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Two-dimensional turbulence has both kinetic energy and mean-square vorticity as inviscid constants
of motion. Consequently it admits two formal inertial ranges, E(k) ~ €35 and E(k) ~ »n2/3k3,
where e is the rate of cascade of kinetic energy per unit mass, 7 is the rate of cascade of mean-square
vorticity, and the kinetic energy per unit mass is [®E(k) dk. The —3 range is found to entail
backward energy cascade, from higher to lower wavenumbers k, together with zero-vorticity flow.
The —3 range gives an upward vorticity flow and zero-energy flow. The paradox in these results is
resolved by the irreducibly triangular nature of the elementary wavenumber interactions. The formal
—3 range gives a nonlocal cascade and consequently must be modified by logarithmic factors. If
energy is fed in at a constant rate to a band of wavenumbers ~k; and the Reynolds number is large,
it is conjectured that a quasi-steady-state results with a —3 range for &k « k; and a —3 range for
k > ki, up to the viscous cutoff. The total kinetic energy increases steadily with time as the -2
range pushes to ever-lower k, until scales the size of the entire fluid are strongly excited. The rate of
energy dissipation by viscosity decreases to zero if kinematic viscosity is decreased to zero with other
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parameters unchanged.

1. INTRODUCTION

HE vorticity of each fluid element is an inviscid

.constant of motion in two-dimensional incom-
pressible flow. Therefore the mean-square vorticity
as well as the kinetic energy per unit mass are
inviscid constants in two-dimensional isotropic tur-
bulence. A number of authors have studied two-
dimensional turbulence theoretically, and it is rec-
ognized that the vorticity constraint has profound
effects on inertial energy transfer.'™ In contrast
to the predominantly one-way flow of energy
familiar in three dimensions, transfer upward in
wavenumber must be accompanied by comparable
or greater downward transfer.

A principal reason for exploring two-dimensional
turbulence has been the possible application to in-
termediate-scale meteorological flows. Another mo-
tivation is that two-dimensional flows are more
easily simulated on digital computers than three-
dimensional flows and may therefore be a valuable
testing ground for dynamical theories. The present
study grew out of an investigation of the approach
of a weakly coupled boson gas to equilibrium below
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the Bose-Einstein condensation temperature'’.
There is a fairly close dynamical analogy in which the
number density and kinetic-energy density of the
bosons play the respective roles of kinetic-energy
density and squared vorticity. (The flow of vorticity
into small scales in two-dimensional turbulence is
then analogous to the flow of kinetic energy into
high wavenumbers during the formation of the
boson condensate.)

The present paper is limited to analysis and dis-
cussion of general properties of energy and vorticity
cascade in two dimensions which can be displayed
by direct use of the NavierStokes equation and
the inviscid conservation laws. No use is made of
closure approximations. However, the Lagrangian-
history direct-interaction approximation, which
yields Kolmogorov’s similarity cascade in three di-
mensions,'' preserves the vorticity constraint in two
dimensions and appears to yield the principal dy-
namical features inferred in the present paper. That
closure may thereby be useful in exploring the inter-
action between the predominantly two-dimensional
intermediate-scale motions and the three-dimen-
sional small-scale turbulence in meteorological flows.

According to the two-dimensional Navier-Stokes
equation, the interaction of each triad of wave-
numbers k, p, ¢ individually conserves both energy
and squared vorticity. In order to separate off
questions involving the localness of energy transfer,
suppose that all triad interactions for which the
smallest of the three wavenumbers is less than, say,

1 R. H. Kraichnan, Phys. Rev. Letters 18, 202 (1967).
" R. H. Kraichnan, Phys. Fluids 9, 1728 (1966).
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Fic. 1. Part (a) represents the cascade of excitation
through the wavenumber spectrum by means of elementary
triad interactions. Part (b) represents a pair-interaction
cascade, which is a valid simplification in three dimensions
but not in two dimensions.

one-half the largest are arbitrarily eliminated from
the dynamical equations. Divide the wavenumber
range into half-octave segments, so that all the triad
interactions left in the equations either connect
nearest-neighbor segments or are contained entirely
within a single segment. Fig. 1(a) illustrates the
segmentation and the way in which the triad inter-
actions connect nearest neighbors. In order for both
energy and squared vorticity to be conserved, the
net transfer by each triad interaction must either
be out of the middle wavenumber into both smallest
and largest wavenumbers, or vice versa. The arrows
in Fig. 1(a) are arbitrarily drawn for the ecase of
outflow from the middle wavenumber.

In three dimensions, the triad interactions can be
likened with some success to pair interactions
[Fig. 1(b)]. This is inadmissible in two dimensions
because pair interactions cannot transfer both energy
and squared vorticity conservatively between un-
equal wavenumbers.

There is no simple general relation between energy
and squared-vorticity transfer. Segment n in Iig.
1(a) is connected to the lower-wavenumber segment
n — 1 by two kinds of triad interactions: those
with a pair of wavenumbers in n and those with a
pair of wavenumbers in n — 1. The former transfer
squared vorticity and kinetic energy per unit mass
from n — 1 to n in ratios <2k, where k, is the
wavenumber which separates the segments. The
latter transfer these quantities in ratios >2k2. The
net rates of energy transfer per unit mass e and
squared-vorticity transfer » from below k, to above
k. depend on the signs and relative strengths of
the two kinds of interactions. For example, if the
interactions having a single wavenumber in n are
sufficiently strong compared to those having a single
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wavenumber in n — 1, it is possible for 5 to be
positive while simultaneously e is negative.

An important inference ean be made for similarity
cascades where a k-independent total contribution
to ¢ is made by all triads whose ratio of largest
to smallest wavenumber falls below some arbitrary
limit. The triple moments can be chosen to construct
such ranges at a given instant. Whether they are
self-preserving is another matter. By similarity, the
vorticity cascade rate must have the form 5 =
24k*¢ with A k-independent. But the rate itself
must be independent of k. Otherwise, the outflow
of squared vorticity from each segment would not
equal the inflow, which would violate vorticity con-
servation since with k-independent ¢ the rate-of-
change of excitation intensity is instantaneously
zero at each k. The only possible resolution is A = 0.
That is, the rate of squared-vorticity cascade is
identically zero in a similarity cascade where ¢ is
independent of k. This is corroborated by formal
analysis in Sec. 2.

The roles of energy and squared vorticity are
interchangeable in the preceding argument. If there
is a similarity range with k-independent contribu-
tion to n from the triad interactions whose ratio
of largest to smallest wavenumber falls within some
limit, then the contribution of those triads to e
must be identically zero within the range. This
means that two kinds of putative inertial-transfer
similarity ranges must be investigated: energy-trans-
fer and vorticity-transfer ranges. Kolmogorov’s as-
sumption that the energy spectrum E(k) depends
only on k and e leads to

E(k) = C& k" (1.1)

in two dimensions as well as in three. Here E(k) is
defined so that the mean kinetic energy per unit
mass s [ E(k) dk, and C is a constant whose value
can depend on the dimensionality. The alternate
assumption that the squared-vorticity spectrum
2k*E(k) depends on only 5 and k yields

E®) = ¢'9’k?, (1.2)

where €’ is another constant. In Sec. 2 it is shown
that (1.1) and (1.2) each satisfy both conservation
laws. Necessary conditions for the physical realiz-
ability of these similarity ranges are that the transfer
processes be sufficiently local in wavenumber when
all triads are admitted. This is discussed in Sec. 4
where it is noted that the —3 range fails by log-
arithmic factors to be sufficiently local and therefore
must be modified by factors with logarithmic &
dependence.



INERTIAL RANGES IN TWO-DIMENSIONAL

Both experiment and general statistical-mechani-
cal considerations indicate that the energy cascade
through the inertial range is from lower to higher
wavenumbers in three-dimensional turbulence. The
intensity at high wavenumbers is suppressed by
viscosity and it is natural to expect a net transfer
toward these wavenumbers from the strongly ex-
cited low wavenumbers. In two dimensions, the
vorticity constraint drastically changes matters. A
given triad interaction spreads the excitation in
wavenumber space if it gives a net flow out of the
middle wavenumber into the small and large wave-
numbers. The reverse flow concentrates the excita-
tion. Spreading of the excitation by the triad inter-
actions would seem to be the more plausible state
of affairs. Some supporting evidence is presented
in Sec. 3. If the triad interactions do spread the
excitation in wavenumber space, then it is proved
in Sec. 3 that the —4§ range yields ¢ < 0; that is,
‘the energy cascade is downward in wavenumber.
The —3 range under the same condition yields
vorticity cascade upward in wavenumber (y > 0).

If the directions of cascade are as just described,
the —3§ range could serve to remove energy from
an input range of wavenumbers down toward zero
wavenumber, while the —3 range could carry vortic-
ity up to the dissipation range. Thus both ranges
could exist simultaneously. This conjecture is dis-
cussed in Sec. 4.

2. FORMAL ANALYSIS OF THE SIMILARITY
RANGES
Let the flow be confined in a cyelic box of side D
and expand the velocity field in Fourier series so
that the incompressible Navier-Stokes equation
becomes

(8/8t + vk)u, (k)

= —ikn(8s; — kik;/E) Zk u;(Pua(q), (2.2

where v is the kinematic viscosity. In the limit
D — = (necessary for strict isotropy),

E(k) = akU(ky, Uk) = (D/2x)*(juk)]?), (2.2)

where ( ) denotes ensemble average and the mean
kinetic energy per unit mass is [§ E(k) dk. U(k)
measures the intensity of excitation per mode. The
energy balance equation is

(8/8t + 20k E(k) = T(k), (2.3)

Lo ‘
@) =5 [ [ 1k, 0 dpdg,

T(kvpv (]) = T(k, Qyp),
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where

Tk, p, ¢ = 2rk Im {(2r/]sin (p, Q))(D/27)*
(ke 855+ & 0in) (B, (D)1a(0)) )
(k=p+aq,k=1[klp=Iplq=lg),

Tk, p, @) = 0

(if k, p, ¢ cannot form the sides of a triangle).

To obtain (2.4) from (2.1), use

> /2n® [[

P

(2.4)

and

f dp = 27rf Isin (p, Q™" dp dq.

Detailed conservation of energy and squared vor-
ticity for each triad interaction is expressed by

Tk, p, 9 +T(p, g, k) +T(q, k,p) =0,
KTk, p, ¢ +pT(p, ¢, k) + ¢'T(g, k,p) = 0

which can be verified from (2.4) with the use of
incompressibility and plane-triangle identities. The
over-all conservation laws

2.5)

fo gy dk = o, f TRTG dE =0 (@6)

follows from (2.5). Conversely, (2.6) implies (2.5),
since (2.6) must hold for states in which only a
single triad of wavevectors have nonzero amplitudes
at an instant so that the instantaneous 7( ) vanishes
outside the triad. By (2.5),

T, ¢, K)/Tk,p, ) = (¢" — k)/®@ — ¢*),
(g, k, p)/T(p, ¢, k) = (* — p*) /(¢ — k),
Tk, p, 9/T(q, k,p) = " — /& — p*)

so that only one of the T'(, , ) associated with a given
triad interaction is linearly independent.

The mean rate of transfer of kinetic energy per
unit mass from wavenumbers below % to those above
isIl(k) = [ T(K') dk’. By (2.5),

1 o k k
wey =5 [ [ [ 16,5, 9 dpag

1 k o w
—s [ av [ [ 1000, 9 apag.
g k k

The first term on the right-hand side is the total
rate of gain in the range &’ > k due to triad inter-
actions with p, ¢ < %, while the second term is
the total rate of loss in the range ¥’ < k due to

2.7

(2.8)
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triads with p, ¢ > k. These two classes of triad inter-
actions are mutually exclusive and exhaust the
interactions which contribute to net energy transfer
across k. Similarly, the mean rate of transfer of
squared vorticity from below k to above k is

2w = [ oy aw [ [ 16,9, 0 dpdg

- f: (k)" b’ f: f: TG, p, 9 dp dg. (2.9)

Assume that the double and triple moments at
the instant considered satisfy the similarity laws

E(ak)/E() = ™",
T(ak, ap, ag)/T(k,p, ¢ = a~ """,

where a is an arbitrary scaling factor and n is so
far undetermined. The scaling of T'(k, p, ¢) in (2.10)
is the same as that of [E(k))*% % (which has the
same dimensions) and corresponds to a independence
of the appropriately defined triple-correlation co-
efficients of the distribution of the Fourier ampli-
tudes in the neighborhoods of the wavenumber
arguments.

Note that [¢ dp [} dq is equivalent to 2 [} dp [ dg
in the first term on the right-hand side of (2.8)
because of the symmetry of T(%’, p, ¢), while
{% dp [% dg in the second term is equivalent to
2 [%dp [5dg. Set p = k/u, ¢ = pv, ¥ = pw in
the first term and p = k/u, ¥’ = pv, ¢ = pw in
the second term. Note that [ du % dw is equivalent
to [ dw [% du in the first term and [ du [} dv is
equivalent to [} dv [; du in the second term. Use
(2.10) with @ = k/u, and finally use (2.7) to obtain

(2.10)

1 ©
(k) — k‘H")”f dvf dw Wi, w, )T(L, v, w),
. ? ! (2.11)
where

Wi, w,n) = — (v’ — 02)_1[(1 . f 2T dy

1
— W = 1) f u du] 2.12)
Repeating the procedure for Z(k) gives

200 = 2k<9-3")/2f dvf dw W, w, )T, v, w),
o ! (2.13)
where

W, w,n) = —(w* — o)™}
'[(1 _ v?)w2 f u(3n—11)/2 du
1

1
— (v - 1)1;2[ A du:‘. (2.14)

ROBERT H. KRAICHNAN

Equations (2.11) and (2.13) express (k) and Z (k)
as integrals over contributions from all the possible
shapes of the triangles formed by %/, p, ¢ in (2.8)
and (2.9). Since » < 1 and w > 1, each pair of
values v, w corresponds uniquely to a particular
triangle shape. By definition, T(1, v, w) is zero if
1, », w cannot form a triangle. The W factors give
the weights of the contributions of the different
triangle shapes and arise from integration over
triangle size.

If n = § (211) says that II(k) has a value e
which is independent of k. If n = 3, (2.13) gives
Z(k) a value n which is independent of k. By (2.12)
and (2.14),

Wi, v, §) = —(w° — )"
0 = ") In (w) + (»* = 1) In @],
W,@, w, 3) = 0,
W@, w,3) =0,
Wi, w, 3) = —(w" — o)™
(1 = Hw’ In (w) + (v’ — 1)0* In @)].

(2.15)

Thus, for each triangle shape individually, an n = §
similarity range yields a k-independent energy
cascade and identically-zero vorticity cascade, while
an n = 3 similarity range yields a k-independent
squared-vorticity cascade and identically-zero energy
cascade.

The scaling of E(k) has not been used in obtaining
these results. Therefore they hold also for more
general similarity ranges in which n is replaced by
n' # n in the first equation of (2.10).

3. CASCADE DIRECTIONS

T(1,»,w)in (2.11) and (2.13) represents a (signed)
flow into the middle wavenumber of the triad 1, v, w
since v < 1 and w > 1. It is shown in the Appendix
that W,(», w, §) > 0 and W,(v, w, 3) < 0. This
means that the contribution of each triangle shape
to € in the —§ range has the same sign as the flow
of excitation into the middle wavenumber, while
the contribution to % in the —3 range has the op-
posite sign. There is nothing in the conservation
properties by themselves to determine the sign of
T(1, v, w). Indeed, if a similarity range with a
given sign of T'(1, v, w) exists at an instant, then
a range with the opposite sign is produced by
reversing the velocity everywhere in space.

Physical interest attaches not to hypothetical
instantaneous similarity ranges but to the possi-
bility of quasisteady ranges which develop under
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the dynamical equations. In three dimensions, a
hint as to the direction of eascade in the —% range
comes from considering the absolute statistical equi-
librium which would obtain if viscosity were zero
and the system were truncated by removing all
degrees of freedom with k greater than some cutoff
wavenumber k.. from the dynamical equations. The
total kinetic energy per unit mass is & Dy |[u(k)|?,
and consequently the energy spectrum in the hypo-
thetical absolute equilibrium would have the equi-
partition form U(k) = const, or E(k) « k* The
—4% spectrum means that higher wavenumbers in
the inertial range are far below absolute equilibrium
with lower wavenumbers and it is plausible that
the dynamical interaction should act toward pro-
ducing equilibrium, a state ‘which never can be
reached because the visecous dissipation provides a
high-k sink. '
In two dimensions, the absolute equilibrium has
a more complicated structure because there are two
linearly independent quadratic constants of motion.
The general form of the equilibrium spectrum is

Uk) = 1/(8K* + o), 3.1

where 8 and « are constants. This is an equipartition
distribution'” for the constant of motion

Zk: (BF* + o) [u®)[.

The corresponding vorticity spectrum 27%k*U(k) in-
creases monotonically with %k so that most of the
vorticity in equilibrium is at wavenumbers ~kmn,x.
Since kn.x can be arbitrarily high, this suggests that
a tendency toward equilibrium in an actual physical
flow should involve an upward flow of vorticity and
therefore, by the conservation laws, a downward
flow of energy. Thus if the nonlinear interaction
does act toward producing equilibrium, 7'(1, v, w)
should be typically negative. A simpler and cruder
statement is that 7T(1, », w) should be negative
because that represents a statistically plausible
spreading of the excitation in wavenumber: out of
the middle wavenumber into the extremes.

Supporting evidence is provided by the initial
growth of energy transfer in turbulence whose initial
statistical distribution is Gaussian. The exact ex-
pression for this in two dimensions has been ob-
tained by Reid® and Ogura.® It is

[dT(kr pv Q)/dt]o = 27"2102 dkpa [zakm U(p) U(q)

= b U(@QUE) — biu,URUM@].  (3.2)

2 R, C. Tolman, Statistical Mechanics (Oxford University
Press, New York, 1938), p. 95.

RANGES IN TWO-DIMENSIONAL
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Here
bipe = 20k~ (xy — 2 + 22°),
20150 = bine + biaws
dipe = k/(1 — 2%}
= diameter of circumscribed circle, (3.3)

where z, y, z are the interior angles opposite the
triangle sides k, p, q. The coeflicients obey the
identities

Oipe = 0, Qipe = Qyor = dain) (3.4)
E*bive = P by, 2k Gipe = D bine T T bryay
whence

bisa/ipe = 204" = V" =)0 (g )
Dkan/ @iy = 2(0° — K)/ @ — O).

Now suppose

Ulp) = p/k)"UFK), Ul = (¢/k)7UK.  (3.6)

Equations (3.2)-(3.5) yield
[dT(k, p, ¢)/dtlo = 20°k" dipatina(Pg/ k") UE)]?
Al ='W = D/ = o)
= w1 — )/ =)}, B.7)

where v = p/k, w = ¢/k. It is shown in the Appendix
that when v < 1 and w > 1 the curly bracket
in (3.7)is >0if 0 < r < 2 and <0if r < O or
r > 2. Thus the initial growth of T'(k, p, ¢) gives
a positive flow into the middle wavenumber & if
r falls between the limits (0, 2) set by the extreme
absolute equilibrium distributions 8 = 0 and « = 0
in (3.1). If r is outside these limits, there is net
flow out of k. The —§ and —3 similarity ranges
correspond to r = § and r = 4, both of which
yield net outflow.

4. CONJECTURES ON QUASI-STEADY STATES

Are the formal —$% and —3 similarity ranges
asymptotic limits of states which can arise phys-
ically? Suppose that an infinite fluid is excited by
isotropic stirring forces confined to k& ~ k;, where
k; is a characteristic input wavenumber. Let the
stirring forces supply energy at a steady rate ¢ and
squared vorticity at a steady rate n ~ 2kZe. More
general ratios /¢ are interesting but will not be
considered here. The preceding analysis suggests
that if the input continues for a sufficiently long
time and the Reynolds number [E(k.)/k,)}/» is large
enough, a quasi-steady state may be set up in which
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an approximate —3 vorticity-transfer range carries
most of the squared-vorticity input up to k& > k,,
where it is dissipated by viscosity, while an approx-
imate —$% energy-transfer range carries most of the
energy input down toward zero wavenumber. The
—% range can be only quasi-steady because its lower
end keeps moving down to ever-lower wavenumbers,
a wavenumber k << k; being reached in a time
t ~ (ek®)™* according to energy conservation. As
t — o, the rate of transfer of squared vorticity
from &k ~ k; to lower wavenumbers decreases
steadily toward zero and the energy-transfer range
approaches the asymptotic —% dynamics ever more
closely.

The formal similarity ranges can represent asymp-
totic quasi-steady states only if the cascades are suffi-
ciently local in wavenumber. The questions involved
here are the same in two and three dimensions.
Local transfer in the —% range is plausible for the
reasons given by Kolmogorov. The transfer is as-
sociated with the distortion of the velocity field by
its own shear. The cascade II(k) through a given
wavenumber k£ in a —3§ range is expected to be
negligibly affected by wavenumbers <<k because the
integral [ kK (k) dk, which measures the mean-
square shear, converges at £ = 0. It is expected
to be negligibly affected by wavenumbers 3>k be-
cause the vorticity associated with those wave-
numbers fluctuates rapidly in space and time and
gives an effective shear across distances of order ™+
which is small compared to the shear associated with
the wavenumbers ~Fk.

On the other hand, the squared-vorticity spectrum
in the —3 range is < k™" so that each octave below
a given wavenumber % contributes the same amount
to the mean-square shear and the latter diverges
logarithmically toward small k. This means that
transfer in the —3 range is not local when all triad
interactions are admitted. It would seem plausible
that when this range occurs as a quasi-steady state
the power law is modified by logarithmic corrections.
Subject to such corrections, the —3 range can be
expected to extend up to k ~ k, = (/»*)}, at which
wavenumber the integrated rate of dissipation of
squared vorticity by viscosity reaches the order of
7. At higher wavenumbers, E(k) is expected to fall
off at a faster-than-algebraic rate.

The corresponding viscous dissipation of kinetic
energy is e ~ n/k2, which implies e; ~ e(k;/ks)’.
Thus €;/¢ — 0 if » — 0, in marked contrast to three-
dimensional turbulence where the energy loss be-
comes independent of » as » — 0. These considerations
imply that the entire energy input e is carried down

ROBERT H. KRAICHNAN

toward & = 0 without viscous loss in the limit of
infinite Reynolds number. The result is not directly
applicable to meteorological flows because the con-
straints which render the latter two-dimensional
break down at sufficiently high £.

The strict —4§ asymptotic inertial-range law is
not established beyond doubt in three-dimensional
flow, and the arguments for similarity ranges in two
dimensions are substantially less secure. The present
paper has demonstrated some elementary consis-
tency properties, but this does not show that the
similarity ranges actually exist.

One important difference between two and three
dimensions is the existence of an infinite number
of local inviseid constants of motion in the former:
the vorticity of each fluid element. This implies
that inertial forces alone cannot produce universal
statistical distributions in the similarity ranges, in-
dependent of the statistical distribution of the driv-
ing forces. In three dimensions there are also an
infinite number of inviscid constants of motion: the
circulations about all closed curves moving with
the fluid. However a given closed curve is expected
to stretch and migrate in complicated fashion
through the fluid with the passage of time so that
it is reasonable to expect that the circulation in-
variance does not impose effective constraints on
n-variate distribution functions for small n. If (1.1)
and (1.2) are realized in two dimensions (the latter
corrected by a logarithmic-type function of k/k;),
it is to be expected that C and €’ are not universal
constants but depend on the character of the driving
forces, whatever may be the situation in three dimen-
stons. A further point is that the nonlocalness of
transfer in the —3 range suggests in itself that
cascade there is not accompanied by degradation
of higher statistics in the fashion usually assumed
in a three-dimensional Kolmogorov cascade. This
is consistent with a picture of the transfer process
as a clumping-together and coalescence of similarly
signed vortices with the high-wavenumber excitation
confined principally to thin and infrequent shear
layers attached to the ever-larger eddies thus
formed.'**®

In connection with the sign of e in the —§ range,
it should be noted that a positive-e range extending
from the input wavenumbers up to the dissipation
range would be physically unrealizable. The viscous
dissipation would remove squared vorticity and
kinetic energy in a ratio 5,/¢; which would greatly
exceed the ratio at which these quantities were
cascaded, since the latter ratio goes to zero as the
asymptotic —#% structure is approached. Thus an
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upward-transfering —% range could not exist as
quasi-steady state. The inconsistency of such a range
has previously been demonstrated by Lee.”

Suppose now that the fluid is confined to a finite
domain and that the lowest wavenumber allowed
by the boundary conditions is ky << k;. The con-
jecture is offered here that after the —$§ range
reaches down to wavenumbers ~k, the downward
cascade from £, continues and the energy delivered
to the bottom of the range piles up in the mode k.
As the energy in k, rises sufficiently, modification
of the —4§ range toward absolute equilibrium is
expected, starting at the bottom and working up
to progressively larger wavenumbers.

Some support for the idea of energy piling up in
ko comes from considering the absolute equilibrium
ensembles (3.1). Suppose that the wavenumber range
is truncated from below at %, and from above at
a wavenumber k... Let the mean energy and mean-
square vorticity have specified values £ and @ =
2K3E. The ratio and signs of 8 and « in (3.1) depend
on the relative values of ko, k,, and k... In particular,

%(klznax - kg)/ln (kmax/ko)y
F(kmax =+ 5)-

For values of %k} between (4.1) and (4.2), « > 0,
B8 > 0. For &} less than (4.1), 8> 0, —Bk2 < a < 0.
If by — k¢ < ke, then 8k} + a < Bk and E(k)
has a sharp peak at & = k,. For k? greater than (4.2),
a >0, —a/kl,. < 8 < 0, and k’E(k) shows a
sharp peak at k = k. if kpax — ki <€ knux. The
values k, < kq and k, > ky,., are impossible. These
results are all for a continuous spectrum of allowed
wavenumbers. When the discreteness associated with
a finite fluid is taken into account, the sharp peak
in E(k) is modified so that the lowest mode k,
singlehandedly carries most of the total kinetic
energy if k; — k, is much less than the mode separa-
tion Ak of the low-lying degrees of freedom.

These results suggest that a piling up of energy
in ko under a steady input would represent a plausible
way for the wavenumbers <k, to seek an absolute
statistical equilibrium of the kind that corresponds
to very large E/Q. The phenomenon is analogous
to the Einstein-Bose condensation of a finite two-
dimensional quantum gas.

a=0 if k= 4.1)

B=0 if k¥ = (4.2)
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APPENDIX. PROOFS OF INEQUALITIES

Take w > 1,0 < v < 1 throughout this Appendix.
Let

I, w) = 1 — ) In(w) + (w* — 1) In @).

Then I(1, w) = 0, 8I(v, w)/d = (W* — 1)/v —
2 In (w), and

81, w)/3])=r = (w* — 1) — 2 In (w) = F(w).

Now F(1) = 0, dF(w)/dw = 2w — 2/w > 0.
Therefore w* — 1 > 2 In (w) and, since v~ > v,
it follows that 8I(v, w)/dv > 0, so that I(v, w) < 0.
This establishes W,(, w, ) > 0.

Let

J, w) = (1 — o)’ In (w) + (w° ~ 10" In @).
Then J(1, w) = 0,
8J (@, w)/d = (w* — [l + 2 @)] — 2vv’ In (w).

Now 2w’ In (w) > w* — land v > v 4+ 20 In (v),
the first inequality readily following upon differ-
entiation and the second following from In (») < O.
Therefore, dJ (v, w)/ov < 0, J(v, w) > 0, whence
W, w, 3) < 0.

Let

K@, w,n) =1~ — 1)/(w — ")
— w1 = )/(w* = ).
Then
K@, w,n)/dr = p'(w’ ~ 1) In @)
— w1 = ¢) In (W]/(w =),

considered as a function of r, is the sum of a positive
term of monotonically decreasing magnitude and a
negative term of monotonically increasing magni-
tude. Therefore it has just one zero, and it is positive
as r — — o, negative as r — + . Since K(v, w, r)
has zeroes at r = 0, r = 2, it follows that K (v, w, )
is>0for0 <r < 2and < Oforr < Qandr > 2.
This establishes the sign of the right-hand side
of (3.7).



