Lectures 12-13: Galaxy Modeling I-lI

The bulge distribution function (Kuijken & Dubinski 199 5)

King model bulge DF:

fouge(E) = { po(2nol) 2 exp[(VYo — W.)/0i]{exp[—(E — ¥.)/ci] — 1} if E <\I’c;
R 0 o - otherwise.

It depends on the three parameters: ¥ (the cutoff potential of the bulge), p» (approximately the central bulge density, ignoring
the effects of the DF truncation) and oy, which governs the velocity dispersion of the bulge component. ¥, is the gravitational
potential at the centre of the model.

The density of the bulge component in a potential ¥ is obtained by integrating its DF over all velocities, resulting in

prus() = py [ exf /(¥ — W) /o) — - 2eM ¥ (2008, W) /oF — S (% —0)/od) )|

where ¥ < ¥, and zero density elsewhere. erf(x) = 27~1/2 fox exp(—t?) dt is the usual error function.
In what follows, we will normally choose o1, < ¢y and ¥, < 0 to make the bulge more centrally condensed, and more radially
confined, than the halo (the latter has a cutoff at zero energy).



The halo distribution function  (Kuijken & Dubinski 1995)

ol B, L2) = { [(AL? + B)exp(—E/a3) + Cllexp(—E/a3) — 1] if E <0,
o 0 - otherwise.
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The halo DF has five free parameters: the potential well depth Wy, the velocity and density scales oo and p;, the halo core radius
R. and the flattening parameter g (the last three of these contained within the parameters A, B, and C). For convenience, we have

defined a characteristic halo radius R,
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it is roughly the radius at which the halo rotation curve, if continued at its R = 0 slope, would reach the value 2'/2¢y.
Arbitrary amounts of rotation can be added to the halo model by splitting the DF into parts with positive and negative L,.



The disc distribution function

In the construction of a realistic three-integral disc distribution function, the issue of a third integral cannot be evaded

the vertical and radial dispersions are different, which is not possible in any DF that depends

only on energy and angular momentum. The simplest approximate third integral in an axisymmetric disc system is the energy in
the vertical oscillations, E, = WY(R,z) — WY(R,0) + %vf It is quite well conserved along nearly circular orbits which have no large

radial or vertical excursions. We will use this quantity as third integral for the disc DF in our models.
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Here, E, = E — E, is the energy in planar motions, L, is the specific angular momentum about the axis of symmetry, R; and
E. are the radius and energy of a circular orbit with angular momentum L,, and Q and x are the circular and epicyclic frequencies

at radius R.. The density corresponding to this DF is obtained by integrating over the three velocity components. The vg- and
v,-integrals are straightforward, leaving the vg-integral:
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In the z = 0 plane, this expression reduces to pg(R) with fractional error O(or"/ v?), and to the same order the radial velocity
distribution is Gaussian with dispersion gr(R) The essence of the construction

the replacement of the radius R (which is not an integral of motion) by the epicyclic radius R; (which is a function of angular
momentum, and therefore is conserved along orbits). In warm discs, in whick excursions from circular orbits are small but not
negligible, this parametrization still provides a good starting point for constructing a DF with given radial density and velocity
dispersion profiles. The vertical structure of this disc is approximately isothermal, with the scale height set by the vertical velocity
dispersion a,(R;) and the vertical potential gradient.

[n any gravitational potential, we can adjust the ‘tilde’ functions p, o and o, to the desired disc characteristics.
we arrange for the disc density to be approximately radially exponential with scale length Rq and truncated at radius Rou:

. _ My —R/Ry ("—'Rout ) . Y,(R,z)
Pdisc(R,2) = - Rﬁzde erfc ST25R exp 0.867611,2 Rz |

Here My is a parameter which is close to the mass of the disc\unless the disc is severely truncated or the vertical structure is far from
sech?(z/zq). 6 Rou governs the sharpness of the truncation. Thy vertical density of these discs is constructed to depend exponentially
on the vertical potential ¥,(R,z) = ¥(R,z) — ¥(R,0), and to \{rop from the mid-plane value by a factor sech’(1) ~ e™*%76 at a
height of z4, similar to the behaviour of a constant-thickness isothermal sheet.

Given a total potential for the model, we then set the disc tilde functions in the disc DF as follows. In the limit of very small
velocity dispersions these functions are the actual mid-plane densit{ and velocity dispersions. We first choose the function or(R.),
approximately determining the radial velocity dispersion in the disc. § and g, are then iteratively adjusted so that the densities on

the mid-plane and at height z = z4 agree with those of equation



Calculation of the combined potential

The distribution functions for the various galaxy components all imply a unique volume density in a given potential. To construct

a self-gravitating model, we need to find the potential in which the combined density is also the one implied by Poisson’s equation,
1.€.

V2P(R,z) = 41G[pgisc(R, ¥, ) + Poutge(¥) + prato(R, P)).

We can generate an N-body realization of a galaxy by randomly sampling from the DFs for each component. The bulge and
the halo are straightforward to generate since the systems are nearly spherical and the velocity ellipsoids are nearly isotropic.

A particle’s position is first determined by sampling from

the density distribution. With this position, one can find the local maximum of the DF (at (vy,v,v,) = (0,0,0)) and then use the
acceptance-rejection technique to find a velocity. This involves selecting the three components of the velocity at random from a

velocity sphere with radius equal to the escape velocity. A random value, f1.,, of the DF is also chosen between 0 and the local

maximum. If f,, is less than the value of the DF at the chosen velocity then the velocity is accepted, otherwise it is rejected and
another attempt is made.



Softening

In practice, N-body simulations employ a softened form of gravity in order to suppress two-body relaxation. Our models, as
formulated above, will therefore not be in equilibrium under these modified forces. In principle, it is possible to solve a suitably
modified Poisson equation to allow for the softening: a simply way to do this would be to smooth the density with the appropriate
kernel before solving Poisson’s equation. While possible, this extra smoothing step can be computationally expensive, and we have

not implemented it in what follows. As will be seen, effects of this deficiency are small provided the smoothing length is smaller
than relevant length scales in the model.

MODELS OF THE MILKY WAY

In Table 1, we present the parameters for generating a sequence of four models, MW-A, B, C, and D, which have mass distributions

and rotation curves closely resembling those of the Milky Way within 5 scale radii. The disc and bulge mass distributions are the

same for each model with mass and extent of the halo increasing through the sequence (Table 2). The haloes are all chosen with
q = 1.0, though they are slightly squashed in the self-consistent galaxy models. Model MW-D has the halo with the largest mass
and has the most realistic representation of the outer Galaxy. These models were found by trial and error and renormalized so
that the flat portion of the rotation curve had V., ~ 1.0. The contributions to the radial acceleration in the solar neighbourhood
(R = 1.8Ry) from disc, bulge and halo are comparable in these models, as found by Kuijken & Gilmore (1989) in their study of
the local disc surface density. The natural units for length, velocity, and mass for these dimensionless models are Ry = 4.5 kpc,
V =220km s, and M = 5.1 x 101 M. The central velocity dispersion was chosen so that the observed radial velocity dispersion

of 42 km s~! at the solar radius (R = 1.8Ry) would be reproduced in the model. Figs 10 and 11 show the rotation curves out to 5
scale radii and 50 scale radii respectively.



Table 1. Galaxy model parameters.

Disc BULGE | | HALO

Model Mg Ry R z4  ORout p Ob Pb Y 09 q C R,
1mn 2 3G @ (5) 6 (7 (8 9 (@10 @11 (12) (13)

Sample 1.00 10 50 0.15 0.3 20 050 100 40 1.00 0.9 0.1 0.5
MW-A 087 10 50 0.10 0.5 23 071 145 46 1.00 1.0 0.1 0.8
MW-B 087 10 50 0.10 0.5 29 071 145 -5.2 096 1.0 0.1 0.8
MW-C 087 10 50 0.10 0.5 -3.7 071 145 -6.0 093 1.0 0.1 0.8
MW-D 087 10 50 0.10 0.5 -47 071 145 -7.0 092 1.0 0.1 0.8

(1) disc mass, (2) disc scale radius, (3) disc truncation radius, (4) disc scale height, (5) disc truncation width, (6)
bulge cutoff potential, (7) bulge velocity dispersion, (8) bulge central density, (9) halo central potential, (10) halo

velocity dispersion, (11) halo potential flattening, (12) halo concentration, C = R? /R2 (Kuijken & Dubinski 1994),
(13) characteristic halo radius.

Table 2. Galaxy model properties.

Disc BULGE HaLo

Model M oro Re/Rq M R./Rq M Re/Rq

1 @ (3) (4) (5) (6) (7)
Sample 094 050 5.6 029 17 96 449
MW-A 0.82 047 6.0 0.42 1.0 52 218
MW-B 082 047 6.0 0.43 1.0 96 301
MW-C 0.82 047 6.0 0.43 1.0 198 440
MW-D 0.82 047 6.0 0.43 1.0 370 728

(1) disc mass, (2) disc central radial velocity dispersion, oryg, (3) disc radial extent
(radius where density drops to zero) in disc scale lengths, (4) bulge mass, (5)
bulge radial extent in disc scale lengths, (6) halo mass, (7) halo radial extent in
disc scale lengths.
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Figure 10. The rotation curves for the Milky Way models, MW-A, B, C, and D, showing contributions from the disc, bulge and halo in the inner
regions within R < 5Ry.
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Figure 11. The rotation curves for the Milky Way models, MW-A, B, C, and D, showing contributions from the disc, bulge and halo in the outer
regions out to R = 50Ry.



GalactICS - A Galaxy Model Building Package
First do the following:

1. cd src

2. type 'make all' - This builds the programs.

Note that some of the code is in fortran 77, using lines longer than
72 characters in some cases. The —e flag in the makefile allow for
this for a Solaris f77 compiler. Other programs are written in

C. Again, the linking between these routines works on solaris systems,
but may need to be adjusted for other architectures. We have found
that linking using f77 instead of 1d will often automatically load the
appropriate libraries.

The graphics output by some of the programs (dbh, plotforce, diskdf,
plothalo) use the PGPLOT library. It can be found at
http://astro.caltech.edu/~tjp/pgplot/. Alternatively, remove all
calls to routines with names starting with "PG", as well as the
—lpgplot flag in the Makefile, and the programs should still run fine.
3. type 'make install' - This copies programs to the directory bin/
Now you're set.

Test that the programs run:

Go into directory Milky_Way/A

Type "make galaxy" - this should build all the files and a small
N-body galaxy - look at all of the in.x files to see the various

parameters that go into building the models. And read below for more
details.

The distribution contains the input files for Milky_Way/A through D,
the models that were used in Kuijken & Dubinski 1995.

John & Konrad



This package contains a set of programs and subroutines for building
galaxy

models including a disk, a bulge and halo. The details of the inner
workings of the code are described in Kuijken and Dubinski 1995,

There are 3 steps in building these models.

A. Calculating the potential.

B. Constructing a disk distribution function which will generate
the given potential.

C. And realizing each component with a self-consistent distribution of
particle orbits.

These actions are all performed by typing make galaxy', which runs a
succession of programs to end up with a set of N-body particle masses,
positions and velocities representing your model.

Descriptions of the individual steps:



A. The Potential

Program: dbh

Sample input file: in.dbh

Output: dbh.dat -
coefficients

and

mode 'l
h.dat -
b.dat -
mr.dat -
and halo

contains tabulated values of the harmonic

for the Legendre expansion of the density, potential
radial force at the specified radii for the entire
same as above for halo only

same as above for bulge only
gives mass and radial extent (or edge) of disk,bulge

Parameters in in.dbh:

y

-6.0 1.32 1 .1 0.8
y

.867 15 .1 .5

y

14.45 -3.7 .714
.01 5000

10

dbh.ps/ps

#yes we want a halo (or no)

#psi0@, vo, q, (rc/rk)”2, ra

#yes we want a disk (or no)

# d, R_d, R_outer, z_d, dR_trunc

#yes we want a bulge (or no)

#rho_b, psi_cut, sig_b

#delta_r, nr

#number of harmonics (even number)

# PGPLOT graphics device for the plots produced.

The program asks for parameters describing each of the components.

You

have the option of including any combination of components (though I

think

models without a halo won't work).



Halo Parameters:
psi®@ - central potential - the smaller (the more negative) this

parameter
the deeper the potential and the more extended the halo
vd - v0 = sqrt(2.0)*xsigma@ where sigma@® is the central velocity
dispersion. roughly the velocity where the halo rotation curve
peaks
q — an optional flattening parameter for the potential - generally

0.7 < g < 1.05 - g=1.0 will give a nearly spherical halo
(rc/rk)”2 - a core smoothing parameter - ratio of the core radius to
the

derived King radius for halo only models set this
to 1.0. For multicomponent models, this can be a smaller
number 0.0 to 0.1. I've found that with this
parameter=0.0 the
program can crash.
Ra - a scaling radius for the halo -
The halo Ra radius is the radius at which the halo rotation curve,
at its
initial slope ignoring cutoffs and the other components, reaches
vO.

Disk Parameters:
M_d - mass of the exponential disk ignoring cutoffs
R_d - exponential scale length
R_outer — outer radius where we begin to truncate the disk density
z_d - disk scale height assuming a sech™2(z/zd) vertical density law
dR_trunc - truncation width - the disk density smoothly drops to zero
in

the range R_outer < R < ~R_outer + 2xdR_trunc.

Bulge Parameters:

rho_b — bulge central density

psi_cut - bulge cut-off potential psi@ < psi_cut < 0.0
— energy cut-off for the bulge

sig b — bulge central potential



Potential parameters:

dr — the width of the radial bins used to calculate the
potential

nr — number of radial bins - initially a guess since we don't
know

the radial extent of the system
lmax — the largest value in the potential harmonic expansion - use
lmax=2 to get a quick look at the mass profile and lmax=10
for
the final calculation of the model

Creating a galaxy model from these parameters 1s sort of a black art
since the halo and bulge models are not parameterized in terms of
their mass profiles but rather properties of their distribution
functions. Changes in psi@, v@ etc. have weird but predictable
effects on the mass profile.

The halo is a flattened analogue of the King model so the

concentration

(R_tidal/R_core) is determined by the dimensionless central potential
$\psi_0/\sigma_0"2%$. The more negative the value the greater the
concentration. The parameters $R_a$ and $v_0%, affect the scaling of
the

halo mass profile.

The effect of different bulge parameters is more predictable.
Decreasing the

central velocity dispersion will create a more centrally concentrated
bulge and decreasing the psi cut off will truncate the bulge and
decrease

its total mass.



The disk is parameterized directly by its mass profile so its effect
on the
rotation curve is predictable ahead of time.

Hit and miss seems to be a good strategy for finding a suitable
profile.
Generate a model to lmax=2 and then view the resulting rotation curve

by typing

'make vr.dat'. This uses the program to generate the file vr.dat

which

tells you the contributions to the total rotation curve. Another

useful

file is 'mr.dat' which tells you the mass and radial extent of the
disk

bulge and halo.

The program plotforce will also generate the rotation curves for you
directly from the dbh.dat, b.dat and h.dat files.

The potential is determined iteratively: starting from an initial
guess at the potential, the density implied by the halo and bulge DFs
is calculated, the disk density added, and the potential of that mass
distribution is used as starting point for the next

iteration. Initially only the monopole (1=0) components are calculated
until the model converges, then one more harmonic is added per
iteration up to the maximum requested, and once all harmonics are
included the iterations are continued until the outer (tidal) radius
of the halo is unchanged between iterations. At each iterations plots
of the harmonic expansion coefficients are produced.

If the tidal radius reported is "outside grid" for a large number of
iterations, increase the number of radial bins or increase their
size. Sometimes infinite tidal radii are also reported: this happens
when the total mass of the model using the current guess for the
potential is insufficient to generate a potential well as deep as
requested. If this persists over many iterations, again increase the
number or size of the radial bins.



B. Disk distribution function

Program: getfreqs
Input files: dbh.dat h.dat b.dat
Output: freqdbh.dat

getfreqs tabulates various characteristic frequencies (omega, kappa
etc.)
in the equatorial plane for use by diskdf below.

Program: diskdf
Input files: freqdbh.dat dbh.dat in.diskdf
Output files: cordbh.dat toomre.dat

The program diskdf iteratively calculates the correction functions for
the disk distribution function. These functions are multiplicative
corrections to the surface density and vertical velocity dispersion
which appear to leading order in the Shu (1969) distribution
functions. See KD95 for details. It requires the sample parameters:

.47 1.0  #central radial vel. dispersion, exponential scale length of

sig_r~2
50 #number of radial intervals for correction functions
10 #number of iterations

diskdf.ps/ps # PGPLOT device for plot of correction functions.

It also outputs the Toomre Q as a function of radius in the file
toomre.dat.

C. Generating N-body realizations

Programs: gendisk, genbulge, genhalo
Input files: cordbh.dat dbh.dat

gendisk parameters:

4000 #number of particles

-1 #negative random integer seed

1 #l=yes we want to center 0=no we don't
dbh.dat #multipole expansion data file
genbulge parameters:

0.5 #streaming fraction

1000 #number of particles

-1 #negative integer seed

1 #center the data 1l=yes

dbh.dat #harmonics file

genhalo parameters:



0.5 #streaming fraction

6000 #number of particles
-1 #negative integer seed for random number generator
1 #1l=yes we want to center

dbh.dat #multipole expansion data file

The streaming fraction, f, sets the fraction of orbits with L_z > 0.
The remaining fraction, 1-f, have L_z<@. With this parameter you can
therefore vary the rotation of the bulge and the halo. f=0.5 refers
to the non-rotating case.

The N-body data are written to the stdout so the programs should be
run as:

gendisk < in.disk > disk
genbulge < in.bulge > bulge
genhalo < in.halo > halo

Format is ascii with data arranged as:
N_bodies time
m_1x 1y 1lz1wvx1vyl11lvz]l1l

m2 X 2y 2 z_2 VX_2 Vvy_2 vz_2
m 3 X 3Yy_3 2z 3vx_3vy_3vz_3

etc.

There is a shell script 'mergerv' which can merge the disk, bulge and
halo
files into a single N-body file.

The program tobinary turns the ascii files into a simple binary
format, listing first the number of particles, then all their masses,
then the time, and finally the x,y,z,vXx,vy,vz coordinates for each
particle.






