
 

8-24 
    
P1s r   4

a0
3 r 2e2r a0  for hydrogen ground state, 

  
U r    ke2

r
 is potential energy (    Z  1) 

 

    

U  U r P1 s r dr
0



  4ke2

a0
3

re2r a0 dr
0





 
4ke2

a0
3

a0

2







2

ze z dz
0



 where z 
2r

a0


ke2

a0

 2 13.6 eV   27.2 eV.

 

 

 To find   K , we note that 
    
K  U  E  

ke2

2a0
 13.6 eV  so, 

  
K 

ke2

a0
 13.6 eV . 

 
8-25 The most probable distance is the value of r which maximizes the radial probability density 

    P r   rR r 2
. Since   P r  is largest where  rR r  reaches its maximum, we look for the most 

probable distance by setting 
 

d rR r  
dr

 equal to zero, using the functions   R r  from Table 8.4. 

For clarity, we measure distances in bohrs, so that 
  

r

a0
 becomes simply r, etc. Then for the 2s 

state of hydrogen, the condition for a maximum is  
 

    
0 

d

dr
2r  r 2 er 2  2 2r 

1

2
2r  r2 







er 2  

 
 or     0  4  6r  r 2 . There are two solutions, which may be found by completing the square to 

get     0  r  3 2  5  or     r  3  5 bohrs . Of these   r  3  5  5.236a0  gives the largest value of 

  P r , and so is the most probable distance. For the 2p state of hydrogen, a similar analysis 

gives 
    
0 

d

dr
r 2er 2  2r 

1

2
r 2







er 2  with the obvious roots   r  0  (a minimum) and   r  4  (a 

maximum). Thus, the most probable distance for the 2p state is   r  4a0 , in agreement with the 
simple Bohr model. 

 
8-26 The probabilities are found by integrating the radial probability density for each state, P(r), 

from     r  0  to     r  4a0 . For the 2s state we find from Table 8.4 (with   Z  1  for hydrogen) 

    
P2 s r   rR2s r 2

 8a0 1 r

a0







2

2 
r

a0







2

er a 0  and 
  
P  8a0 1 r

a0







2

2 
r

a0







2

er a0 dr
0

4a 0

 . 

Changing variables from r to 
  
z 

r

a0
 gives 

  
P  81 4z 2 4z 3  z 4 ez dz

0

4

 . Repeated 

integration by parts gives 
 

 

    

P  81  4z 2 4z3  z 4  8z 12z 2 4z3  8 24z  12z2  24  24z  24  ez

0

4

 81  64  96 104 72  24 e4 8  0.176
 

 



 For the 2p state of hydrogen 
    
P2 p r   rR2p r 

2
 24a0 1 r

a0







4

er a0  and 

    
P  24a0 1 r

a0







4

er a0 dr
0

4a 0

  241 z 4ez dz
0

4

 . Again integrating by parts, we get 

    
P  241 z 4 4z 3 12z 2  24z  24 ez

0

4
 241 824e4  24  0.371 . The probability for the 

2s electron is much smaller, suggesting that this electron spends more of its time in the outer 
regions of the atom. This is in accord with classical physics, where the electron in a lower 
angular momentum state is described by orbits more elliptic in shape. 

 

8-29 To find   r  we first compute 
    
r2  using the radial probability density for the 1s state of 

hydrogen: 
    
P1s r   4

a0
3 r 2e2r a0 . Then 

  
r2  r 2P1s r dr

0



 
4

a0
3 r 4e2r a0 dr

0



 . With 
    
z 

2r

a0
, this is 

    
r2 

4

a0
3

a0

2







5

z 4ez dz
0



 . The integral on the right is (see Example 8.9) 
  

z 4ez dz
0



 4! so that 

    
r2 

4

a0
3

a0

2







5

4!  3a0
2  and 

    
r  r2  r

2 1 2
 3a0

2  1.5a0 2 1 2

0.866a0 . Since   r  is an 

appreciable fraction of the average distance, the whereabouts of the electron are largely 
unknown in this case. 

 

8-30 The averages   r  and 
    
r2  are found by weighting the probability density for this state 

    
P1s r   4

Z

a0
3







r 2e2Zr a0  with r and   r

2 , respectively, in the integral from   r  0  to   r   : 

 

    

r  rP1s r dr
0



 4
Z

a0
3









 r3e2Zr a0 dr

0





r2  r 2P1s r dr
0



  4
Z

a0
3







r 4e2rZ a0 dr

0




 

 

 Substituting 
    
z 

2Zr

a0
 gives 

 

    

r  4
Z

a0








3
a0

2Z







4

z3e z dz
0



 
3!

4

a0

Z








3

2

a0

Z







r2  4
Z

a0








3
a0

2Z







5

z 4ez dz
0



 
4!

8

a0

Z







2

 3
a0

Z







2
 

 

 and 
    
r  r2  r

2 1 2


a0

Z
3 

9

4






1 2

0.866
a0

Z





. The momentum uncertainty is deduced 

from the average potential energy 
 

    
U  kZe2 1

r
P1 s r dr

0



  4kZe 2 Z

a0







3

re2Zr a0

0



  4kZe 2 Z

a0







3
a0

2Z







2

 
k Ze 2

a0
. 



 

 Then, since 
    
E  

k Ze 2

2a0
 for the 1s level, and 

  
a0 

2

meke2 , we obtain  

 

    
p2 2me K 2me E  U  2mek Ze 2

2a0


Z

a0







2

. 

 

 With     p 0  from symmetry, we get 
  
p  p2 1 2


Z

a0
 and   rp  0.866  for any Z, 

consistent with the uncertainty principle. 
9-1     E  2BB  hf  

 
    
2 9.27  1024  J T 0.35 T   6.63  1034  Js f  so   f  9.79 109  Hz  

 

9-4 (a) 3d subshell      l  2  ml  2, 1, 0, 1, 2  and 
  
ms  

1

2
 for each   ml  

 

n 
l  ml   ms  

3 2 –2 –1/2 
3 2 –2 +1/2 
3 2 –1 –1/2 
3 2 –1 +1/2 
3 2 0 –1/2 
3 2 0 +1/2 
3 2 1 –1/2 
3 2 1 +1/2 
3 2 2 –1/2 
3 2 2 +1/2 

 
(b) 3p subshell: for a p state,   l 1 . Thus  ml  can take on values  l  to l, or –1, 0, 1. For each 

  ml ,   ms  can be 
  


1

2
. 

 

n 
l  ml   ms  

3 1 –1 –1/2 
3 1 –1 +1/2 
3 1 0 –1/2 
3 1 0 +1/2 
3 1 1 –1/2 
3 1 1 +1/2 

 
9-6 The exiting beams differ in the spin orientation of the outermost atomic electron. The energy 

difference derives from the magnetic energy of this spin in the applied field B: 
 

      
U   s B  g

e

2m





SzB  gBBms . 

 



 With     g 2  for electrons, the energy difference between the up spin 
  
ms 

1

2





 and down spin 

ms  
1

2





 orientations is  

 

    
U  gBB  2  9.273  1024  J T 0.5 T   9.273 1024  J  5.80  105  eV . 

9-17 From Equation 8.9 we have 
    
E 

2 2

2mL2







n1

2  n2
2  n3

2  
 

 

    

E 
1.054 1034 2  2 n1

2  n2
2  n3

2 
2 9.11  1031 2  1010 2

 1.5 1018  J n1
2  n2

2  n3
2  9.4 eV  n1

2  n2
2  n3

2  

 
(a) 2 electrons per state. The lowest states have  
 

    
n1

2  n2
2  n3

2  1, 1, 1  E111  9.4 eV  12  12 12  eV  28.2 eV . 

 
 For 

    
n1

2  n2
2  n3

2  1, 1, 2  or  1, 2, 1  or (2, 1, 1), 

 

    

E112  E121 E211  9.4 eV  12 12  22  56.4 eV

Emin  2  E111 E112 E121 E211  2 28.2  3  56.4   398.4 eV
 

 
(b) All 8 particles go into the 

  
n1

2  n2
2  n3

2  1, 1, 1  state, so  

 

  Emin  8  E111 225.6 eV . 

9-21 (a)     1s2 2s2 2p4  
 

(b) For the two 1s electrons,   n 1 ,   l  0 ,   ml 0 , 
  
ms  

1

2
. 

 For the two 2s electrons,   n  2 ,   l  0 ,   ml 0 , 
  
ms  

1

2
. 

 For the four 2p electrons,   n  2 ,   l 1 ,   ml  1,  0 ,  1 , 
  
ms  

1

2
. 



9-24 

Na

Ato
m

3s 3p 4s
Electr on

Co nfig urat ion

[Ne]3s1

Mg [Ne]3s2

Al [Ne]3s23p1

Si [Ne]3s23p2

P [Ne]3s23p3

S [Ne]3s23p4

Cl [Ne]3s23p5

Ar [Ne]3s23p6

K [Ar]4s1

 
 
 The 3s subshell is energetically lower and so fills before the 3p. According to Hund’s rule, 

electrons prefer to align their spins so long as the exclusion principle can be satisfied. 
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9-25 A typical ionization energy is 8 eV. For internal energy to ionize most of the atoms would 

require =
3 8 eV
2 Bk T : 

( )
( )

−

−

× ×
=

×

19

23

2 8 1.60 10  J
~

3 1.38 10  J K
T  between 410  K  and 510  K . 

 

9-26 (a) From Equation 9.26, the energy of a αK  photon is [ ] ( )
α

−
=

2 2

0

3 1K
2 4
ke ZE
a

. Writing 

=E hf  and noting that =
2

0
13.6 eV

2
ke
a

, this relation may be solved for the photon 

frequency f to get ( ) ( )− 
=  

 

213.6 eV 3 1
4

Zf
h

. Taking the square root of this last 

equation gives the desired result: ( ) ( ) ( )= −
3 13.6 eV 1
4

f Z
h

. 

 
(b) According to part (a), the plot of f  against Z should have unit intercept and slope 

( )( ) ( )

( )−= = ×
×

1 28
15

3 13.6 eV 3 13.6 eV 0.496 10  Hz
4 4 1.14 10  eV sh

. From Figure 9.18 we find 

data points on the αK  line [in the form ( ),  f Z ] at (22, 45) and (8, 17). From this we 

obtain the slope −
= ×

−
1 2822 8 0.50 10  Hz

45 17
. Thus, the empirical line fitting the αK  

data is ( )= −0.5f Z I , where I is the intercept. Using (22, 45) or (8, 17) for ( ),  f Z  

in this equation gives the experimental value for the intercept, = 1I . 
 
(c) Since = 1I , the L shell electron does see a nuclear charge of − 1Z . 

 
9-27 (a) The αL  photon can be thought of as arising from the = 3n  to = 2n  transition in a 

one-electron atom with an effective nuclear charge. The M electron making the 
transition is shielded by the remaining L shell electrons (5) and the innermost K shell 
electrons (2), leaving an effective nuclear charge of − 7Z . Thus, the energy of the αL  

photon should be [ ] ( ) ( ) ( )
α

− − −
= + +

2 2 22 2 2

2 2
0 0 0

7 7 5 7L
2 2 2 363 2
ke Z ke Z ke ZE
a a a

. Writing 

=E hf  and noting that =
2

0
13.6 eV

2
ke
a

 this relation may be solved for the photon 

frequency f. Taking the square root of the resulting equation gives 

( ) ( )= −
5 13.6 eV 7

36
f Z

h
. 

 




