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2
2
After rearrangement, the Schrédinger equation is Z_zé} = (h_T) {U(x) - E}l]} (x) with
x
1

U(x) = Emw x> for the quantum oscillator. Differentiating v (x) = Cxe ™ gives

2

dy

i SN -ax
e 20 xy (x) +C
and
: 2axd 2
d—q’g __Laxy —2ay(x) —(2(1 x)Ce_O”C =(2a x)zlp(x) —6a1(x).
dx dx
2 2m mw\’ 2mE
Therefore, for 1 () to be a solution requires (2a x) -60 = 'y {U(x) - E} = (T) X — real
Equating coefficients of like terms gives 2a = m7w and 6a = 2mk o= TZ—: and
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3a h2 3 “2a x*
E= =5 fiw . The normalization integral is 1 = fll]} |zdx 2C? fx e dx where

the second step follows from the symmetry of the 1ntegrand about x = 0. Identifying a

1\ (x| (3207
with 2a in the integral of Problem 6-32 gives 1=2C (8 )(2—) or C =L .
a

At its limits of vibration x ==A the classical oscillator has all its energy in potential form:
12

J

1 E
E=Ema)2A2 or A=( 2)

1
. If the energy is quantized as E,, = (n + —) hiw , then the
mm 2

12
2n +1)h
corresponding amplitudes are A, = [%} .

1/4
The probability density for this case is h}o(x)lz = Cje™ with Cy = (%) and a = m_;)
For the calculation of the average position (x) = f xllpo(x)lz dx we note that the integrand

is an odd function, so that the integral over the negative half-axis x <0 exactly cancels

that over the positive half-axis (x > 0), leaving (x) =0. For the calculation of (x2 ),
however, the integrand x2|1p0|2 is symmetric, and the two half-axes contribute equally,
giving

12

2 2OO 2 —ax? 2 1 )(ﬂ)
=2C dx =2Cy| — || —
(x ) Og'x e X 0(4{1 "
12
Substituting for Cy and a gives (x2 ) ==

2o =g 4 e= ()P ] <535
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(a) Since there is no preference for motion in the leftward sense vs. the rightward
sense, a particle would spend equal time moving left as moving right, suggesting

() -0.

(b) To find (p,zc) we express the average energy as the sum of its kinetic and
pr (#2)
potential energy contributions: {E) = ﬁ +{U) = o T ). But energy is sharp

1
in the oscillator ground state, so that (E ) =E) = Ehw . Furthermore, remembering

1 55 . . 2 h
that U(x) = o mw”x for the quantum oscillator, and using (x ) =5 from
1 1
Problem 6-32, gives (LI) =5 mwz(x2 ) -1 hw . Then
2 hw) mhw
=2m(Ey -(U)) =2m| —| =——
NP2 (b \ P
Ap, =( i ~ Wx ) = (_)
(©) p=\(2)- 6. >
PN b\ P
From Problems 6-32 and 6-33, we have Ax=|—— and Ap, =| ——| . Thus,
2mw 2
12 12
h mh h
AxAp, = ( —) (_{u) =— for the oscillator ground state. This is the minimum
2maw 2 2

uncertainty product permitted by the uncertainty principle, and is realized only for the
ground state of the quantum oscillator.

n\ d
Applying the momentum operator [px ]= (T) o to each of the candidate functions

yields

(a) [px ]{Asin(kx)} = ( ?) k{Acos(kx)}
(b) [px ]{Asin(kx) —Acos(kx)} = (;:—,)k{Acos(kx) + Asin(kx)}

(0) [px ]{A cos(kx) + iA sin(kx)} = ( ?—) k{—A sin(kx) + iA Cos(kx)}

ik(x -a) _ (E) . ik(x —a)
(d) [px ]{e } : zk{e }
In case (c), the result is a multiple of the original function, since

~Asin (kx) + iAcos (kx) =i {A cos(kx) + iA sin(kx)} .
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n
The multiple is (T) (ik) =k and is the eigenvalue. Likewise for (d), the operation [px ]

returns the original function with the multiplier 7k. Thus, (c) and (d) are eigenfunctions
of [px ] with eigenvalue 7k, whereas (a) and (b) are not eigenfunctions of this operator.

(a)

(b)

(0

(a)

The reflection coefficient is the ratio of the reflected intensity to the incident
2

[2)(1- )

—— . But

a2)a+if

|1—i|2 =(1-i)(1-i) =(1—i)(1+i)=|1+z'|2 =2,s0 that R=1 in this case.

wave intensity, or R =

To the left of the step the particle is free. The solutions to Schrédinger’s equation

12
2mE
with wavenumber k = ( ;; ) . To the right of the step U(x) =U and

ikx

+
are e

2 2

the equation is d—i’g = Z—T(U —E)y(x). With 3 (x) =™, we find d_@é} = k*y(x),
dx h dx

12

12 1/2

so that k= MJE)}

2
. Substituting k = (hlz)

E
shows that [M} =1

S
I
N |~

938.28 MeV
For 10 MeV protons, E =10 MeV and m = —ze' Using
c

h =197.3 MeV fm/c(1 fm =107 m), we find
n 197.3 MeV fmfc

(2mE)? ~ [(2)(938.28 Mev/c?)(10 MeV)Tp

1
5=%= =144 fm .

To the left of the step the particle is free with kinetic energy E and corresponding

2mE\'
wavenumber kg = 2 :

p(x) =A™ + Be ™" x<0

To the right of the step the kinetic energy is reduced to E -U and the
2m(E-U) }1’ ?

wavenumber is now k; = [ 2

p(x) = Ce™ + De™*  x20
d
with D =0 for waves incident on the step from the left. At x=0 both y and d_ljc}

must be continuous: zp(O) =A+B=C

dy| .
d—i’L _ ik (A=B) =ik,C.
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(b) Eliminating C gives A+B = & (A-B) or A(k—l - 1) = B(ﬁ + 1) . Thus,
ky ky ka

B[ (klks ‘1)2 -k
R_lz’z_(kl/lwn2 (ky + k)

(c) As E—=U, k, =0,and R—1, T — 0 (no transmission), in agreement with the
result for any energy E <U.For E = ®, j =k, and R—0, T — 1 (perfect

transmission) suggesting correctly that very energetic particles do not see the step
and so are unaffected by it.

With E =25MeV and U =20 MeV, the ratio of wavenumber is

12 12 W - 2
v-(w) =9 e

=5 =2.236 . Then from Problem 7-2 R = >
25-20 (Jg + 1)
and T =1- R=0.854. Thus, 14.6% of the incoming particles would be reflected and 85.4%

would be transmitted. For electrons with the same energy, the transparency and
reflectivity of the step are unchanged.

=0.146

The reflection coefficient for this case is given in Problem 7-2 as

(kifk 1) (K =K,)

_Elz ) (il +1)° (b +k)

The wavenumbers are those for electrons with kinetic energies E = 54.0 eV and
E-U=540eV+100eV=640¢eV:

5 —( L )1/2 —(54 ev)llz 09186
k \E-U) \e64ev) '
2
(09186 -1) 5. , . :
Then, R=—————5=1.80x10" is the fraction of the incident beam that is reflected
(0918 6+1)
at the boundary.
(a) The transmission probability according to Equation 7.9 is
12
1 u’ 2m(U -E
TR [4E(U_E)}sinh2aL with a = ( - ) .For E <<U, we find
2mur’ 1
(a L)2 ~ n;_lz >>1 by hypothesis. Thus, we may write sinha L = 5 e“". Also
1 u u
U-E~U,giving ﬁ ~1+ (E)eza s ( ﬁ) ¢*"anda probability for
16E
transmission P =T(E) = (?)e_za k

(b) Numerical Estimates: (h =1.055x10~>* ]s)
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1) For m =9.11x10™" kg, U -E =160x102"J, L=10"" m;

1/2
o= 2m(uh- E) =512x10° m™" and e >*% =0.90

2) For m =9.11x10™" kg, U -E =160x10" J, L=10"" m;
a=512x10° m™" and e** =0.36

3) For m =6.7 x10™ kg, U -E =1.60x10"" J, L=10"° m;
a=44%x10"m™ and e " =041

4) For m =8 kg, U-E=1], L=0.02m; a =3.8x10>* m™ and

2a L -1.5x10 3
e =e =0

Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or about
3755.8 MeV/ ¢* , the first approximation to the decay length & is

7 1973 MeV fm/c
@mu)* [2(3755.8 Mev/)(30 Mev) |

~=0.4156 fm .

This gives an effective width for the (infinite) well of R+ =9.415 6 fm, and a ground
2(197.3 MeV fm/c)’

2(3755.8 MeV/2)(9.415 6 fm)’
U -E =29.42 MeV and a new decay length

state energy E; = =0.577 MeV . From this E we calculate

197.3 MeV fm/c
5= 7 =04197 fm.

[2(3755.8 Mev/*)(2942 MeV)]

This, in turn, increases the effective well width to 9.419 7 fm and lowers the ground state
energy to E; = 0.576 MeV. Since our estimate for E has changed by only 0.001 MeV, we
may be content with this value. With a kinetic energy of E;, the alpha particle in the

1/2
2E
ground state has speed v, = (71)

21 20576 MeV)

(37558 Mev/c?)

ejected with a kinetic energy of 4.05 MeV, the alpha particle must have been preformed
in an excited state of the nuclear well, not the ground state.

=0.017 5c.In order to be

The collision frequency fis the reciprocal of the transit time for the alpha particle crossing

the nucleus, or f = 20_R' where v is the speed of the alpha. Now v is found from the

kinetic energy which, inside the nucleus, is not the total energy E but the difference E -U
between the total energy and the potential energy representing the bottom of the nuclear
well. At the nuclear radius R =9 fm, the Coulomb energy is

KZe)(2e) (ke \(ay (529 x10* fm
— =zzL " )( 13) =2(88)(27.2 ev)k—9 — J=28.14 MeV .

From this we conclude that U = -1.86 MeV to give a nuclear barrier of 30 MeV overall.
Thus an alpha with E =4.05 MeV has kinetic energy 4.05 +1.86 =5.91 MeV inside the
nucleus. Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or

about 3755.8 MeV/ ¢® this kinetic energy represents a speed



2(591)

2F
0= (2
m

"

37558 MeV/c?

12

=0.056¢.





