
Lecture 5 (Oct . 191
-

Two body central force problem :

L -- T- U =

'

z
M
, -92 # tzmzrz ' - U ( tr ,

- Tal )

① Change to CM and relative coordinates :

I =

Mir
. tmzrz
-

M
, tmz

l
F = I

,
- Fz

Invert to obtain :

i. =Etm7÷mr ,
i
.

-

-
E - MILE →

substitute in Ltr
. Fair, "

decoupled
viii. i. Eh 'ziirttziur" - UH (Emma:&:&,where M -

- m
, tmz (total mass )

µ
= mmim.my ( reduced mass )

NB : m
,
um

,
⇒ µ = m

,
- Amit - - -

M
,
= My = M ⇒ gu = I m

② Integrate cm ears of motion :

oat Fi -- Epi ⇒ min -
- o

, F=f¥ --Mi -- const
R'Itt -- pilot t Ecole



<

⑤ Relative coordinate problem

↳et =
'

z pi
EZ - U ( r )

continuous rotational symmetry ⇒
I = T xp = µ × conserved

Since F. I = O
,
all motion Flt ) is confined

to the plane perpendicular to t . Choose
LD polar coordinates (r , do ) in this plane .

The relative coordinate Lagrangian is then

L rel. = {pili 't r2 ol
'

) - U (r )

since the coordinate do is cyclic , the angular
momentum l -- gurl if is conserved .

And since

242T = O , H = i.¥ + It 0¥ - L is conserved .

Find

H = E = Tt U = tapir 't {prig ' - Ucr )
= tzpir ' t Uefflr )

where

Uefflrl = I
2µm
t U (r )

we can now solve to obtain radial motion rft ) ,
and then obtain to by integrating To = e/µr4t ) .



Specifically , from Eru '
'

zgrift Ueffirl , we have
-

i -- II = ± If (E - Uetfkl ) ⇒

dt -- ± IF der
II:&:: -

- E-E-uff.am
Integrate to get th .

In principle this is possible .

This introduces a constant of integration ro = rIt -- o )
Next

,
with r Itt in hand , integrate

io=d¥=÷. ⇒ dot -- IIIa,
to get Htt .

This introduces a second constant, ¢o=¢lt=o) .
Now we have the complete motion of the system ,

{ rtt ) , loftt ) with four constants of integration : E
,
l
, ro , too .

Recall that the three - dimensional motion is confined to

a plane perpendicular to I , so its direction t
accounts for two additional constants of integration .

Overall
,
there are 12 such constants :

Ilo ) 1×3 )
,
Ilo ) 1×31

, Ere , , T (x 3) , ro ,
do

which is expected given too coupled second order

equations of motion for the six quantities 5 ,
Tz .



• Geometric equation of the orbit ④,_okThe 2nd order ODE for rtt ) is

µ =
- Offset = µl÷, - U 't ' t.io

Since l -- µr2dd¥ is conserved ,

¥=¥ :*
impossible !

Therefore

in # dad⇐Ehr -

- ta - uh
÷. :* . . I:#ii.÷. - in

⇒ 9¥. - Elif -- r + 'Item
where Fir) = - U 't ) is the radial force . Using
energy conservation , we can write

E = Izmir 't Uefflrl
= ftp.loffl?tUetfk1

to obtain
dr

dot -- ±¥i¥#u



It is sometimes convenient to write the equation
r
"
- Elr 't

' =M FH tr (r ' -7¥ etc .)

in terms of the variable s = Yr
.
Then

d 's
*
t s = -Iz Els - ' I

suppose for example that 441 = ro e
" ¢
,
i.e .

a

logarithmic spiral . Then Scott -- Soe
- Kol

,
and

(K 't t ) s = -F FIS
- ' )

S2

Fls - ' I = - fallen) S3 ⇐ Hr ) = -FI(K'ti ) ¥3
This corresponds to a potential U (r ) = - ÷ kid
with

* = fine - Y
"

Thus
,
the general shape of the orbit for l

"

# C > O is

a
,
b C- ID l spiral orbit for

2 real const.
rt 4) = aek÷-koT a -- o or b = 0

When pic > l
'

> O ,
let I = fl- Metz)

""

,
in which case

A- C- Cl t orbit is unbound, with
rich =-

t complex Aei Idf #*e-III 4101 = when

const . Kol = (nth)TI - arg A



• Almost circular orbits

A circular orbit rltl = ro requires U'efflro ) = O .

For a homogeneous attractive potential UH = k r "

with k > o
,
no
,
we have :

"" it:÷÷÷÷÷÷÷÷o
ro = (lyryuk )

For Uk ) = - k r- n with k > o
, n

> o
,
we have

u ""

STABLE UNSTABLE

Vet = fly - tf ,
U'est = -µ tnrkni

no = (nettle )
'kn - 21

If we write r -- rot y with 1h14 ro , then

µ "n= - Vetter.ly ⇒
'

n' = - way with w2=IfI



We can also use

1¥. - El:¥T=te÷FH tr
and linear ite in y

with re ro t y . This yields

n
" =4First ro)t4Me First " F'Kot - 1) y +044

= -MVet't tot-OTT
r- r
.

.

- yand hence

y
" loll = -pig lol )

with p
'
=3 - Me F'hot =3 - 44¥!

The solution is n
apo

7141 = no cos to - soil
- no #

peri
where yo and too set the initial conditions . Note that

4141 = + yo for of = Ion = 2nF '
n + So .

This is called

apoapsis (farthest point) . The condition forperiapsisidosestpoint) occurs for ¢ = dnt Tip
' '

. The difference,

Alo = low .
- Ion - 2T = 2h45 ' - t )

is the angle by which the apsides line . peri apsis and apoapsis )
pieces during each cycle . If Bol , the apsides- advance,
(come sooner ) while if Bd the apsides recede (later) .



If fo = Iq C- IQ is a rational number, then the

orbit is closed and will retrace itself every of
revolutions .

- Example : U Irl = - k r
- × with k so

,
n > o . Then

Veith = -¥, t ⇒ r
.
.

. ftp.j""
" '

at l X

we then have p
'
= 3 - odyhn.FI/ro=2 - d .

These

orbits are stable only for a<2 .

For a> 2 the

circular orbit is unstable and Htt either falls

to the force center or escapes to infinity . In
either case , for a> 2 the orbit is unbourid .

( r → a o- r→ o whence Pr-sa) . In order that

small perturbations about a stable orbit be
closed ,

we must have a = 2- (plot 12.
- Fun fact : If we consider nonlinear perturbations
of a circular orbit

, the only values of B which

yield a closed orbit are p' = 1 ( Kepler problem , 4=1)
and p

'
= 4 ( harmonic oscillator

,
a = - 2) . See § 14.7 .

I
.

- Rea 'd § 4.3 :
"

Precession in a Soluble Model
"

yz
F = - her + Era ⇒ r lol ) = ftp.o , p - ft t%)
⇐ it 2E%et¥ = eccentricity ,

E = energy (see Eg 4.31



• The Kepler Problem : Uk ) = - Kr
,
k -
- Gmm, = GMM

Effective potential and phase curves :

Uetf#
E --

'

zpir't Uefft )t¥.

÷
>

,iii. :*.. .

n.

From Ffr ) = - k r-2
,
we have

,
with 5- yr ,

s
"lol ) t s = - etfyz Ffs - 'I = Metz = const .

Thus , slot ) = taek - Coos lol - lool , i. e .

r lol ) = Feisal
with ro = ÷ and C- = Cro .

Since r (41=44+2tin) ,
the bound Kepler orbits (circles , ellipses) are closed .



- Laplace - Runge - Lenz vector

Define It = Tox I -guk F ( rn = II, = unit vector)
Then :

III. Exit EEE- sun. time
R

= - YI, xlpirxir ) - guk # t guk
interlude : oixlbxc ) -- Tota . it

,
te IIb

II. = - MI. Eth - i D-µhtmk -

- o

- I
ri

Thus
,
It is a conserved vector lying in the plane

of the motion
. If we assume apoapsis occurs at ¢ -- do ,

It . I = - Arcos ( ol - do ) = l '-gukr
all - E ')and rllol =µha÷¢IoI = ¥14451

where
c- =¥ ,

all - E 't =L
Hk

From I ' = 2µL
' (Et M2k÷ ) , we find

A = -2¥ ,
E 2=1 + LEI

guk 2



One can now show ( & 4.4.31 that Keplerian orbits
are conic sections .

--

a

rich = ,
a -- -EE ,

e'= it

Note E
'
> 0 since Eo = - 13¥ is the energy of

the (stable) circular orbit .

• circle : E = - M2÷z ,
E -- O , a = ,÷ = ro

• ellipse : - taek s E so ,
octal , semimajor

axis length a = -tf , semiminor b -- aIII
• parabola : E = O

,
E = I , all - E

') =
,

= ro

focus lies at force center

• hyperbola : E > 0
,
E > 1 , of = loot cos- '(yet ⇒ 441=0

Force center is closest (attractive ) or furthest

✓ -
(repulsive ) focus .

1-( A = l 12in (Et M¥2) = pike

peria

CA -- o for circles,

\ hyper parabola



• Period of bound Kepler orbits (circles, ellipses )
Since l --pride =2µ& ,

where DE = tzrldlo
is the differential area enclosed , the period is

I = Atf E = IMTIAZVitt
l=

Now E.
2
= 1+2El

'
area of ellipse/circle

guy
and a = - Eze ,

so eliminating E ⇒

E = - tea ⇒ I - E
'
-

-

K
pika

and we conclude I = 2T(µ a 31k )
'"
= 2h (a 31GM )

"Z

since. k -- Gm,Mz = GMM . Equivalently ,

off = ¥72 = const
.

For planets orbiting the sun , a¥ = (It 7÷4?÷=Gg?
Note mp/Mo. E 10-3 even for Jupiter.

• Escape velocity : threshold for energy is E
-
- O

E -

- O =

'ziuuesdrl - aim
-

⇒ Uesclr) = /2GMr
On earth 's surface , g = 9z?÷ ⇒ Vesa

, e-
= 12912T
= 11 . 2 km/s



• Satellites and spacecraft
Recall : I = (RE th P

"
(msee ME )

LEO =

"

Low Earth Orbit
"

( h LL RE = 6.37×10 'm )

so find I o
= 1.4 hr .

Problem : hay ! 2,00 km , ha = 7200 km ④^
-2 (Re thp t Re tha )

= 10071 km

Isat = (alRE ) "' . I
o
= 2.65 hr

• Read §§ 4.5 and 4 . 6

Lecture 6 (Oct . 21 )
-

• A rigid body is a collection of point particles whose
separations tri - Tj I are all fixed in magnitude . Six
independent coordinates are required to specify completely
the position and orientation of a rigid body .

For example ,
the location of the first particle (it is specified by Ti ,
which is three coordinates .

The second ljl is then specified

by a direction unit vector in :; , which requires two
additional coordinates (polar and azimuthal angle! . Finally,
a third particle , k , is then fixed by its angle relative
to the in ij axis .

Thus , six generalized coordinates in
all are required .



Usually , one specifics three CM coordinates E , and
three orientational coordinates (e.g . the Euler angles ) .
The equations of motion are then

I =?. mir: ,
I = E 't l external force )

[ = ?mirin; ,
I = Text (external torque )

• Inertia tensor

suppose a point within a rigid body is fixed .
This eliminates

the translational motion . If we measure distances
relative to this fixed point, then in an inertial frame ,

IF = hixr ; J -- angular velocity
The kinetic energy is then

T -- I ?mild )
'
-
-

'

z ? lhixrleluxril
=

'

z ? Milkier.? - II. Fit) =
'
z Iapwawp

where Iap is the inertia tensor
,

3×3 real →
Iap = Emil -48 - ri ri B ) Idiscrete )

symmetric = fddrcgirl ( f 's -Mr B) (continuous)matric ⇒ 6 Dof

Diagonal elements of Iap are moments of inertia , while
off -diagonal elements are products of inertia .


