged Green function.cA& 0, rotationsJ which leave the action invariant
yield the complete manifold of saddle point solutions@s= UA3PU, whereUU = 1 whereU is the
supersymmetric Hermitian conjugate.

The modes which leaves invariant can be factorized out, leaving the saddle point solutions in this
supersymmetric theory to be elements of the semi-simple supersymmetric sgar® /GBI(1]1) x
Gl(1]1)) [303,304] Here the notation is chosen in analogy t@#3) denoting invertible: x n matrices,
that is detA £ O for all A € Gl(n). Thus, Gln | n) denote invertible 2 x 2n supermatrices

AFF AFB
A= (ABF ABB> s (398)
with
SdetA = det(AF — ATBABB=IABFy detABB—1 £ 0, (399)

where Sdet is the superdeterminant. §3] for a more detailed definition. In the semi-simple space
the subgroup Gl|1) x Gl(1]1) consisting of matrices

hil o
h=< 0 hzz) , (400)

with h11 h22 € GI(1]1), are factorized out.
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In addition to these gapless modes there are massive longitudinal mod€gw#H which only change
the short-distance physics, and not the physics of localization. They can be integrd88d.¢202] Thus,
the partition function reduces to a functional integral over the transverse rblodes

The action at finite frequeney and slow spatial fluctuations @ around the saddle point solution can
be found by an expansion of the actirinsertingQ = U43PU into Eq. (395) and performing the cyclic
permutation ofU under the trace Tr allows a simple expansion to first order in the energy diffetence
and to second order in the commutalttjio, U] [301]. The first-order term itJ[ Ho, U] is proportional
to the local current. It is found to be finite only at the edge of the wire in a strong magnetic field, due to
the chiral edge currents. It can be rewritten as

1 0
Sxyll :—éfdx dy ez/h STr(anQéyQ), (401)

where the pre-factor is the non-dissipative term in the Hall conductivity in self-consistent Born approxi-
mation[302]

2
() =~ %l emy — yr) M GRE) | (402)
T m

wherer = (i/i)V + €A. This field theory has now the advantage that one can treat the physics on different
length scales separately: the physics of diffusion and localization is governed by the action of spatial
variations ofU on length scales larger than the mean free palthat is why this field theory is often
called diffusive non-linear sigma model.

The physics on smaller length scales is included in the coupling parameters of the theory, which is
identified in the above derivation as correlation functions of Green functions in self consistent Born
approximation, being related to the conductivity by the Kubo—Greenwood formula,

fie?
a0, 1) = — (rln,GR(E)ng G (E + o)]r) . (403)

The remaining averaged correlators, involve prod(RthE)Gg(E + w) andGé(E)Gé(E + w) and are
therefore by a factar/< E smaller than the conductivity, and can be disregarded for small disorder. Using
the Kubo formula (403), the action &f simplifies to

S=rs / dar Y o%=0,nTr(V,00)?

i=x,y

h
-~ 82 / dre?, (@ =0, 1) Tr[Q0, 00, 01 , (404)

whereo? (o =0,1) = ok (@ =0.1) + o} (0 =0,1) ande},, (v = 0) is the dissipative part of the Hall
conductivity in self-consistent Born approximation equation (403).

The first term in this action yields localization in two-dimensional electron systems, signaled by the
presence of a gap in the field theory. The second term could not be obtained by any order in perturbation
theory. It is of topological nature.
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Fig. 50. The conjectured two parameter flow diagram of the integer Quantum Hall Effect (left), and the corresponding beta
function, f,, =d In oy, /d In L (right) ateyy = —oxy = 1/2 (dashed line) and at,, = O (full line, units of conductivities

2

e“/h).

In two dimensions, and for a homogeneous Hall conductance it can be shown that this term can take
only discrete purely imaginary values,

h
Stop = 2ni = an (405)
where the integeracount how often the field)(r) is winding around its symmetric space as it varies
spatially in two dimensions. Thus, disregarding the spatial variation of the coupling funetjgnsin

Eq. (405), and assuming isotropy, one finds in the two-dimensional limit that there are instantons with
non-zero topological charggwhich are identical to the skyrmions of the comp@c8) non-linear sigma
model, as obtained form the compact part of the supersymmetric non-linear sigmd30d¢@02] Their

action is given by

Fy =2n|qloxx + 27nigoyy , (406)

whereos, . = oy, andoe,, are the spatially averaged conductivities.

Now, we can repeat the derivation of the scaling function, by integrating out Gaussian fluctuations
around these instantons. Itis clear, however that the contribution from instantorgsiths negligible,
as long as . > ¢2/h. Within the validity of the ¥ g-expansion one does not find a sizable influence of
the topological term on the scaling functian= ¢/L,. Still, the tendency is seen thatat, = —e?/2h
the renormalization of the longitudinal conductance is slowed down and one may conclude from this
observation the two parameter scaling diagram with a critical state of finite conductancg & e?/ i,
which is an attractive fixed point fer,, = —e?/2h as shown irFig. 50 [301,320] Considering the beta
function of theNth fermionic replica one notd801,305]that only the last on&/ = 1, becomes critical
and touches 0 lik@ ~ —(oyxx — o—jx)z, which is the beta function of the antiferromagnetic Heisenberg
chain[306]. From that, one can conjecture that fér — 0 the maximum of the beta function moves
to positive values, which yields the form drawnkig. 50with another, repulsive fixed point at smaller
values of the conductaneg,, below which there is a flow to an insulating phase for all values, pf
One can also come to that conclusion noting that, when freezing out the bosonic degrees of freedom
from the supersymmetric non-linear sigma modet gt= —1/2, one arrives again at the beta function
of the antiferromagnetic Heisenberg chain, given above. It remains still to be shown explicitly that the
beta function evolves indeed continuously from that beta function, as one adds the bosonic degrees of
freedom, and to see if it results in the beta function drawfign 50

Subsequently, it has been argued by other means that this field theory is indeed critical at half in-
teger Hall conductance parametetfg [301,305,306] and that it has a spectral gap to fluctuations
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at other values ofagy. This indicates the localization of the electron eigenstates of the random
Landau model in the tails of the Landau barfi@87]. Since the longitudinal conductance at the criti-

cal points}, is known to be smaller than 1, the critical point is located in the strong coupling limit of
the field theory. Thus, it is outside of the validity of available analytical methods which can be used
to extract quantitative information on the critical exponents. Furthermore, it is seen explicitly that in
order that the instanton solutions with non-zero topological charge do exist the system must exceed
the non-critical localization lengttiopunit~ exp(r2g?), whereg = ho,, /e?, when the assumption of
uniform coupling parameters; is made. Accordingly, it has been shown that the Hamiltonian of a
chain of antiferromagnetically interacting superspins can be derived from the non-linear sigma model
for short-ranged disorder at the critical point, = —e2/2h on length scales larger thaapynit [310]:

At criticality, o,, = —¢2/2h, and at strong couplings,, < €2/ h, Zirnbauer[310] showed by dis-
cretization, following Shankar and Re§8R1], that the supersymmetric non-linear sigma model can
be mapped on the chain of antiferromagnetic superspin chains in the low energy, long wavelength limit,
meaning that the lattice spacing of the super spin chain is on the order of the non-critical localization
length&opunit-

So far, no analytical information has been obtained for the critical parameters, such as the localization
exponenty and the critical valuetc. However, building on the model of a superspin chain, supersym-
metric conformal field theories have been suggested, which ultimately are supposed to yield the critical
parameters of the quantum Hall transitj&0,61,183]

Restricting this theory to quasi-one dimension, by assuming a finite wigdtof the quantum Hall
bar, of the order of the unitary non-critical localization lenggBynit =/ exp(nzo)%x), which serves as the
ultraviolet cutoff of the conformal field theory, one finds that the critical value of the scaling function
A¢ ~ 1.2, theratio of the localization length in a quantum Hall wire and its finite widtivhen the energy
is in the center of the Landau band, see Section 2.3, is fixed by the eigenvalues of the Laplace—Beltrami
operator of this supersymmetric conformal field thefdi§2,183,61] This is a characteristic invariant of
the theory, arising from the conformal symmetry, just as the quantization of angular momentum arises
from the rotational symmetry of a Hamiltonian. Furthermore, based on the properties of this constrained
class of supersymmetric conformal field theories, it has been predicted that the distribution function of
local wave function amplitudes is very broadly, namely log-normally, distributed. This prediction has
recently been confirmed by high-accuracy numerical calculafii3ig.

The quest to derive the critical exponent of the localization length at the quantum Hall transition
from a critical supersymmetric theory has thus recently gained much progress, by mapping both the
Chalker—Coddington model and the random Landau model on the Hamiltonian of the superspin chain,
Eg. (386), which has been shown to be criticakat 0[37,309,316fs defined in Eg. (362). Thus, it has
been proven to be a good starting point to continue in the quest for an analytical derivation of the critical
exponent and the multi-critical exponents at the quantum Hall critical point.

11. Extension to higher dimensions

A natural extension of the two-dimensional quantum Hall system is to consider layers stacked in
parallel, where electrons can tunnel from one layer to another. Such layered systems can be fabricated i
experiments and the magneto-transport properties have been investigted25]
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Fig. 51. Schematic view of a double layer network model. The dashed lines indicate intra-layer saddle points. Dotted lines
represent tunneling between the layers.

11.1. Double layer network model

The simplest case is a double layer system. In this case, there appear two energies where electron state
are delocalized29,326,327] instead of a single energy for delocalized states in case of a single layer
system. If the tunneling integral between layers is vanishing, the positions of the delocalized states are
both at the Landau band center, while if the random potential is the same for both layers, delocalized
states appear @& = +¢'. The really interesting situation, however, is none of the above, i.e., uncorrelated
disorder and finite tunneling. The position of the delocalized states is analyzed in d¢3aif Jnwhile
the critical behavior has been discussed numericallg9h

To incorporate interlayer tunneling in the network model, we introduce scattering between links in
different layers. IrFig. 51, a schematic view for double layer system is presented. The dashed lines are
the saddle points that describe intra-layer scattering described Byntia¢rix, Eq. (87), and dotted lines
represent tunnelings between the layer. Detailed expressions are presented in Section 11.3. Note that the
situation is similar to the class Alll discussed in Section 9.4, but the discrete symmetry (Eq. (349)) is not
present in this double layer system.

The density of states of such a system is sketch&ign52 The Landau band splits due to inter-layer
tunneling. Whether or not the localization length exhibits two singularities with the same critical exponent
as a single layer is under debate, but it is likely to be so.

The application of the renormalization group process (Section 6) to two-channel network model has
been discussed in det§d28,329] where the limitation of the hierarchy maodel is clarified.

11.2. Localization—delocalization transition

With the increase of the number of layers, the positions of energies where delocalized states appear
increase. The number of positions coincides with the number of layers. In the limit of infinite number of
layers, the delocalized states form a band of enef§&3] (Fig. 53).

As long as the number of layers is finite, the critical behavior of the localization—delocalization tran-
sition is conjectured to be the same as for a single layer. In the limit of infinite number of layers, the
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Fig. 52. Schematic view of the density of stajg®) and the positions of delocalized states for a double layer quantum Hall
system. Delocalized states are indicated by solid lines.
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Fig. 53. Schematic view of the density of stat€¢&) and the positions of delocalized states for a multi-layer system. Delocalized
states are indicated by the shaded region.

localization—delocalization transition should become that of the three-dimensional unitary system. For
this limit, the localization length exponent has been estimated numerically in the multi-layer Landau
model[330] and the anisotropic tight-binding mod8B1]. In all cases, it has been found to be consistent
with the value of the three-dimensional unitary cl§kk1,332] v = 1.43 + 0.03. This value is not far
from 4/3 obtained by mapping the three-dimensional layered system onto a spin Hamilg@33an

The numerical estimate of the exponenin the multi-layer network model via finite-size scaling
analysis of the MacKinnon—Kramer scaling variable givesl.454 0.2 [100], which is again consistent
with the result for three-dimensional unitary class. The quasi-energy spectral properties of the multi-layer
network mode[132,334]as well as wave packet dynamid®4] have been studied numerically, which
are also consistent with that for three-dimensional unitary diE38,170] These results suggest that
the bulk localization—delocalization properties of three dimensional layered Chalker—Coddington model
(Chalker-Dohmen model) can be described within the conventional three-dimensional unitary class.
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Fig. 54. The electrons circulate about the two-dimensional plane in the case of fbc. They can hop from one layer to another, and
form an “edge sheath”.

11.3. Chiral metal

Most of the discussions so far have assumed the periodic boundary condition in the transverse direction,
Eqg. (106). If we impose the fixed boundary condition, Eq. (107), the electrons travel along the boundary
of the systems and form edge states.

If we consider a multi-layer system where each layer has edge states circulating around the plane,
the edge states are connected due to tunneling. When the Fermi energy is set between the center of th
Landau band, bulk states are localized and the edge states are decoupled. In this situation, they form &
sheath[100,335-337]n which the motion of electrons is directed (Fiy). The transport properties
along the magnetic fieldA{direction) is determined by this sheath, since the bulk states are all localized.
We therefore can consider as independent the electron states in this two-dimensional sheath which car
be modeled by a two-dimensional directed network mdeigl, 55

In this directed network model, at a saddle point, the incoming and outgoing waves are related via an
S matrix as

‘ﬁ/ B ' W1
()= () o)

In terms of the transfer matrix aloredirection, the wave functions are related via

Yo\ _ (- Y Yo
(-5 402

The resulting two-dimensional network model is describeBig 56 It is similar toFig. 8, but in this
case the arrows are always rightward & S'.

Aninteresting property of the transport in this edge sheath is that one can estimate the sheet conductivity
along thez-axis exactly{100,337] In the limit of large circumferenc€, the path connecting the bottom
edge to the top cannot circulate along the system. This and the chiral nature of edge states lead to the
fact that the interference between the paths with different wrapping is absent, i.e., a path does not self-
intersect, and we can estimate the conductivity classicallyT'et|#’'|2 be the single layer transmission
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Fig. 55. Schematic view of electron motion in the two-dimensional sheath. The arrows indicate the edge states circulating around
the two-dimensional plane. It tunnels to that in a different layer through interlayer coupling indicated by dotted lines.

X

Fig. 56. The directed network model. It is similarFgg. 8 but different in that the arrows are always towards the right in the
x-direction, and only one type of ti&#matrix appear, nod andS' as before.

probability, and leTy the transmission probability fod layers (', = T'). Then the following recurrence
equation holds:

1
T =Ty——T, R=1-T, Ry=1-T, 409
N+1 Nl—RRN N N (409)
or
1 1 1-T 1-T 1
ITn+1 Tn T T T



B. Kramer et al. / Physics Reports 417 (2005) 211-342 331

This gives
1 T
Ty = — . (412)
N1-T1-1/N)
The conductance along tkeaxis, G, is given by
2 2
e e N¢ T
G,=— =—— , 412
TR TN T YN 1I-TA—1/N) (412)

whereN; is the number of channels. Setting the distance of the saddle point alorgliteetion to be
b and the layer distance to laethe expression for the conductivity, becomes

L e? a T
e T , 413
T Tt T N b1-TA—1/N) (413)
whereL is the length of the system alozepxis. For a sufficiently large system, one finds
2
T
. (414)

T 1T

and for perfectly transmitting channe®,— 1,s.. = (¢2/h)L/b. Eq. (412) almost completely describes
the numerical data far-axis conductancf837].

The results indicate thaf. can be much smaller thafd/ i, but the system is still metallic. This is in
contrast to the conventional two-dimensional metal—insu[&®8] or two-dimensional superconductor—
insulator transition§339], where the transition occurs negf/ . This peculiar property is due to the
chiral nature of the states in the surface, so that the system is called chiral metal.

The conductivity is related to the localization length alongztaeis. By parameterizing the transmis-
sion eigenvalues, i.e., the eigenvalues:éf z, via the Lyapunov exponeny, as (cf. Eq. (157))

1

R — 415
’ costt (v, N/Ne) (415)

we have
2
. . e NC
6., = lim Ilim — — _— 416
L S oo C h nZ:; COSF‘F(VHN/NC) ( )

By noting thatv,, ~ nv1 due to spectral rigidity, the expression of the conductivity becomes

. _ Na é? N,
o= lim lim 24 Z —
N—00 N¢—00 Ncb h - COSﬁ(vnN/Nc)

_  Na 2 [t
= lim lim —ae—/ cosh?(v1Nx) dx
N—>oco Ne—woo b h 0
2a 1
_ca= (417)
h bv
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Fig. 57. Numerical transfer matrix calculation of conductaMeZ/h) as a function of the layer transmission probability
T. Nc = 96 while N = 16, 32 and 96. Bars around the points indicate the conductance fluctuation. Solid lines correspond to
Eq. (412).

Since the smallest Lyapunov exponent is related to the one-dimensional localizationdewigth
N L . aNC

MFC:?Z’ e= (418)
in terms of localization length the conductivity is expressed as
2 .
0z =1 EZ : (419)
From Egs. (414) and (419) the MacKinnon—Kramer parameter is obtgioed

It is independent of the size of the system. This means that the wave function is critical.

With the increase of the system lendththe paths of electrons from the bottom to the top begin to
self-intersect. In this case, the transport properties are conjectured to be metallic. On the basis of mapping
onto a ferromagnetic super spin ch§®40], this conjecture was quantitatively discusse@3al,342]
and then numerically verifiel43] (Fig. 57).

In Fig. 58 the qualitative phase diagram of a layered quantum Hall system is shown. The width of the
metallic regionWis expected to increase with the tunneling amplitude Wikg) ~ #1/"1QHT wherevigHT
is the critical exponent of the two-dimensional quantum Hall transition. This behavior is obtained from the
following argument for the delocalizatid00]: When the level spacing in a localized region~ 1/£2
with localization lengthé is smaller than the tunneling matrix elements between the localized wave
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Fig. 58. Phase diagram of the layered network model, witere0 denotes the center of the lowest Landau bd@d]. The
width of the metallic region for small tunneling amplitutis expected to increase lik& (T') ~ 1 1/MQHT

functions in adjacent layers, the state becomes delocalized. This tunneling matrix elements is estimated
to be~ t/¢, hencer ~ 1/¢ should hold at the mobility edge. Since in the two-dimensional system
the localization length diverges &t= 0 like ¢ ~ |E|~"QHT  one obtains the above dependence of the
width W ().

The chiral metal has been theoretically predicted in 1l9®,335] Soon, it has been verified ex-
perimentally in an organic conductf844] and in semiconductor quantum well structuf@45—-349]
Magneto-conductand850], conductance fluctuations and the effect of interactjpb$—353Jhave been
discussed in relation to the experiments.

Recently, layered network models have been considered for other symmetry classes as well. Since, as
reviewed in the previous Section 9, classes C and D (disordered superconductor with broken time reversal
symmetry, se@able 4 exhibit a rich phase diagram already in two dimensions, the corresponding phase
diagram of the layered network can have additional phase boundariesto the one dhigns8fi354,355]

Still, the width of the metallic region is expected to be for small tunneling amplityd&sr) ~ /7,
whereyv is now the critical exponent of the corresponding quantum Hall transitioa-dd.

12. Conclusion

We have attempted to describe the development during the past decade of the random network model
originally designed by Chalker and Coddington for the critical behavior of the quantum Hall phase
transition. As the field is presently in a transient state with new ideas and developments appearing very
rapidly, we cannot hope to have covered all of the different facettes completely. We can only hope that we
have been successful in sketching at least the most important aspects such that a newcomer to the fielc
can get an idea about what is going on.

Two distinct and characteristic features of the model have been very important during the development.
The first is of great practical importance. Similar to the tight-binding Anderson model for localization,
the network model is perfectly suited for numerical studies since the defining scattering operator is
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represented by sparsematrix. Thus, quantitative numerical studies of the fundamental quantum critical
properties of the model have been the subject of uncountably many works. These include not only the
critical exponents but also the quantum fluctuations of the multi-fractal wave functions and the statistics
of the conductances.

The second property is perhaps of more fundamental nature. The network model can be mapped ontc
a great variety of Hamiltonians ranging from a bipartite tight-binding Hamiltonian—of which the Dirac
model is a limiting case, the Ising model to an antiferromagnetic chain of superspins. The versatility of
the model invented by Chalker and Coddington for combining results from different areas seems to be
truly unique. Using this, and the already mentioned remarkable practical flexibility, reliable quantitative
information about quantum phase transitions in very different kinds of disordered systems can be obtained
which include all of the 10 presently known universality classes of disordered quantum systems in two
dimensions.

Moreover, the mapping to the antiferromagnetic superspin chain and applying field theoretical methods
has opened novel possibilities of putting the quantum Hall phase transition in a much wider context.
Several new phenomena, such as the thermal Quantum Hall Effect, the spin Quantum Hall Effect, and
the chiral metal, have been predicted and are waiting for more theoretical and experimental efforts.
Eventually, this also may contribute to explaining the universality of the quantum Hall phenomena which
forms the underlying basis for the exactness of the quantization of the Hall conductance.

Thus, the model can be considered as paradigmatic. It seems to us that the development has not ye
come to an end. Many of the questions that have been raised during the development are still waiting for
answers (Table3-5). These are especially the quantitative investigations of the critical properties at the
boundaries of the various novel quantum phases that are predicted to occur in the models belonging tc
the different symmetry classes.

As a major challenge, it remains to be explored how the model can be generalized to include eventu-
ally interactions and correlation effects. There is evidence that electron—electron interaction is of great
importance for understanding the properties of the two-dimensional electron system in the region of the
integer Quantum Hall Effed68,356,357] Also, generalizations to the regime of the Fractional Quan-
tum Hall Effect should be desirab]@58]. Therefore, the generalization of the model towards including
Coulomb interaction will eventually be crucial for getting insight into the physics behind the quantum
critical phenomenon which seems to be of central importance in modern condensed matter physics.
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