
• Satellites and spacecraft
Recall : I = (RE th P

"
(msee ME )

LEO =

"

Low Earth Orbit
"

( h LL RE = 6.37×10 'm )

so find I o
= 1.4 hr .

Problem : hay ! 2,00 km , ha = 7200 km ④^
-2 (Re thp t Re tha )

= 10071 km

Isat = (alRE ) "' . I
o
= 2.65 hr

• Read §§ 4.5 and 4 . 6

Lecture 6 (Oct . 21 )
-

• A rigid body is a collection of point particles whose
separations tri - Tj I are all fixed in magnitude . Six
independent coordinates are required to specify completely
the position and orientation of a rigid body .

For example ,
the location of the first particle (it is specified by Ti ,
which is three coordinates .

The second ljl is then specified

by a direction unit vector in :; , which requires two
additional coordinates (polar and azimuthal angle! . Finally,
a third particle , k , is then fixed by its angle relative
to the in ij axis .

Thus , six generalized coordinates in
all are required .



Usually , one specifics three CM coordinates E , and
three orientational coordinates (e.g. the Euler angles ) .
The equations of motion are then

I =?. mir: ,
is = E 't l external force )

[ = ?mirin; ,
I = Text (external torque )

• Inertia tensor

suppose a point within a rigid body is fixed .
This eliminates

the translational motion . If we measure distances

; relative to this fixed point, then in an inertial frame ,
r

'

•. II = hixr ; J -- angular velocity
The kinetic energy is then

T -- I ? mi (date )
'
-
-

'

z ? lhixrleluxril
=

'

z ? Milkier.? - II. Fit) I { Iapwawp
where Iap is the inertia tensor

,

3×3 real →
Iap = Emil -48 - ri ri B ) Idiscrete )

symmetric = fddrcgirl ( f 's -Mr B) (continuous)matrix ⇒ 6 Dof

Diagonal elements of Iap are moments of inertia , while
off -diagonal elements are products of inertia .



• coordinate transformations

{ d. , Ez , I 31 = orthonormal basis ; Ea . Ep = Sap
Orthogonal basis transformation :

'

e'
a
= Rapier ; end . Ep = Ra, Rpv Indo -- KTRK; Sap

µ
Let
'

A = A en
,
be a vector with A. the components .

Then

A- = A" e'
µ
= A" Rap 'da ⇒ A

'd
= Ra
,
AM
-

coordinate transformation

How does the inertia tensor transform ?

Itap -- foPri p '(r 'll f '
'
g - ri ar 'B ]

= Idk pls If 8N - Ray rt Rpur
")

= Rqu In RIP , since p't 't =pHI

i. e . I
'
= RI is the transformation rule for vectors ,

and I ' = RIRT the rule for tensors . For scalars
,

s
'
= s

.
Note Tv is a rector

,
as is I

,
but

T =L wa Iap Wp is a scalar

Note : T = '

z R 'Tµ W'p Iap Rtpv W'u =L win (Raa Iap Rtu)w!
=

'

z
w
'

, I'm w
'
u = 'T

' l Tu = RT I ' I



- The case of no fixed point
If there is no fixed point , choose CM as instantaneous
origin for the body - fixed frame :

I =L ? Miri = fu fd3rpKIf
M = ?M ; = folkpH = total mass

Then

T -

- LM
2

tf Iap W"WP

La = Egpy 'MRBpit t IapWP

• Parallel axis theorem

suppose we have Iap in a body - fixed frame .

Now shift the origin from 0 to I . A mass at

position Fi is located at
'

r
:
- It as a result. Thus ,

I plot I = & Milli? - 2T . Ii toil 8dB- tri - da ) Ir?-doll
.

If I; in the original frame is Wrt the CM
,

then § Miri = O , and we have

Iapld'T = Iip t Mtd's - dad. B !

Since we are only translating the origin, the coordinate
axes remain parallel . Hence this result is known as the
parallel axis theorem .



Example : uniform cylinder of radius a , height L
x n

-€
.

With origin at CM , T2- z
'

i r

tf:* Ii:
: ': a:÷:::*. .

I : i
-

t =

'

zMal since M -- taLp

Iff
'I''It Displace origin to surface : d-= af

Distances ranges from o to so
,
with

a
'
= (so cosapt (so Sino - a)2
-

= Sf t al - 2asos in a ⇒ So -- Za Sind

Thus
,
I

'

zz =p L! a Ida's
" "

53
= Fay .

4a4 . of a sink
-

I
'
= Z MAZ 3h18

2- t

Using parallel axis theorem : OI = af

I '
zz

= Iff t m IoT
'
Stt - dtdt)

=
'

z Ma
'
t Ma
'
= Z Ma 2 V

No need for trigonometry or integration !
• Read & 8. 3.1 ( inertia. tensor for right triangle !



• Planar mass distributions :

If pH ,y , z ) = ok, y l 8ft ) , then I×z=Iyz=O
Furthermore

,

I
*

= fdxfdy ok ,y )yl
Iyy = fdxfdyolx ,yl x ' I = '

Ixy = - fdxfdyolxiytxy
and Izz = Ixx t Iyy . Only 3 parameters .

• Principal axes of inertia
In general , if you have a symmetric matrix and

you diagonalize it , good things will happen .
'

Recall that basis transformation e' '
a
= Rapier entails

the transformation rules for vectors and tensors,
I ' = RI

,
I

'

= RI RT

i. e . A
'd

= Rap AM ,
I :p = Rape Iµv RIP

Since I = IT is symmetric , we can find a new orthonormal
basis tent with respect to which I

'
is diagonal . Dropping

the primes , we have that in a diagonal basis ,
I = diag II , , I z , Iz ) , I = (I,wi i Iz Wiz , Is Ws )
T = I wa Iap up =

'
z
(I , wi t Iz wi t Is Wj)



How to diagonalize Iap (or any real symmetric matrix) :

1) Find the diagonal elements of I ', which are the
eigenvalues of I , by solving PIX ) - det IX.I - I 1=-0 .

If Iap is of rank n
,
PA ) is a polynomial in X

of order n .

2) For each eigenvalue Xa (a -- I , . . .

,
n ) ,

solve the n

equations
E. Int: = x. 4:

where 4% is the pith component of the ath eigenvector Ia.
Since Ha -I - It is degenerate , the above equations
are linearly dependent, and we may solve for thej

in - it ratios 149149 . . . .

,
49149 ) .

3) Since Iap is real and symmetric , its eigenfunctions
corresponding to distinct eigenvalues are necessarily
orthogonal . Eigenvectors corresponding to degenerate
eigenvalues may be chosen to be orthogonal via the Gram -
Schmidt procedure . Finally , the eigenvectors are normalized,
thus status , =Eilat; = Sab

4) The matrix elements of R are then given by Rap. -- Yu ,
i. e. the ath row of R is the eigenvector 4,9 , which
is the ath column of RT.



5) The eigenvectors are complete and orthonormal .

completeness : { 4441 = Ray Rau = (RTR )
,au
= 8µV

orthogonality : q 4%44 = Rap Rbµ = (RRT lab = Sab

see 8.4 Eqns .
8.32 - 8.38 for an example

• Euler 's equations
we choose our coordinate axes such that Iap is

diagonal . Such a choice { Ea } are called principal
axes of inertia . We further choose the origin
to be located at the cm .

Thus

in -

- Yy ';) ,
I -- f E ,

i -- Io -

-

\ O 0

The equations of motion are then ← in body - fixed frame

in 't -- III.erm -

- III.I.⇒ taxi
→in inertial frame

= Iii t in x (II )

Here we have used the important relation

that inertia , - fifth.⇒ taxi .

valid for any vector A
.

Let's derive this important result .



- Interlude : accelerated coordinate systems ( § 7. il
consider an inertial frame with fixed coordinate

axes Eµ , and a rotating frame with axes Ej ,
where µ E {I , . . . , d} . The two frames share a
common origin which is fixed within the body .

Any vector
'

A may be written as

it -- EAmen -
- EA'm din

Thus in the inertial frame I 'alt ) -- Rattler
K¥1

inert ..
-

-E.tt#ein=.Ed:teiutEaind:÷
-

* is is ldtldtl body
what is denialdt ? Since the basis I Eis is complete ,
we may expand

dentin -- E draw 'du ⇐ draw = die 'm . Eu

But d te'm . idol = de 'pie
'

ut
'e'
p
. dei '

v
-

- oldpeut drupe = O
-

Spu

Thus
, draw is a real , antisymmetric, infinitesimal dxdmatrix.



A d xd real antisymmetric matrix has IdId -i)
independent entries . For d =3 , we may. write

draw = ftp.uodro
and we define Wo = droldt . This yields

dneiu
It

= at x e'fu
and we have

Htt
....

-

- faith
.;
exit

is valid for any vector
I
. We may then write

¥4
inertia ,

- Ftl
..;
I ×

so long as we apply this to vectors only . Applied to
the vector in itself

,
this yields Toinertial = body .

Applied twice , Coriolis centrifugal

Ittner
,

DIET
. .
II. xittawxdithiidjixiwxai

This formula contains the description of centrifugal
and Coriolis forces

,
which you can read

about in chapter 7
of the notes

.
But for now, back to rigid body dynamics: . .



Euler 's equations along body - fixed principal axes :

ldatttinertialddttlbotiywxi -- Iii tixIII ) -- n' ext
component by component,
I

,
in

,
= (Iz - Iz ) wz wz t N,

"t

Iz wz = (Iz -I , ) w, w, t Nzext
Is in, = (I , -Iz ) w , wz t Ngext

These three equations are coupled and nonlinear. The
components Nyt must be evaluated along the body -
fixed principal axes . The simplest case is when there
is no net external torque , which is the case when
a body moves in free space , but also in a uniform
gravitational field :

Tve't = §, in; x Imig ) = &. Miri) ×5
In a body fixed frame with the origin at the CM

,

the term in parentheses vanishes, hence text -- O , and

iii.EIwaws , in -- I Hw. . is win



- Torque - free symmetric tops :

Suppose I , = Iz 't Is .
Then in, = O ,

hence w, = const.

The remaining two equations are

in
,
= (FIFI ) wswz , is = wow ,

hence in , = - R wz ,
iz -- tr w , , with D= Iws .

Thus ,

W, Itt -- we Cosfrtts ) , Walt) -- Wisin (Rtt8) , W, Itt = w,
where w

,
and 8 are constants of integration .

Therefore , in the body - fixed frame, HI precesses
about I , f- Eb;D'T ) with frequency r at an angle
X -- tan

- ' (wetWs ) . For the earth , this is called the
Chandler wobble

,
and X - 6×10

- 7rad
, meaning

that the north pole moves by about four meters

during the wobble . Again for earth , IIs - IiHI, = Fos ,
hence the precession period is predicted to be
about 305 days . IN fact, the period of the Chandler
wobble is about 14 ninths

,
which is a substantial

discrepancy , attributed to the mechanical properties
of the earth (elasticity. and fluidity ) : the earth isn't solid !



- Asymmetric tops
In principal , we may invoke energy and angular
Momentum conservation ,

E =
'

z I ,wit
'

z Izwit
'

z Iz Wf
[ ' = Itwit Iiwit I5w5

and obtain W
, and wz in terms of us . Then

is -- (IIIT ) wins
becomes a nonlinear first order ODE . Using
Lagranges method and extremity the energy at
fixed 4

,
we obtain the following :

| conditions / energy E lextremumdassih.ca/m.IisIj.cIn-
-
-

123 213 132 312 231 321

MAX SP MAX SP MIN MINt:÷:÷÷i÷÷÷÷:÷÷÷¥TF¥
.

MIN MIN SP MAX SP MAX
--

we can then analyze the nonlinear ODE is -

- flag ) .
This is somewhat unpleasant.



We can however easily linearite the equations of
motion about a known solution

. For example ,
W
,
= w2=0 and wz = Wo is a solution of Euler 's

equations . Let us then write To =woejtSw . Then

8.in
,
= two Swat 018wzswsl

Sir. twoswit 0184891 id

863 = 0 t 018W, 8Wz ) Max

m in

Thus
,
we have Sii

,
= -Nsw

,
and 8iiz= -£8wz with

r2 =
(Iz -Ii ) (Iz - Iz)

IWE

The solution is 8W
,
Itt = C- cos (rt th ) , in which casehe

swam -

- wi
' Sai -- f¥;F¥÷j)"

'

esinlrttsl.

If RE IB
,
Sw

,
Itt and 8Walt ) are harmonic functions

with period 2hIn .
This is the case when Is > Ii

,
z

or I
,
LI

, ,z .

But it Iz is in the middle
,
ie

.

I
,
s Iz L Iz or Iz e Iz LI , , then NCO ,

DE IIB
,

and the behavior is exponential, ire .
WTH -- word

,
is unstable .



- Rea'd §. 8.5 . I (example problem for Euler 's equations )
• Euler 's angles

The dimension of the orthogonalgroup O (n ) is

dim Out = 'znln - it

Thus in dimension n -- 2 , a rotation is specified by
a single parameter, i - e . the planar angle . In

a =3 dimensions , we require three parameters in.
order to specify a general rotation , i. e . a
general orientation of an object with respect to
some fiducial orientation .

These three parameters
are often taken to be Euler's angles lol , 0,4) .

- General rotation matrix 1214,0 , 41 C- 5013) :

start with an orthonormal triad (8,51 . We first
rotate by ¢ about the Ego axis :

ein - Rullo, ester ; riot . = f's:O:& single 8
, )

The next step is to rotate by 0 about E; :

'

e'in -- Rado ,Eiler ; No, e: I -- too 5%9%0%1



Constructing a

general rotation
in 5013) using
Euler 's angles
lol , o , 4)

Finally , rotate by 4 about Ej :

Erie,
"

: = Raul 4. Este : i RH,
E's t -- ¥144 9:14 §)

Multiply the three matrices to get Eµ=Rµu 14,0 , 4) Eg with

... . :::::c::i::::: ::::*::c::::c::: ::::::)sinO sing - sin 0 cos¢ cos0

I

see the figure at the top of this page .



Next we relate the components of hi to the derivatives
{ it , O , ill .. This is accomplished by writing

in = toe tie, tiled
where (consult previous figure )

Elo -- sin O sin 48 , t sin0cos4Eat cos083 = to
3

Eo = cos 48 ,
- sin 4 Ez (" line of nodes ")

'

e y
= I

3

We may now read off

w
,
= I - E

,
= ⑥ sinO sin 4 t ⑥ cost

wz = hi - Ez = & sin O cost - O sin 4
W
z
= Tv . Ez = & cos O t I'

Note that :

I← precession ,
i * nutation

,
I← axial rotation

In spinning tops , axial rotation is sufficiently fast that
it appears to us as a blur. We can , however, discern

precession and nutation .

The rotational kinetic energy
is then

Trot =
'

z I , lies in Osi nut to cost )
'

t
'IIz lotsin 0 cost - O

'

sin 41't I Iz (IOcoso till



The canonical momenta are then

p¢=fqI , Po
-

- ÷ , py
-

- II
and the angular momentum vector is
I -- pyreftp.eotpyey

Note that we don't need to specify the reference
frame when writing I - only for time -derivatives
of vectors must we specify inertial or body - fixed frame .
- Torque - free symmetric top : Text = 0
Let I

,
= Iz .

Then

T =
'
z
I

, 107 sin2042 ) t
'

z Iz koso I tip

The potential is 0=0 so the Lagrangian is L -- T .

Since 4 and 4 are cyclic in L , their momenta are conserved :

pot --¥f = I , sin ' O Io t Iz cos O (cos O
'

lot ill

put = f¥ = Iz (coso It
'

4)

Since p y = I
, wz , we have wz = const. , as we

have

already derived from Euler 's equations .



Let's solve for the motion
.
Note that I is

conserved in the inertial frame , i. e , (E)inertial = O .

We choose Ej = I¢ = I . From Eg . hey = cosO , we
have p y = I . hey = Leos 0 and conservation ofpy
thus entails 0=0 . From

Po = I , 8 = IF = (I , cosoil -Pt ) since if

and 0=0
, we

conclude if = put II, cos O . Now , from

the equation for py , we have

it = III
,

- cosoil -- (E
,

- E.) Px = (IIIT)w,
as we had derived from Euler 's equations .

• Symmetric top with one point fixed :

Now gravity exerts a torque . The Lagrangian is

[ = 'z
I

, (
'oh sin2042 ) t IIs @so I tip- Mgl cos 0

where l is the distance from the fixed point
to the CM . Let us now analyze the motion of
this system. .



The dreidl ( Yid . 8473
,

Heb . 112
' TO = spinner )

is a symmetric top .
Fourfold rotational symmetry
is good enough to guarantee
I
,
= Iz and I ,2=-0 .

We have that 4 and 4 are still cyclic , so

Pol --¥f = I , sin ' O & t Iz cos O (cos O
'

lot ill

put = 0¥ = Iz (coso I t 't )

are again conserved . Thus ,

Io = Pot - pit cosO

ITE ,

I = PIT - lplo-pycosolcosOI.sin 20

Energy E = Ttu is conserved :

E --
'

II , it t t.PL?Yinc:sooIttIIItMglcoso
-

effective potential Ueftlol



Ueff 101

Again : #
E --

'

II , it t t.IE?Yinc:sooIttIIItMglcoso
Straightforward analysis (see lecture notes , ch . 8 , p .

18)

single
minimum at Oo lo , Ti ) , and'll that:÷:÷÷÷÷÷÷÷÷÷÷÷. . :¥÷÷÷÷¥
I
,
°O° = - Ue't 101

yields two turning points, which we label Oa and Ob ,

satisfying E = Ueff (Oa
,
b ) . Now we have already

derived the result

To = Pol -Px cosO
-

I
,
sin 20

Thus we conclude that if py cosObe pop spy cosOa then

it will change sign when 0 reaches Ot -- cos
- ' (pollpull .

This leads to two types of motion , as shown below
Note that E

,
= si no sin die. - sin 0 cos4802 t cos 0 IS .

do : precession
O : notation

4 : axial angle



Scratch Cqv play ) --pl- y,x )
a a a⇒- Iap

-

- fdxfdyplx.gl/r-28M-rarB)
-a

-a
-a-

a a

ix. yl → I - y, x ) → f- x, -y) , ly , - x ) → ( x,y)
Til 2 Tl 317/2 21T

a a

Ixx = fdxfdyplxiyl y
'
= dx:{day 'ply '. - x ') x "

-a - a

× = - y
'

, y
Ix

' t

a a
141%94,1×1×2=Iyy

Ixy = - fdxfdyplx.gl xy play )
- a

-a

t

-fix:[apply 'M 'll- Y '"
s .#dsymmetyt

(
zu

- Ixyt.e.name#.IxxcIyy② (isotropic)
exam - ce.nu -- cnn.eu.. g. .!.EE"


