6-24 After rearrangement, the Schrödinger equation is $\frac{d^2\psi}{dx^2} = \left(\frac{2m}{\hbar^2}\right) \{U(x) - E\} \psi(x)$ with $U(x) = \frac{1}{2} m\omega^2 x^2$ for the quantum oscillator. Differentiating $\psi(x) = Cxe^{-\alpha x^2}$ gives

$$\frac{d\psi}{dx} = -2\alpha x \psi(x) + C^{-\alpha x^2}$$

and

$$\frac{d^2\psi}{dx^2} = -\frac{2\alpha x d\psi}{dx} - 2\alpha\psi(x) - (2\alpha x)Ce^{-\alpha x^2} = (2\alpha x)^2\psi(x) - 6\alpha\psi(x).$$

Therefore, for $\psi(x)$ to be a solution requires $(2\alpha x)^2 - 6\alpha = \frac{2m}{\hbar^2} \left\{ U(x) - E \right\} = \left(\frac{m\omega}{\hbar} \right)^2 x^2 - \frac{2mE}{\hbar^2}$. Equating coefficients of like terms gives $2\alpha = \frac{m\omega}{\hbar}$ and $6\alpha = \frac{2mE}{\hbar^2}$. Thus, $\alpha = \frac{m\omega}{2\hbar}$ and $E = \frac{3\alpha \, \hbar^2}{m} = \frac{3}{2} \, \hbar \omega$. The normalization integral is $1 = \int_{-\infty}^{\infty} |\psi(x)|^2 dx = 2C^2 \int x^2 e^{-2\alpha x^2} dx$ where the second step follows from the symmetry of the integrand about x = 0. Identifying a with 2α in the integral of Problem 6-32 gives $1 = 2C^2 \left(\frac{1}{8\alpha}\right) \left(\frac{\pi}{2\alpha}\right)^{1/2}$ or $C = \left(\frac{32\alpha^3}{\pi}\right)^{1/4}$.

- At its limits of vibration $x = \pm A$ the classical oscillator has all its energy in potential form: $E = \frac{1}{2}m\omega^2 A^2$ or $A = \left(\frac{2E}{m\omega^2}\right)^{1/2}$. If the energy is quantized as $E_n = \left(n + \frac{1}{2}\right)\hbar\omega$, then the corresponding amplitudes are $A_n = \left[\frac{(2n+1)\hbar}{m\omega}\right]^{1/2}$.
- 6-32 The probability density for this case is $|\psi_0(x)|^2 = C_0^2 e^{-ax^2}$ with $C_0 = \left(\frac{a}{\pi}\right)^{1/4}$ and $a = \frac{m\omega}{\hbar}$. For the calculation of the average position $\langle x \rangle = \int_{-\infty}^{\infty} x |\psi_0(x)|^2 dx$ we note that the integrand is an odd function, so that the integral over the negative half-axis x < 0 exactly cancels that over the positive half-axis (x > 0), leaving $\langle x \rangle = 0$. For the calculation of $\langle x^2 \rangle$, however, the integrand $|\psi_0|^2$ is symmetric, and the two half-axes contribute equally, giving

$$\langle x^2 \rangle = 2 C_0^2 \int_0^\infty x^2 e^{-ax^2} dx = 2 C_0^2 \left(\frac{1}{4a} \right) \left(\frac{\pi}{a} \right)^{1/2}.$$

Substituting for C_0 and a gives $\langle x^2 \rangle = \frac{1}{2a} = \frac{\hbar}{2m\omega}$ and $\Delta x = (\langle x^2 \rangle - \langle x \rangle^2)^{1/2} = (\frac{\hbar}{2m\omega})^{1/2}$.

- 6-33 (a) Since there is no preference for motion in the leftward sense vs. the rightward sense, a particle would spend equal time moving left as moving right, suggesting $\langle p_x \rangle = 0$.
 - (b) To find $\langle p_x^2 \rangle$ we express the average energy as the sum of its kinetic and potential energy contributions: $\langle E \rangle = \left\langle \frac{p_x^2}{2m} \right\rangle + \langle U \rangle = \frac{\langle p_x^2 \rangle}{2m} + \langle U \rangle$. But energy is sharp in the oscillator ground state, so that $\langle E \rangle = E_0 = \frac{1}{2} \hbar \omega$. Furthermore, remembering that $U(x) = \frac{1}{2} m \omega^2 x^2$ for the quantum oscillator, and using $\langle x^2 \rangle = \frac{\hbar}{2 m \omega}$ from Problem 6-32, gives $\langle U \rangle = \frac{1}{2} m \omega^2 \langle x^2 \rangle = \frac{1}{4} \hbar \omega$. Then $\langle p_x^2 \rangle = 2m \langle E_0 \langle U \rangle = 2m \langle \frac{\hbar \omega}{4} \rangle = \frac{m \hbar \omega}{2}$.
 - (c) $\Delta p_x = \left(\left\langle p_x^2 \right\rangle \left\langle p_x \right\rangle^2 \right)^{1/2} = \left(\frac{m\hbar\omega}{2} \right)^{1/2}$
- From Problems 6-32 and 6-33, we have $\Delta x = \left(\frac{\hbar}{2m\omega}\right)^{1/2}$ and $\Delta p_x = \left(\frac{m\hbar\omega}{2}\right)^{1/2}$. Thus, $\Delta x \Delta p_x = \left(\frac{\hbar}{2m\omega}\right)^{1/2} \left(\frac{m\hbar\omega}{2}\right)^{1/2} = \frac{\hbar}{2}$ for the oscillator ground state. This is the minimum uncertainty product permitted by the uncertainty principle, and is realized only for the ground state of the quantum oscillator.
- Applying the momentum operator $\left[p_x\right] = \left(\frac{\hbar}{i}\right) \frac{d}{dx}$ to each of the candidate functions yields
 - (a) $\left[p_x\right]\left\{A\sin(kx)\right\} = \left(\frac{\hbar}{i}\right)k\left\{A\cos(kx)\right\}$
 - (b) $[p_x] \{ A \sin(kx) A \cos(kx) \} = \left(\frac{\hbar}{i}\right) k \{ A \cos(kx) + A \sin(kx) \}$
 - (c) $[p_x] \{ A\cos(kx) + iA\sin(kx) \} = \left(\frac{\hbar}{i}\right) k \{ -A\sin(kx) + iA\cos(kx) \}$
 - (d) $\left[p_x\right]\left\{e^{ik(x-a)}\right\} = \left(\frac{\hbar}{i}\right)ik\left\{e^{ik(x-a)}\right\}$

In case (c), the result is a multiple of the original function, since

$$-A\sin(kx) + iA\cos(kx) = i\left\{A\cos(kx) + iA\sin(kx)\right\}.$$

The multiple is $\left(\frac{\hbar}{i}\right)(ik) = \hbar k$ and is the eigenvalue. Likewise for (d), the operation $[p_x]$ returns the original function with the multiplier $\hbar k$. Thus, (c) and (d) are eigenfunctions of $[p_x]$ with eigenvalue $\hbar k$, whereas (a) and (b) are not eigenfunctions of this operator.

- 7-1 (a) The reflection coefficient is the ratio of the reflected intensity to the incident wave intensity, or $R = \frac{\left| (1/2)(1-i) \right|^2}{\left| (1/2)(1+i) \right|^2}$. But $|1-i|^2 = (1-i)(1-i)^* = (1-i)(1+i) = |1+i|^2 = 2$, so that R = 1 in this case.
 - (b) To the left of the step the particle is free. The solutions to Schrödinger's equation are $e^{\pm ikx}$ with wavenumber $k = \left(\frac{2mE}{\hbar^2}\right)^{1/2}$. To the right of the step U(x) = U and the equation is $\frac{d^2\psi}{dx^2} = \frac{2m}{\hbar^2}(U-E)\psi(x)$. With $\psi(x) = e^{-kx}$, we find $\frac{d^2\psi}{dx^2} = k^2\psi(x)$, so that $k = \left[\frac{2m(U-E)}{\hbar^2}\right]^{1/2}$. Substituting $k = \left(\frac{2mE}{\hbar^2}\right)^{1/2}$ shows that $\left[\frac{E}{(U-E)}\right]^{1/2} = 1$ or $\frac{E}{U} = \frac{1}{2}$.
 - (c) For 10 MeV protons, E = 10 MeV and $m = \frac{938.28 \text{ MeV}}{c^2}$. Using $\hbar = 197.3 \text{ MeV fm/} c \left(1 \text{ fm} = 10^{-15} \text{ m} \right)$, we find $\delta = \frac{1}{k} = \frac{\hbar}{(2mE)^{1/2}} = \frac{197.3 \text{ MeV fm/} c}{\left[(2) \left(938.28 \text{ MeV/} c^2 \right) \left(10 \text{ MeV} \right) \right]^{1/2}} = 1.44 \text{ fm}.$
- 7-2 (a) To the left of the step the particle is free with kinetic energy E and corresponding wavenumber $k_1 = \left(\frac{2mE}{\hbar^2}\right)^{1/2}$:

$$\psi(x) = Ae^{ik_1x} + Be^{-ik_1x} \qquad x \le 0$$

To the right of the step the kinetic energy is reduced to E-U and the wavenumber is now $k_2 = \left[\frac{2m(E-U)}{\hbar^2}\right]^{1/2}$

$$\psi(x) = Ce^{ik_2x} + De^{-ik_2x} \qquad x \ge 0$$

with D=0 for waves incident on the step from the left. At x=0 both ψ and $\frac{d\psi}{dx}$ must be continuous: $\psi(0)=A+B=C$

$$\frac{d\psi}{dx}\bigg|_{0} = ik_{1}(A-B) = ik_{2}C.$$

(b) Eliminating C gives
$$A + B = \frac{k_1}{k_2} (A - B)$$
 or $A \left(\frac{k_1}{k_2} - 1 \right) = B \left(\frac{k_1}{k_2} + 1 \right)$. Thus,

$$R = \left| \frac{B}{A} \right|^2 = \frac{\left(k_1 / k_2 - 1 \right)^2}{\left(k_1 / k_2 + 1 \right)^2} = \frac{\left(k_1 - k_2 \right)^2}{\left(k_1 + k_2 \right)^2}$$

$$T = 1 - R = \frac{4k_1 k_2}{\left(k_1 + k_2 \right)^2}$$

- (c) As $E \to U$, $k_2 \to 0$, and $R \to 1$, $T \to 0$ (no transmission), in agreement with the result for any energy E < U. For $E \to \infty$, $k_1 \to k_2$ and $R \to 0$, $T \to 1$ (perfect transmission) suggesting correctly that very energetic particles do not *see* the step and so are unaffected by it.
- 7-3 With E = 25 MeV and U = 20 MeV, the ratio of wavenumber is

$$\frac{k_1}{k_2} = \left(\frac{E}{E - U}\right)^{1/2} = \left(\frac{25}{25 - 20}\right)^{1/2} = \sqrt{5} = 2.236 \text{ . Then from Problem 7-2 } R = \frac{\left(\sqrt{5} - 1\right)^2}{\left(\sqrt{5} + 1\right)^2} = 0.146$$

and T = 1 - R = 0.854. Thus, 14.6% of the incoming particles would be reflected and 85.4% would be transmitted. For electrons with the same energy, the transparency and reflectivity of the step are unchanged.

7-4 The reflection coefficient for this case is given in Problem 7-2 as

$$R = \left| \frac{B}{A} \right|^2 = \frac{\left(k_1 / k_2 - 1 \right)^2}{\left(k_1 / k_2 + 1 \right)^2} = \frac{\left(k_1 - k_2 \right)^2}{\left(k_1 + k_2 \right)^2}.$$

The wavenumbers are those for electrons with kinetic energies E = 54.0 eV and E - U = 54.0 eV + 10.0 eV = 64.0 eV:

$$\frac{k_1}{k_2} = \left(\frac{E}{E - U}\right)^{1/2} = \left(\frac{54 \text{ eV}}{64 \text{ eV}}\right)^{1/2} = 0.918 \text{ 6}.$$

Then, $R = \frac{(0.918 \text{ } 6 - 1)^2}{(0.918 \text{ } 6 + 1)^2} = 1.80 \times 10^{-3}$ is the fraction of the incident beam that is reflected at the boundary.

- 7-5 (a) The transmission probability according to Equation 7.9 is $\frac{1}{T(E)} = 1 + \left[\frac{U^2}{4E(U-E)}\right] \sinh^2 \alpha L \text{ with } \alpha = \frac{\left[2m(U-E)\right]^{1/2}}{\hbar}. \text{ For } E << U \text{, we find}$ $\left(\alpha L\right)^2 \approx \frac{2mUL^2}{\hbar^2} >> 1 \text{ by hypothesis. Thus, we may write } \sinh \alpha L \approx \frac{1}{2}e^{\alpha L}. \text{ Also}$ $U E \approx U \text{, giving } \frac{1}{T(E)} \approx 1 + \left(\frac{U}{16E}\right)e^{2\alpha L} \approx \left(\frac{U}{16E}\right)e^{2\alpha L} \text{ and a probability for}$ transmission $P = T(E) = \left(\frac{16E}{U}\right)e^{-2\alpha L}.$
 - (b) Numerical Estimates: $(\hbar = 1.055 \times 10^{-34} \text{ Js})$

1) For
$$m = 9.11 \times 10^{-31}$$
 kg, $U - E = 1.60 \times 10^{-21}$ J, $L = 10^{-10}$ m;
$$\alpha = \frac{\left[2m(U - E)\right]^{1/2}}{\hbar} = 5.12 \times 10^{8} \text{ m}^{-1} \text{ and } e^{-2\alpha L} = 0.90$$

2) For
$$m = 9.11 \times 10^{-31}$$
 kg, $U - E = 1.60 \times 10^{-19}$ J, $L = 10^{-10}$ m; $\alpha = 5.12 \times 10^{9}$ m⁻¹ and $e^{-2\alpha L} = 0.36$

For
$$m = 6.7 \times 10^{-27}$$
 kg, $U - E = 1.60 \times 10^{-13}$ J, $L = 10^{-15}$ m; $\alpha = 4.4 \times 10^{14}$ m⁻¹ and $e^{-2\alpha L} = 0.41$

4) For
$$m = 8$$
 kg, $U - E = 1$ J, $L = 0.02$ m; $\alpha = 3.8 \times 10^{34}$ m⁻¹ and $e^{-2\alpha L} = e^{-1.5 \times 10^{33}} \approx 0$

7-16 Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or about $3755.8 \text{ MeV}/c^2$, the first approximation to the decay length δ is

$$\delta \approx \frac{\hbar}{\left(2\,mU\right)^{1/2}} = \frac{197.3~\text{MeV fm/}c}{\left[2\left(3\,755.8~\text{MeV/}c^2\right)\!\left(30~\text{MeV}\right)\right]^{1/2}} = 0.415~6~\text{fm}~.$$

This gives an effective width for the (infinite) well of $R + \delta = 9.415$ 6 fm, and a ground

state energy
$$E_1 = \frac{\pi^2 (197.3 \text{ MeV fm/}c)^2}{2(3755.8 \text{ MeV/}c^2)(9.415.6 \text{ fm})^2} = 0.577 \text{ MeV}$$
. From this E we calculate

U - E = 29.42 MeV and a new decay length

$$\delta = \frac{197.3 \text{ MeV fm/c}}{\left[2(3755.8 \text{ MeV/c}^2)(29.42 \text{ MeV})\right]^{1/2}} = 0.4197 \text{ fm}.$$

This, in turn, increases the effective well width to 9.419 7 fm and lowers the ground state energy to E_1 = 0.576 MeV. Since our estimate for E has changed by only 0.001 MeV, we may be content with this value. With a kinetic energy of E_1 , the alpha particle in the

ground state has speed
$$v_1 = \left(\frac{2E_1}{m}\right)^{1/2} = \left[\frac{2(0.576 \text{ MeV})}{\left(3755.8 \text{ MeV/}c^2\right)}\right]^{1/2} = 0.017 \text{ 5c}$$
. In order to be

ejected with a kinetic energy of 4.05 MeV, the alpha particle must have been preformed in an excited state of the nuclear well, not the ground state.

7-17 The collision frequency f is the reciprocal of the transit time for the alpha particle crossing the nucleus, or $f = \frac{v}{2R}$, where v is the speed of the alpha. Now v is found from the kinetic energy which, inside the nucleus, is not the total energy E but the difference E-U between the total energy and the potential energy representing the bottom of the nuclear well. At the nuclear radius R = 9 fm, the Coulomb energy is

$$\frac{k(Ze)(2e)}{R} = 2Z\left(\frac{ke^2}{a_0}\right)\left(\frac{a_0}{R}\right) = 2(88)(27.2 \text{ eV})\left(\frac{5.29 \times 10^4 \text{ fm}}{9 \text{ fm}}\right) = 28.14 \text{ MeV}.$$

From this we conclude that U = -1.86 MeV to give a nuclear barrier of 30 MeV overall. Thus an alpha with E = 4.05 MeV has kinetic energy 4.05 + 1.86 = 5.91 MeV inside the nucleus. Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or about 3.755.8 MeV/ c^2 this kinetic energy represents a speed

$$v = \left(\frac{2E_k}{m}\right)^{1/2} = \left[\frac{2(5.91)}{3755.8 \text{ MeV/}c^2}\right]^{1/2} = 0.056c.$$

Thus, we find for the collision frequency $f = \frac{v}{2R} = \frac{0.056c}{2(9 \text{ fm})} = 9.35 \times 10^{20} \text{ Hz}.$