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A simple nonlinear equation is derived to describe the pseudo-three-dimensional dynamics of a nonuniform
magnetized plasma with T,»T; by taking into account the three-dimensional electron, but two-
dimensional ion dynamics in the direction perpendicular to B, The equation bears a close resemblance to
the two-dimensional Navier-Stokes equation. A stationary spectrum in the frequency range of drift waves
is obtained using this equation by assuming a coexisting large amplitude long wavelength mode. The w-
integrated k spectrum is given by k'%(1+k %)-22 while the width of the frequency spectrum is
proportional to k }(14+k ?)~!, where k is normalized by c,/w,;. The result compares well with the recently

observed spectrum in the ATC tokamak.

. INTRODUCTION

In a low beta, nonuniform plasma embedded in a mag-
netic field, many instabilities of waves with frequency
w, much below the ion cyclotron frequency, w,;, and
wave vector, k, in the direction almost perpendicular to
the magnetic field have been predicted.! Experimental
observations®* of such pseudo-three-dimensional per-
turbations indicate the significance of the universality
of plasma turbulence of such a nature.

In this paper we first derive a simple model equation
which can describe plasma turbulence of this type,
namely, that with the temporal time scale being much
larger than the ion cyclotron period, and the wave vector
in the direction almost perpendicular to the magnetic
field. We make two assumptions; (1) the electron tem-
perature is much larger than the ion temperature and
(2) the turbulence level is high enough so that the wave-
particle interaction can be neglected. The first assump-
tion allows us to treat ions as a cold fluid which dras-
tically simplifies the equations, yet we can retain an ef-
fective ion gyroradius by allowing a high electron tem-
perature T, through (T,/m;)"?/w,;, where m; is the ion
mass. The second assumption is a natural consequence
of strong turbulence.

Particular emphasis is placed on the pseudo-three-
dimensionality of the problem. Attempts have been
made in the past® to describe a magnetized plasma in
exactly two-dimensional form (in the direction perpen-
dicular to the ambient magnetic field) for various pur-
poses. However, for a realistic plasma even with small
inhomogeneities, the small electron inertia allows a
rapid motion of electrons in the direction of the ambient
magnetic field and leads to a breakdown of the ideal two-
dimensional situation. Quantitatively, if the parallel
phase velocity is smaller than the electron thermal
speed, the parallel motion of electrons becomes impor-
tant. In this paper we treat the electrons as a massless
fluid.

The model equation derived in this way is shown to
have a close resemblance to the two-dimensional Navier-
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Stokes equation for incompressible fluids. They are
identical for %2> [(T,/m;)/w?; "' and deviate from each
other for a smaller 2,. The deviation is due to the ef-
fective compressibility produced by the parallel electron
motion. After deriving the model equation in Sec. II and
discussing its properties and similarities to the Navier—
Stokes equation in Sec. III, we make an attempt to ex-
plain the recently observed spectrum.?® of density fluc-
tuation in the ATC tokamak using the model equation.

In these experiments density fluctuations with interest-
ing, and somewhat unexpected spectra were observed.
The frequency spectrum in the range of a few hundred
kHz for a fixed value of a vector wavenumber k was
broad with little or no identifiable peak other than at w
=0. While the wavenumber (k) spectrum for a fixed w
had a relatively broad peak at || ~p;!, where py(=c,/
w,;) is an effective ion gyroradius and ¢, is the ion sound
speed [=(T,/m)"/%]. Dependence of the observed k spec-
trum on the direction of k was weak; the spectral density
for the radial wavenumber had a structure almost iden-
tical to that for the azimuthal wavenumber.

The broad w spectrum seems to rule out the possibility
that the fluctuation can be explained by a simpie weak
turbulence theory in which a small deviation from linear
eigenmodes is assumed.®*” The weak dependency of the
k spectrum on the direction of the wave vector presents
further evidence that the observed spectrum cannot be
attributed to a simple drift wave turbulence.

The integrated density fluctuation » is found to be ap-
proximately three percent of the background density®;
In/ngl = lep/T,l ~3%10°%, where ¢ is the total fluctuat-
ing potential and T, is the electron temperature. If we
use this value, it can easily be seen that, owing to the
mode coupling through the E xB drift,? the effective non-
linear frequency shift, w,;in/nylk*?, becomes larger
than the observed frequency range, w=10"%w,.

To obtain the spectrum we assume the coexistence of
a large amplitude long wavelength perturbation (&< p;}).
The turbulence in the short wavelength region (£~p;!) is
maintained by the scattering due to the long wavelength
mode. We derive the width of the w spectrum as a func-
tion of | 2| as well as the w integrated (k| spectrum for
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the wavenumber K in the direction perpendicular to the
ambient magnetic field.

. MODEL EQUATION

Let us first derive the model nonlinear equation. For
illustrative purposes, we assume that the electron tem-
perature is reasonably larger than the ion temperature
and we use a cold ion approximation. The cold ion ap-
proximation puts a maximum wavenumber approximately
(T,/T;)"?07! to which the present result is applicable.
However, this weakness is overshadowed by the simplic-
ity of the equation. The model equation we use is the
equation of continuity for ions in which the parallel ion
inertia is neglected. This neglection is commonly used
in the type of turbulence discussed here.® The negligibly
small dependency of the observed spectral density &,
was also confirmed experimentally.>?® We have

m/at+V [nO(VE+VP)]=O, (1)

where V- is the divergence operator in the direction
perpendicular to the magnetic field, By, vg, and v, are
the E x B and polarization drifts given respectively by

VE=_VL¢"B0/B§ ’ (2)
1 3
Y=o [— V.6 - (vt vl)w], (3)

where n and n, are the perturbed and unperturbed (but
nonuniform) densities, and w,; is the ion cyclotron fre-
quency. As will be shown later the term whichoriginates
from the product of the perturbed density # and (vg+v,)
makes no contribution.

Many authors have assumed an ideal two-dimensional
situation,®? and obtained the density perturbation by
using Poisson’s equation together with the correspond-
ing two-dimensional electron equation. We believe, for
example in the presence of a weak shear in the magnetic
field, such an assumption is invalid. A slow variation
of @ in the parallel direction allows the electrons to
obey the Boltzmann distribution. The quasi-neutrality
condition then gives,

n/ng=ed/T,. @

If we use this density perturbation in the ion continuity
equation, it can easily be shown that

vV (nvg)=0.

Hence, the nonlinear mode coupling in our case origi-
nates only from the convective derivation in the polar-
ization drift of ions, the second term in Eq. (3). This
makes our approach fundamentally different from the
previous two dimensional calculation that uses vgn non-
linearity.’®

If we expand ¢(x, t) in a spatial Fourier series; ¢(x,1)
=33, (0, () e *+c.c.), where k is k,, Eqs. (1) to (4) are
reduced to

Bgy(t) .

wFoull) =5

of +iwg Ak:,ku(bkl(f)d)k"(t)- (5)

=k’ +k’’

Here, the matrix element Ay . is given by
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Ak:,k"=i+1—kf(k’*k”)- 2[(r")? - ()71, (6)

time and space coordinates are normalized by w;} and
ps{=cy/w,), (thus k is normalized by p;'), wf is the
normalized (by w,;) drift wave frequency given by

wp == kyT,8(lnny)/ 8x @)

eby(1+ k) w,;

Here, the z axis is taken in the direction of By and x in
that of the nonuniformity.

Equation (5) is the basic equation which we believe to
be appropriate to describe a general class of pseudo-three-
dimensional (k, =0) low frequency turbulence in a nonuni-
form plasma. We note that, because wf =102, even
with an amplitude ¢,~ 1072, the nonlinear term can domi-
nate near k=1 and the equation becomes a Navier-
Stokes type; a notion of strong turbulence. There ex-
ists, however, an important difference between Eq. (5)
and the Navier-Stokes equation; that is, the matrix ele-
ment Ay, .- has a denominator 1 +#% which indicates its
qualitative change at k=1, This is a unique feature of a
magnetized plasma. While at 2< 1, the linear term
dominates and the weak turbulence signature appears.
For a very large value of 2, wf becomes small and it
should be replaced either by the viscous or by the ion
Landau damping rate, which contributes to the sink of
energy. We also note that mode coupling tends to rotate
the % spectrum in the plane perpendicular to the mag-
netic field, hence, it will isotropize the spectrum in this
plane.

I11. CONSERVATION LAWS AND RELATION TO
NAVIER—-STOKES EQUATION

In this section, we derive the conservation laws and
discuss the relation of the basic equation, Eq. (5) to
the Navier-Stokes equation. For these purposes, we
consider a uniform plasma. If we note the identity in
the two-dimensional case,

Ve [(Voxz): VIVo =[(Vox2) VIV, (8)

where Z is the unit vector in the z (ambient magnetic
field) direction, Eq. (5) reduces, in real space, to

8

a,(Vzé—é)—[(Vdvxzf)-V]V%:O. (9)

Let us first note the similarity of this expression to the
Navier—Stokes equation for the incompressible fluid

6]
v Vlv=-V
<8f+v >v P,

Vev=0.

(10)

(11)

In the two~-dimensional case, the velocity field v can be
expressed in terms of the z component of its vector po-
tential o,

(12)

Thus, if we take the curl of Eq. (10) and use Eq. (12),
we have

(3/81)V2% - (Vyxz- V)VEH=0.

VaVxz=VixZz .

(13)

If Eq. (9) is compared with the two-dimensional Navier—
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Stokes equation (13), an interesting similarity is seen.
They are identical except for the 8¢ /3¢ term in Eq. (9).
This similarity is not surprising because the E xB drift,
- V¢ x2/B,, is impossible. Infact, in the previous
treatments of the two-dimensional turbulence using ExB
coupling,® the equation for the electric potential is found
to be identical to Eq. (14). The difference in the present
case comes from the compressible perturbation due to
the parallel electron motion. This is a consequence of
the unique property of a plasma which consists of two
components of species, electrons and ions with a small
mass ratio m,/m;. This small mass ratio makes ideal
two-dimensional perturbation meaningless for most
cases since a small inhomogeneity (or a shear) in the
ambient magnetic field on the order of or larger than
m,/m; allows electrons to shield the potential variation
along the field line. This effect gives rise to com-
pressibility for a small perpendicular wavenumber.

The basic equation we have derived here indicates that
(i) a pseudo-three-dimensional plasma behaves like an
incompressible fluid for a short perpendicular wave-
length (&, > p3!), but for a long perpendicular wavelength
the compressibility correction becomes important; and
(ii) the nonlinear term of our equation is identical to that
of the Navier—Stokes equation if the electrostatic poten-
tial is replaced by the z component of the vector poten-
tial for the velocity field.

Let us now derive the conserved quantities in our
equation. It was shown by Kraichna.n,m that the two-
dimensional Navier—Stokes equation has two inviscid
constants of motion, kinetic energy [ v*dV and mean-
square vorticity [ (VxV)?dV, where dV is the volume
element. We also find that there are two constants of
motion in our equation,

st[cph (V)?)/2dV and U= f[(v¢)2+ (V3¢)2)/2dV .

If we multiply Eq. (9) by ¢ and integrate over the entire
volume, the nonlinear term becomes,

j¢v¢ x 2. VViHdV

=f¢>V— [(V¢x2)v2¢>]dv=IV- (pV2pVPpx 2)aV .

This expression can be written in terms of a surface in-
tegral [¢pV3pVd x 2+ dS. Thus,

1 ij 2 o) =W _ I .
557 [0+ (Vo)lav="rr== | 3, a8, (14)
where J, = - ¢(5/88)V¢p + oV2pVd x z. This expression is
interpreted as the conservation of the total energy den-
sity, (0®T/ng+mngv)/2, since n=e¢/T, and v3=(Vo x 2/

By)?=(V$)?/BE in unnormalized form.
Similarly, if we multiply Eq. (9) by VZ¢, we have

1

29t
where J,=—- V¢ (a¢/8t) — 3(v3¢p)*¥o xz. Equation (15)
shows that the quantity U, which is the sum of the kinet-
ic energy and the squared vorticity, $%=(Vx v;)?
=(v%)?T?%/e®B2, is conserved. Now, if we add Eqs. (14)
and (15), we obtain

[(V¢)2+(V2¢)2]dVE%=—j J,- dSs. (15)
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15
3 a_tj[d) - (V3¢)Pav

+j [0V2¢Vpx 2 - 5(VEp) Vo x 2]+ dS=0.
This shows that a quantity

[n/ng — (V xVg 2B/ T? P ,
is an alternative constant., As is shown in the Appendix,
this result may be interpreted as the conservation of
squared vorticity enstrophy in a compressible two-di-
mensional fluid, in which 2%/#? is conserved in the co-
ordinate moving with the fluid, Two constants of motion
indicate that there exist two types of inertia range in
which the spectral density for the quantities W and V has
different cascading properties.!® In fact the Gibbs dis-
tribution here is given by exp(- aW —-8U), and the cor-
responding spectral density becomes (| $,?) = (1 + &%)

xla+ BEEL,

IV. STATIONARY SPECTRUM

In this section we obtain the spectral density for |¢l ¢
using our equation to explain the observed spectrum.
The observed level of density fluctuation® indicates that
(! & 132 is larger than o} in Eq. (5) and that the
mode coupling term (the right-hand side) dominates over
the linear dispersion term, wf. Hence, to study the
spectrum in this range of 2, one cannot use conventional
weak turbulence theory®; we should consider the plasma
to be in the strongly turbulent state.

To date, there exists no well-established theory of
strong turbulence. Thus to solve Eq. (5) directly is a
difficult task.

There exists neither a sink nor a source term in Eq.
(5). This is because we have retained only the dominant
terms. In reality, there exist terms representing lin-
ear growth and damping, which are important for a
range of 2 where the mode coupling term can be re-
garded as small. This means that the linear drift wave
instability can still exist for a small % (so long as it is
larger than the small limit given by collisional damping)
which can keep pumping field energy. By retaining only
the dominant term as in Eq. (5), we can ask what will
be the structure of a stationary spectrum which is main-
tained by the large mode coupling term.

If the mode coupling term dominates over the linear
term, we must include all the possible modes in the sys-
tem, for example those not directly related to the short
wavelength mode. This means we must include the
magnetohydrodynamic mode and/or the convective cell
mode, if their amplitudes are large. In fact, these
modes can have large amplitudes in ¢ because of their
intrinsic incompressible nature. For example, the re-
sistive kink mode which seems to exist under most cir-
cumstances in a tokamak plasma is found to have a fluc-
tuating fluid velocity of 0.04 Cs.ll The potential fluctua-
tion associated with this level of velocity fluctuation be-
comes of order unity. The convective cell mode which
is found to be excited directly by the drift wave turbu-
lence in a computer experiment!? also has a large level
of potential fluctuation. In addition, because of simi-
larity to the two-dimensional Navier—Stokes turbulence,
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inverse cascading may occur leading to spectrum con-
densation at long wavelengths.

In the presence of a large amplitude long wavelength
mode ¢y, with |dy |>>1¢,1, ky<k=1, Eq. (5) may be
solved by linearizing with respect to the amplitudes of
the short wavelength modes. We believe that this ap-
proach, even if it seems to have limited applications, is
valid for reasonably general cases, because an incom-
pressible mode, ¢y, can have a large amplitude fluctua-
tion in electric potential. For example, if we write the
fluid velocity perturbation Vg, in terms of the unnormal-
ized potential fluctuation ¢y, Ey+VyxBy=0

edry/Te = (kops) (/) ;

hence, even if v./c, < 1, e¢ko/T can be order unity if
ko <pil.

With these notions, let us construct the wave kinetic
equation from Eq. (5) using the renormalization tech-
nique described by Kadomtsev.'? We first integrate Eq.
(5) to obtain

¢k(t)‘— Z Age yr

k-k' +k'

xexpl=iw(t = t') g )y () dt . (16)
Now, if we multiply Eq. (5) by ¢#(¢) and add the complex
conjugate of the product, we have

Z Aepea [05, D, (0F @D +cec ] (AD)

9 2_
at I¢k (t)r £,
The wave kinetic equation is constructed by substituting
Eq. (16) into the right-hand side of Eq. (17) and by tak-
ing the ensemble average. We use the random phase
approximation. However, because of the presence of the
large nonlinear term, we retain the decay rate, y,, of
the two-time correlation function compared with the
characteristic frequency w,. We postulate a Lorentzian

shape for the two-time correlation function;
(Dp)OE () = B¢ pr | Ot |2 exp[~ (Gwp + 7)(t = )],

where y; will be obtained later by the renormalization
technique. If we now substitute Eq. (16) into the right-
hand side of Eq. (17) and use relation (18), we have

2
(t)l 1 Lre ZAr o ( A,,,.,_,t|¢,,,|j|¢,_k,|
Yk'+7x-g'+z(—wk+wk:+wk_k,)
Ay .yl Og 1oy |2

Agpel Oy 121y yo |12
)

Ye+ vy + i {0F g + Wp — W) Y+ Yiex + W — W+ Wiy

(18)

(19)

In standard weak turbulent theory,® one ignores the y,’s
with respect to the wy’s in the denominator and repre-
sents (wy — W — weer )™ by the principal value plus 76{w;
- Wy — wyer). Here, because of the large mode coupling
term we ignore the frequency mismatch and retain the
self-damping term y;. For the small 2 range where the
mode coupling term becomes small one should take the
weak turbulence limit. Hence, the present result is ap-
plicable only near &~ 1.

We now use the assumption that there exists a large
amplitude mode in a long wavelength region. Writing
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the potential perturbation of the mode as (Z),O, where
Ikl << 1, and assuming that | ¢y 12> | 6412 and v < %
for b~ p we can linearize Eq. (19) with respect to
Iy 12

Let us first obtain y;, which should give the width of
the frequency spectrum. For this purpose, we multiply
Eq. (5) by ¢F(t') and use Eq. (16) to obtain

S (S0E (') =~ i oy oF ()
5 g Ay 2 ‘¢‘° DOt . (20)
Thus, from Eq. (18), we have
2y2- %(;:::T)z (%% - 2k, k)(kz—ko | 2. (21)

1+ (k- ko)

If we expand the right-hand side in the power of | ky/% {2
and take a simple average over the angle between k and
kg, we have

4 2
kp 2k*+ 4k +1)‘ (22)

1 k% (
wops To Pl g T g

The v, so obtained, which represents the width of the
frequency spread (around w=0), has a different struc-
ture from that derived by Dupree and Weinstock® due to
the finite ion inertia term used here. Namely, our re-
sult is k? times the Dupree-Weinstock result. This is
because the (E xBy)n term as retained by those authors
does not contribute here. For a small value of &, v,

o« k3 while wf « £, hence y, can become smaller than
wy* where the present result becomes inapplicable. If
we take the frequency spread at k=1 of Ref. 3, 7,~ 1072,
This gives the potential amplitudes of the £, mode,

| $y,!, as approximately 0.2 for &, =0. 1.

Finally, we obtain the stationary k spectrum density,
| ¢, |2, For this purpose, we set the left-hand side of
Eq. (19) to zero (stationary condition) and equate the
damping of ¢ 1%, [Eq. (22)] to the excitation of i ¢y |?
by the mode coupling between d)k-ko and (bko, we ignore
the nonlinear term | ¢, ¢ %112

(ko x k)*(k® - 2k - Ko)*
(1+ B2 iy

Now, the self-damping rate v,.,, of the k -k, mode can
be obtained in a manner similar to y, by substituting

k -k, for k in Eq (22), while | ¢y | % may be expressed
in terms of | ¢,|2 by the Taylor expansion,

|¢k-k012:|¢k‘2‘ (ko %>I¢x.z+%(ko° %)Mk‘z. (24)

If we substitute Eq. (24), 7, and v,.,, from Eq. (22) into
Eq. (23), and take the simple average over the angle be-
tween k and k;, we find that the leading term cancels.
The cancelation between the self-damping term and the
mode-coupling term has also been noted by Galeev.'* If
we then balance the coefficients of k2, we have the fol-
lowing differential equation for | ¢,!%, 2

Al 1+3k2 dlo,i% 15k*+18K% -5
dk® E(1+E®)  dk A1+ %)

| beg| 2] Drurgl 2= 47, 04 2=0.  (23)

[¢.]2=0. (25)

+2

In the derivation of this equation, the assumption that

A. Hasegawa and K. Mima 90

Downloaded 15 Sep 2010 to 203.230.125.100. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



AN

<ing (k1% >/<ng>Z x10°
N

-
\
Ho—

0 5 10 15 20
k{cm-t)
FIG. 1. Comparison of the « integrated k spectral density be-

tween the theory [Eq. (26)], shown by the solid curve, and the
experiment by Mazzucato,? shown by dots and straight error
bars. It is fitted at 2=10"! using ps= 10! em. The discrepancy
in the short wavelength is due to the finite ion gyroradius ef-
fect and the classic viscous or ion Landau damping which are
not included in the theory.

| ¢y 1% does not depend on the direction of k is used again.

Equation {25) is found to have two independent solu-
tions, one having the form approximately equal to »~%%
which spuriously represents the long wavelength spec-
trum, and the other having a broad peak near k=1,
which represents the short wavelength spectrum that we
are looking for. An approximate analytic solution for
the latter has the form

kl.B T 1/2
l d)k' ZEW for & min 10, [}l] (26)

i
The solution for k£ 210 becomes oscillatory, hence is
nonphysical.

If we plot Eq. (24) on the top of the experiment data
obtained by Mazzucato,? it shows fairly good agreement
as shown in Fig. 1. It fits at # (un-normalized) =10 cm™!
assuming p, = 10"! cm. The poor agreement on the short
wavelength side is expected because an additional damp-
ing and reduced mode coupling coefficient will appear in
k> 1 due to the finite ion gyroradius effect.

V. CONCLUSION

We have derived a model equation which is appropri-
ate to describe the dynamics in the low frequency and
short pendicular wavelength of a magnetized nonuniform
plasma. The equation has only one nonlinear term which
originates from the nonlinear polarization drift. It has
a close resemblance to the two-dimensional Navier—
Stokes equation for an incompressible fluid. Using the
model equation, we obtained the w-integrated %, spectral
density as well as the width of the w spectrum assuming
the coexistence of a large amplitude long wavelength po-
tential fluctuation. Since the result does not depend on
any particular mode of the system, the spectral density
obtained is considered to be universal to a magnetized,
nonuniform collisionless plasma.
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APPENDIX

Here, we prove that in a two-dimensional compressi-
ble plasma fluid,

(@/dt)(%/n?) =0,

where §2 is the generalized entropy as will be defined
later and » is the total number density of the plasma.
We start with the equation of motion for the ion fluid,

(A1)

] 1
m; [—%+(v- V)v] =e(E+v B)—r—le , (A2)
where E is the electric field intensity, B is the magnetic
flux density, and p is the plasma pressure. For general
purposes, we consider an electromagnetic perturbation.
If we take curl of this equation, and define

R=Vxv+{e/m;B (A3)
while using

VxE=-08B/ot, (A4)

(V- VIv=3Ve? —vxVxv, (A5)
we have

aQ/ot -V x (vxQ)=(1/n?)VuxVp. (A6)
Now, since V- =0,

Ux (VvxQ)==QV-v+(-VIv-(v- V). (A7)

Furthermore, since we are considering a pseudo-three-
dimensional perturbation in which a variation of v in the
direction of Q is assumed to be zero, (A6) and (A7) give

asy/dt+ Qv - v=01/m;n?) Vnx Vp . (A8)

Equation (A8) shows that the baroclinic vector Vax Vp
becomes a source of B as well as that of the fluid vor-
ticity.

For a cold ion fluid as considered in the main text,
p=0. I we construct a scalar product of Eq. (A8) with
€ and use the continuity equation,

V-v=-d(lnn)/dt , (A9)
we have

(d/dt) In{Q/n)2=0, (A10)
or

d/at){se/n)?=0. (A10%)

This expression represents a generalized conservation
law of enstrophy in a compressible fluid, and can be
reduced to Eq. (9) if Boltzmann distributions is used
for =,
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