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• Hamiltonian mechanics

Recall that Hla ,p.tl --£
,
Pogo - Llg , it .tl is a

Legendre transform :

DH -

-

ftp./dot'qodpo-fIgodqo-f#dqoI-fIEdt=Ef-FzdqotEodpi) - 3¥ dt
We conclude

II. = - ¥. = - pi , Fitz -- Eo
as well as

dat -- 3¥ . - Et
Note :

lid It 04at -

- O
,
then dttldt = O

,
i. e .

H

is a constant of the motion .

liil To express H -

- HIq , p, t ) , we must invert
the relation Po = Ego -- Polat , it to obtain
'

go ( q , p ) . This requires that the Hessian ,

O'Po

Togo
=
OI

i 0.9-00501



be nonsingular . (of
.
inverse function theorem )

Iii il Define the rank 2n vector Is by

i. ⇒ si -ftp.nitiiiisii.sn
Then we may write Hamilton 's equations of motion as

÷÷¥:¥
. .

) ⇒ Ii -- ai Es; i s -- to.
Note that J is an antisymmetric rank 2n matrix .
The coordinates I 5.

,
. . .

,
5am ) = lot , , . . ., G.n , p, , .

-

, Pn }
define a 2h - dimensional phase space .

If 2H/2t=O
,

then the equations of motion specify a rank 2n

dynamical system , 5
;
= Vil 51 , where

Vil 3) = Jig. dtflg = velocity vector
in phase space

If 2H/dt to
,
define to = t and we have a rank[ 12h til DS with Bo =

'l
. and %.

= Vi ( so
,
5

, ,
. . .

,
32N ) .

]



- Incompressible flow in phase space
consider the (autonomous ) dynamical system

→

des

att
- tis,

where THE IRN
.
Consider now the evolution of a

compact region RHI , each point in which evolves according
to our DS

.

We have →

RHI -- tails lose Riot
µ,

Now define htt ) = vol RIH = fdyu ,
where

RHI

dµ=d3, - - - d 3N Jacobian

Then rtttdtizf.ii.MY#diulFIstiIttTX
where

µ3jftjf#D=. albinism = def Bitton
215, . . . . , En ) 23

j Itt

i. e . the determinant of the Jacobian . How

3; lttdt ) =3; It) t Vi 15ftHolt toldt 't

and therefore

BiYj¥ = si; t ii.
told t't



We now invoke the identity In def A = Tr 1nA

for
any matrix

A
,
which is easily demonstrated

when A is put in diagonal form .
Thus

,
with A = I TEH

det
. Htt EM ) -- expTr In (ITEM )

= exp Tr ftM -
'

z E'M 't . . . )
= l t E Tr M t

'

z E
' ( (TrMT - TirM

'

) t . . .

and with E -

- dt and M ;jl5 ) = }Y÷↳ ,
we have

rlttdtt = RHI t Idµ J .
J dt t Oldt ')

RHI

i. e . the rate of change of RHI -- Vol. RHI is given by

III.diner
where T.TV = .¥

,
3¥ -

- divergence of phase space velocity .

Alternate derivation : LetgEst ) be the density of
some collection of points in phase space . This must

satisfy the continuity equation,

Ft t J . Ipt! = 0

Integrate over a region R :

¥ fad,up = -{die 5. Htt = -fads in .pt



where BR is the boundary of R . It is perhaps
useful to think of p as a number or charge density
and j =p J as the corresponding current density . Then
if QR=£dµg , then

date -

- ⇒as
I- flux )

Note that the Leibniz rule says

3¥ t t - Tp t p -5 . i = O

and if F. V -- O
,
then

Dff = ( ft t t - J)p -

- o

We call 7ft the convective derivative , as it tells
us the rate of change ofp in a frame comoving
with the local velocity J . Thus, ← I

-

- T

off pl 5TH , t ) = Ft t I - Jp = 7ft
If we define

915, t = 01 = { 1
if EE Ro

o if I ¢ Ro

i. e . the "characteristic function
"

of Ro , then the



Scratch
.

-

Immiscible fluids (e.g .

oil and water ) :

•

← 915 ,then
.

⇒
'

¥" Hea Esi
/

. .

/ To

Platt --Po Pw

-

time

Two possible values ofgtx, t) : pw andfo
Volume of red region is preserved by dynamics .



ManiShing of the convective derivative says that

ylEH , t ) is a constant , hence the image RHI of
the set R lol =- Ro always has the same volume . In
other ward's

,
the phase space flow is incompressible .

Hamiltonian evolution is always incompressible :

J . J -- fi =# His. 3¥ ) -- I;fsg.

-

- o

- Poisson brackets

consider the time evolution of any
. function F (5HI , t ) .

We have

II -- II t III. Eat II. it
= Et t tf , HI

s = F)
where

27
,

A. BI -- fi
.

III. 337 - 35.371 -- E. Ji; 3¥. 3¥.
Ija

is the Poisson bracket of A and B . Properties
of the

.
PB :

• Antisymmetry : LA , B) = - {B,A)
• Bi linearity : for constant X ,

{Att B , C ) = IA ,
C) t X ( B , C }



• Associativity :

{ AB , C ) = Al B
,
C } t B {A , C }

A Ii
• Jacobi identity : C

←
B

{ A
,
1B

,
c) It (B ,

{C ,Al) t ( C , f.A , B ) ) = 0

We also have

° If LA ,HI = O and 2Alot =O
,
then DA Idt = O ,

i. e . A lot , p ) is a constant of the motion .

° If (A ,H ) = O and {13,1-1}=0 , then by the Jacobi

identity we have { IAB } , H ) -- O , and if 2.Alot -- o
and d.Blat = O for, more weakly, if 21A, 13312T = O),
then {A

,
B) Iq , p ) is a constant of the motion .

° It is easily established that

{ 9- o , 9-oil = { Po , poi ) = O ,
{ Go , poi ) -- Soo ,

- Any density function plot , p.tt must satisfy continuity, hence

⇒ = # t Ip , HI = o ⇒ If = - Ip, HI = t IH ,p )
Liouville Cfn .

Consider a distribution plot , p,t) =p (h . . . . . ,
hut where



each ha is conserved , i - e . ha -- half , p ) with

dot -

- { ¥g÷Iot ftp.po/--Ha.HI---o ..

Then p (hi , . . . , Ant is a stationary soI
' to Liouville 's

equation , i. e .

If = IH ,pf -- O

Examples :

• microcanonical distribution :

plot , p ) = 8 ( E -Hlf ,p)) /DIE )

where the density of states DIE) fixes the normalization

↳ndM 'll9- IP ) = I ⇒ DIE ) =¥dµ SIE - Hlq ,pl )
• ordinary canonical distribution :

plot , p ) = type, e
- B HIE , p )

with

ZIP) = Jdµ e- pH lot , pl
temperature1,122 n

for normalization . You
may

know D= Yk.BY.



- Aside : It is conventional to define the Liouvillean

operator in by [ . = i { H ,
. -1 , where • = anything .

Thus
,

If = Hip) = - i Ig
which bears a resemblance to the Schrodinger equation .

• Poincare' recurrence theorem g-IHI =3Htt

let go bae the "

t - advance mapping
"
which evolves

time by I , i. e . integrate the dynamical system
is
;
-

- Vi 151 forward by a time At = I . we assume

three conditions :

Cil g, is
invertible ( integrate DS backward by - E)

Iii ) go is volume - preserving (evolution is Hamiltonian)
liii ) accessible phase space volume is finite , e.g .

*
Jdm ⑦ (Et SE - Htt .pl ) ④(that .pl - E) = IF CE

'

) s
= DIE) SE

we will henceforth refer to the Hn - it - dimensional

hypersurface F defined by H I q.pl -- E as the
"

phase

space
" for Hamiltonian evolution .

Theorem : In any finite neighborhood
'

Roc T there

exists a point -5, which returns to Ro after finitely
many applications of gt .



Before proving the theorem , let's consider first its
remarkable consequences . Suppose we had a bottle of

perfume which we open at time t
-

- O in an evacuated

room . Initially all the perfume molecules are inside
the bottle

,
with CM positions I do ) and orientations

(for diatomic or polyatomic molecules ) Iola lol , Oa lol , ta lol) .
The initial conditions also specify the corresponding
velocities Txdot , Ya lol , Idol , I. lol , idol , idol ) . with
N polyatomic molecules , there are 6N coordinates and
GN velocities ⇒ 12N -dim t phase space . We choose Ro to

be a ball in this space of arbitrarily small but finite size .

The theorem says that there is an initial condition within

the ball Ro which will repeat after a finite time mt ,
where MEI

.
Thus

,
all the molecules return to the

bottle
,
and to within Ro of their initial configuration !

(However
,
this recurrence time may be much , much



greater than the age of the universe ! )
Proof : Assume the theorem fails and there is no

recurrence . We will prove this results in acontradiction
. Consider the union D= get Ro of all the

images of gf Ro ,
where he 10,1 , . . .

,
o ) . Suppose

all these images are disjoint. Then

roll# = E.ovollg! Ro ) --Erol !R. ) -- o

where we have used that gt is volume -preserving .

Since Vol (t ) c o, we contradict finite volume .
Therefore

the sets Ig! Rothe 27, o ) cannot be disjoint , i.e .
there

must exist two finite integers k and l with ht l such

that get Rong! Rot 0 .
Due to invert'bility , the inverse

map GI
'
exists

.
Assume no log that k > l and apply



the
map (g 't'll to this relation , obtaining

Ron gF Rot of
where m -- k - l > O . Now choose any point I, E RongF Ro .
Then I Igf. Im 5, E Ro lies within Ro and we have

proven the theorem !

Each of the three conditions - volume preservation , inverts
'

bilily ,
and finite phase space volume - are essential here , and

if
any one

doesn't hold the proof fails, rit .

•

go not volume
-preserving : E.g . damped oscillator with

it 2fix two X -- O . Then with -5 = (x
,
i ) we have

I
J -

- (i
,
-2pi -wi x ) and

J - T = 3 +
at-2mi-wix ) # x

Tx
= - 2ps

Thus phase space volume5 collapse : SHH = e-
2Btr lol .

The set D can be of finite volume even if all the

gt Ro are distinct , because

E.or hit -- Ee
-"Mr

.

-

- ,?÷p so
The phase space orbits all spiral into the origin
and will not be recurrent. Note go is invertible

and phase space is of finite total volume .



• gt not invertible : Let g : IR → lo , i ) with

glxl = frack ) , the fractional part of X . Acting
on sets of volume (length ) less than one , this

map is volume preserving , but obviously g is not
invertible

,
so the proof fails .

• T not finite : Let g
: B → H2 with glx) = xta .

Clearly this is invertible and volume- preserving ,
but not recurrent

.

- Kac ring model tecture.tt/Nov#

Can a system exhibit both equilibration and recurrence ?
Formally no, but practically yes .

We noted how for

the case of the open perfume bottle, the recurrence
time could be vastly longer than age of the universe .
A nice example due to Mark Kac shows how both

equilibration and recurrence can be present , on different
but accessible time scales

.

Consider N spins T or t on

a ring which evolve

by rotating clockwise .

There are thus N sites

and N links
. Along

F of these links are


