Frequency Dependent Response of Materials Preamble: General treatment of response functions, or "The generalized susceptibility (Taken from Landaux Lifshitz, Stat. Phys. 1, Sec 123). let s(t) describe the state of a system, on which a "force" fle) acts knough a "susceptibility" xlt). In our applications we have cases where his ferminology is very appropriate, e.g., for set) could be JA, and fld) the electric field E/t) (literally a force) We will use Fourier transforms and their inverses for all grantitions: eg $S(t) = \begin{cases} \frac{d\omega}{2n} e^{-i\omega t} \frac{s}{s}(\omega) & s = s \end{cases}$ depoint s(t) N_{ow} $S(t) = \int_{0}^{t} dt' \chi(t-t') \int_{0}^{t} (t')$ Note that the integral goes up to l'=t and no further because Causality dictates Mgt Me force f(t') does not affect S(1) for times E'st. Alternatively, $S(t) = \int_{-\infty}^{\infty} dt' \, \chi(t-t') \, f(t')$ with $\chi(t-t')=0$ for t-t'<0, ie, $\chi(t)=0$ for t<0.

Now
$$\int dt' f(t') \chi(t-t') = \int dt' \int dy dy e^{i\omega_t t'} \int i\omega_t (t-t') \int i\omega$$

2. $\omega \chi_i(\omega) > 0$

That is 72(w)>0 for w>0.

The proof relies on the 2nd Law of Thernodynamics and the interpretation of f as a generalized force and s as a generalized displacement. In the absence of f(t), the evolution of s is determined by a transitionian H_0 , and the effect of f is described as a perhibation H' = -s f(t). The sign is so that $p = -\frac{\partial H}{\partial s} = f$.

Now facts on body, and changes to the state of the body are accompanied by dissipation (heat lost in the

process). Then

$$\frac{\partial E}{\partial t} = \frac{\partial H}{\partial t} = -s \frac{df(t)}{dt}$$

Now for any two functions

$$\int_{-\omega}^{\infty} d+a(t)b(t) = \int_{\overline{z}} \frac{d\omega}{z} \tilde{a}(\omega) \tilde{b}(-\omega) = \frac{1}{z} \int_{\overline{z}} \frac{d\omega}{z} \left[\tilde{a}(\omega) \tilde{b}(-\omega) + \tilde{a}(-\omega) \tilde{b}(\omega) \right]$$

So
$$\Delta E = \int \frac{d\vec{\epsilon}}{dt} dt = -\frac{1}{2} \int \frac{d\omega}{2\pi} \left(\tilde{s}(\omega) \left[-i(-\omega) \tilde{j}(-\omega) \right] + \tilde{s}(-\omega) \left(-i(\omega) \tilde{j}(\omega) \right) \right)$$

$$\text{now use } \widetilde{S} = \widetilde{\chi} \widetilde{\widetilde{J}} \rightarrow = -\frac{1}{2} \int \frac{d\nu}{2\pi} \left[\left(\widetilde{\chi}(\omega) - \widetilde{\chi}(-\omega) \right) \omega \, \widetilde{\widetilde{J}}(-\omega) \, \widetilde{\widetilde{J}}(\omega) \right]$$

$$= -\frac{i}{2} \int \frac{d\omega}{2\pi} \left(2i \chi_2(\omega) \right) \omega \left| \int_0^{\infty} (\omega) \right|^2$$

Now, f(w) is arbitrary and DE>O => Cux_2(w)>O.

Analytic continuation: extend definition of $\tilde{\chi}(\omega)$ to complex argument, $c_{\omega} = \omega_1 + i\omega_2$.

3. X(w) is analytic for Im(w)>0.

Because of dteinit e-wit x/t)

and the integral converges provided ω_270 (since $\hat{\chi}(\omega)$)

for real ω is assumed to exist for some range of ω , we need not wany about the integral not converging because $\chi(t) \sim \exp(ct)$. Moreover

 $\frac{d^n \tilde{\chi}(\omega)}{d\omega^n} = in \int_0^\infty dt \, e^{i\omega_n t} \, e^{-\omega_n t} \, t^n \, \chi(t)$

also converges (e-art t" -> 0 as t-> prany n).

Note Mat Miss a consequence of causality

[we used $\chi(t) = 0$ for t < 0).

1', $\tilde{\chi}(-\omega^*) = \tilde{\chi}^*(\omega)$

Is the generalization of (1) to complex argument. Then $\tilde{\chi}_{i}(-\omega_{i}+i\omega_{2})=\chi_{i}(\omega_{i}+i\omega_{2})$ and $\tilde{\chi}_{i}(-\omega_{i}+i\omega_{2})=-\chi_{i}(\omega_{i}+i\omega_{2})$

In particular, on the ima ginary axis $\chi_2(i\omega_2) = 0 \Rightarrow \chi_1(i\omega_2)$ is Mal.

5. For $\omega_z > 0$ (upper half, lane), $\chi \neq 0$, except on $\omega_z = 0$ (imaginary axis). For w=0 \$\times (iwr) is monotonically decreasing from $\chi_0 = \tilde{\chi}(i0)$ to $\tilde{\chi}(i0) = 0$. Therefore X(a) has no zeroes in upper half plane. Proof: From complex analysy 20; \$ dz 5/(2) Nz(p) = number of zeroes (poles) of f(z) in region 14 levior to Q. Consider I= 1 of day die X is rest and Meintegnlis over C; Nov, for upper half plane, X is analyticaso is dx. So in the statement about complex analysis above, f=x(w)-x is analytic (N=0) and therefore I = number of zeros of X(a)-X = number of times X(w) takes on the red value X. Now compute I: change variables: $T = \frac{1}{2\pi i} \oint dx \frac{1}{\chi - X}$

Since C goes Mongh isoz=0+ and icoz=+ioo, we startuin Mose $\chi(io+) = \chi_o$ and $\chi(i\omega) = 0$ Achelly, all of the semi-circle of a maps to O, so we are left with Now X, >0 for w, 70 and X, <0 for w, <0 by (2) I minor images and X, (-wz) = x, (wz) The point is C' crosses the real axis only at a and Xo. S., I=1 for all values of X + OLXLX. and I=0 otherwise. To complete the argument (1) Since X is rel on the positive imagi naryaxis, and it is analytic and goes from to to O on the axis, it must take on every value in the interval (0, Xo) along the axis. But it takes on each value only once. It must have X270 everywhere

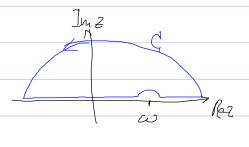
else on the upper half plane = x=0 except at +io.

(ii) Since it takes on every value in (0, X0) only once, X(iw)

= X, (icur) cannot have a local minimum or maximum along

the line: it is mono fonic.

(iii) Since X, to everywhere (on upper half plane) except


on the imaginary axis, and there X, cw) +0 except at

 $w = +i\omega$, we have $\tilde{X}(w) \neq 0$ lexcept at $+i\omega$).

6. Kramers - Kronig relation.

Consider

$$\frac{1}{2\pi i} \oint dz \frac{\hat{\chi}(z)}{z-\omega} \qquad \text{for } C:$$

Since X(2) is analytic for Im(2)>0 and wis outside a, there

are no poles in side G: by Cauchy's theorem the integral vanishes.

The integral over the small semicircle is, with z=w+ceis

 $\lim_{\epsilon \to 0} \int_{\pi}^{0} e^{i\phi} i d\phi \frac{\chi(\omega + \epsilon e^{i\phi})}{\zeta(\omega)} = -i\pi \chi(\omega)$

The integral over the real axis is the principal value integral. So

$$\mathcal{O} = -i \mathcal{P} \overset{\sim}{\chi}(\omega) + \mathcal{P} \int_{-\infty}^{\infty} d\omega' \frac{\chi(\omega')}{\omega' - \omega}$$

$$\tilde{\chi}(\omega) = -\frac{i}{\pi} P \int_{-\infty}^{\infty} d\omega' \frac{\chi(\omega')}{\omega' - \omega}$$

Takins Im or Re of this equation:

Then, X, (w) completely fixes X, (w), and vice verta.

Many additional results follow.

Exercises:

(1) Show
$$\widehat{\chi}_{l}(\omega) = \frac{2}{\pi} P \int_{0}^{\infty} d\omega' \frac{\omega' \widehat{\chi}_{2}(\omega')}{\omega'^{2} - \omega^{2}}$$

(ii) By considering
$$\int_{C}^{C} \frac{2 \tilde{\chi}(z)}{z^{2} + \omega^{2}} \quad \text{for real } \omega \text{ , along}$$

$$q \text{ contour} \qquad \int_{-\infty}^{\infty} \frac{d\omega'}{\omega'^{2} + \omega^{2}} = i\pi \tilde{\chi}(i\omega)$$
Use this to show $\tilde{\chi}(i\omega) = \frac{2}{\pi} \int_{C}^{\infty} \frac{\omega' \tilde{\chi}_{2}(\omega')}{\omega'^{2} + \omega^{2}}$

(iii) Use the previous result (integrate over
$$\omega$$
) to show
$$\int_{-\infty}^{\infty} d\omega \ \breve{\chi}(i\omega) = \int_{-\infty}^{\infty} \widetilde{\chi}_{i}(\omega) d\omega$$

To derive these formulae (including Kramers-Kronig) we only used the fact that $\hat{\chi}(\omega)$ is regular in the upper helf-plane. If in addition we know $\hat{\chi}^{*}(\omega) = \hat{\chi}(-\omega^{*})$ so $\hat{\chi}(i\omega) = \hat{\chi},(i\omega)$ we have $\int_{0}^{\infty} d\omega \, \hat{\chi},(i\omega) = \int_{0}^{\infty} \tilde{\chi}_{2}(\omega) d\omega$

Frequency dependent conductivity

Ohm's Law:
$$\vec{j}(\omega) = \vec{j}(\omega) \vec{E}(\omega)$$

where, eg. $\vec{j}(t) = \int_{-2\pi}^{2\pi} \vec{j}(\omega) \vec{e}^{i\omega t}$

õlu): frequency dependent Conductivity.

Aside on Farier Transform of a product.

him
$$a(t) = \int \frac{d\omega}{2\pi} e^{-i\omega t} \tilde{a}(\omega)$$
 and $b(t) = \int \frac{d\omega}{2\pi} e^{-i\omega t} \tilde{b}(\omega)$

where
$$\check{a}(\omega) = \int dt \, e^{i\omega t} \, a(t)$$

Then, the OFT of the product is

$$= \int_{-\infty}^{\infty} dt, \quad a(t_1) \quad b(t_2) \quad \int_{-\infty}^{\infty} d\omega \quad e^{i\omega(t_1+t_2-t)}$$

$$= \delta(t_1+t_2-t)$$

$$= \int_{-\infty}^{\infty} dt, a(t, b(t-t))$$

Chais law in time domain

$$\vec{J}(t) = \int_{-\infty}^{\infty} dt' \, \sigma(t-t') \, \vec{E}(t')$$

The response function $\sigma(t-t')$ must vanish for t'>t since $\vec{E}(t')$ cannot influence the correct $\vec{J}(t)$ at prior times (in bit t'): Usis, follows from Causality.

Drude Model: . electrous move with average
velocity $\vec{v}(t)$
They accelerate $(\vec{F} = m\vec{a})$ due to electric field \vec{E}
elections atoms. They bounce off hixed atoms.
Simple model: probabilistic
A each election has probability per unit time to de collidius
* after allision velocity is randomited
$\Rightarrow \overrightarrow{V}(t+\Delta t) - \overrightarrow{V}(t) = \frac{\partial C}{\partial t} = $
directions are age to zero
$= - \underline{B} + \overline{V}(t) + q \overline{E}(t) \Delta t \qquad (\text{fext-boot uses } q = -e)$
(τ="relaxation" or "collision" time).
$\frac{\partial \vec{v}}{\partial t} = -\frac{1}{c} \vec{v} + \frac{q\vec{E}}{m} \qquad \text{with } n = n \text{ unber density}$ $\vec{J}(t) = nq \vec{\nabla} u \implies \frac{\partial \vec{J}}{\partial t} = -\frac{1}{c} \vec{J} + \frac{nq^2}{m} \vec{E}$
or, after Fourier transform -iwif = - \frac{1}{2} + \frac{ngt}{m} \hat{E}
Solving be 3
$\widetilde{\mathcal{J}}(u) = \frac{nq^2}{\frac{1}{t} - i\omega} = \frac{nq^2z}{m} \frac{1}{1 - i\omega z}$
Noles:
· T~ 10-14 sec 15 typical. So for frequencies cucc = 104 Hz F(w) ≈ 50 = ng2 m
Using N~ 1022 cm3 and 9, m for electron > 0. ~ 1018 sec-1 or to 104 ohm cm

· Opposite limit :	ω>>τ·1 ∋	$ \widetilde{\mathcal{T}}(\omega) = i \frac{nq^2}{m\omega} $	(A)

is purely imaginary, and ~ w.

This is as if there were no collisions -> response is inertial (in from F=ma)

and 8-10 as co-20 means

means
$$\frac{dv}{dt} = \frac{2\widetilde{F}e^{-i\omega t}}{m} \rightarrow V = \frac{e^{-i\omega t}}{-i\omega} \frac{2\widetilde{E}}{m} \rightarrow 0 \text{ as } \omega \rightarrow \omega \text{ , i.e. elections } Call the keep up / Hespond.}$$

(*) is purely from applied
$$\vec{E}$$
, so very general (independent of model of collisions of electrons). Will use Mis?

ASIDE

· It magnetic field is present, add to force a \frac{2}{V(t)} \times \bar{B(t)} \text{ Lerm. Then

after multiplying by nq, & J(1) x B(t).

The FT, of a product

$$\int dt \quad a(t) \, b(t) e^{i \, \omega t} = \int \frac{d\omega}{2\pi} \int \frac{d\omega}{2\pi} \, \tilde{a}(\omega) \, \tilde{a}(\omega) \int dt \, e^{i t(\omega - \omega - \omega)}$$

$$= \int \frac{d\omega'}{2\pi} \, a(\omega') \, b(\omega - \omega)$$

So
$$-i\omega \hat{\vec{j}}(\omega) = -\frac{1}{7}\hat{\vec{j}}(\omega) + ng^2 \hat{\vec{k}}(\omega) + \frac{q}{2}\int \frac{d\omega}{17}\hat{\vec{j}}(\omega) \times \hat{\vec{k}}(\omega-\omega)$$

General Properties of FCW). (Garg sec 121 - re'll go back to 170 later) Let's write $\tilde{G} = \tilde{G}_1 + i \tilde{G}_2$ ($\tilde{G}_{1,2}$ are real). Then (much of this follows from the general susceptibility notes $\int_{-\infty}^{\infty} f(\omega) = \int_{-\infty}^{\infty} f(-\omega)$ This is because Eard I are real. For any real f(t) its FT his $f'(\omega) = f(-\omega)$ — we have seen Mis. And $\hat{\vec{E}} = \hat{\sigma} \vec{j}$. 2. 5,(w)>0. (This is 3 lightly different than for x above): Power dissipated = Para = J. E >0 by 2nd Law of Thermody's $\int_{0}^{\infty} dt \, \vec{j}(t) \cdot \vec{E}(t) = \int_{0}^{\infty} du \, \vec{j}(-\omega) \cdot \vec{E}(\omega) = \int_{0}^{\infty} du \, \vec{j}(\vec{j}(\omega) \cdot \vec{E}(\omega) + \vec{j}(\omega) \cdot \vec{E}(\omega))$ = $\int d\omega \operatorname{Reolu} \left| \tilde{E}(\omega) \right|^2$ This must be positive for arbitrary E => O((w)>0. 3. T(w) is analytic for Im(w)>0 (Note that this depends on our definition of FT as (du flt) e int We have seen that causality => O(t) = 0 for t<0. $\sigma(\omega) = \int_{0}^{\infty} dt \, e^{i\omega t} \, \sigma(t) = \int_{0}^{\infty} dt \, e^{i(\rho\omega)t} \, e^{-\int_{0}^{\infty} m(\omega)t} \, \sigma(t)$ For Im(a)>0 the integral converges provided o(t) does not grow exponentially.

We may safely assume olt) does not gow exponentially. recall
$ \frac{1}{J}(t) = \int_{-\infty}^{t} dt' \sigma(t - t') \vec{E}(t') $
and we do not expect $\vec{J}(E)$ to depend on $\vec{E}(t')$ as $t' \rightarrow -\infty$
as $e^{-t'}$?
Moreover, we can safely take derivatives, as in
70
dro = (-1) dt treint (t)
since this is still convergent for In(w)>0.
=) F(w) is analytic in In(w)>0.
Note also Mat J(w) → O as Im w → ∞.
This Canalyticity in upper half plane plus vanishing at a meaus:
4. 6 satisfies Kamers-Konig relations
Ine
Re Z
ω
Consider 1 dz 2/2)
$\frac{\partial z \mathcal{O}(z)}{z - \omega} = 0 \left(\begin{array}{c} \text{(auchy: } \underbrace{\tilde{\mathcal{O}}(z)}_{z - \omega} \text{ is analytic in} \\ \end{array} \right)$
tening hounded by C)

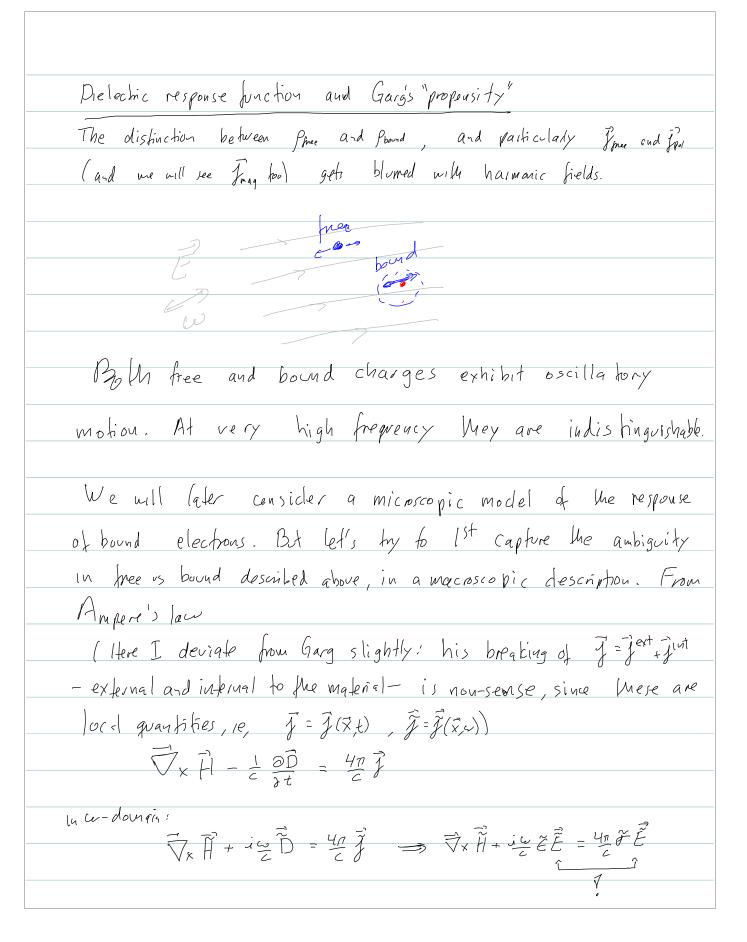
On semicircle 121=R > 00 the integral varishes because JO SO Z-co To faster Man /21. The small semicircle gives (use Z=w+Eeig, E->0 and & goos from 7 to 0): $-\lim_{\omega \to \infty} \int_{0}^{\pi} \frac{e^{i\phi}id\phi}{id\phi} = -i\pi\sigma(\omega)$ The rest is be principal raise of the integral on the real line, so $\rho \int_{-\infty}^{\infty} dx \frac{\sigma(x)}{x-\omega} - j \pi \sigma(\omega) = 0$ Separating into real and imaginary parts , and using $X=\omega'$ so that the dummy variable reminds us it refers to frequency: $\mathcal{O}_{2}(\omega) = -\frac{1}{2} P \int d\omega \frac{\sigma_{i}(\omega)}{(\omega - \epsilon)^{i}}$ Kramers-Kronig $\mathcal{T}_{1}(\omega) = \frac{1}{n} P \int_{-\infty}^{\infty} d\omega' \frac{\mathcal{G}_{1}(\omega')}{\omega - \omega'}$ If you know of (or or) you can compute or (or or) 5. T(w) +0 in upper helf-plane. This was done for \$(w) above, and won't repeat here.

6. f-sum rule

From Kramers-Kronig we have

$$\frac{\nabla}{\nabla_2(\omega)} = -\frac{2\omega}{7} P \int_0^{\infty} d\omega' \frac{\hat{\mathcal{T}}_1(\omega')}{{\omega'}^2 - \omega^2}$$

As w > 00 this is


$$\tilde{C}_{2}(\omega) = \frac{2}{7\pi\omega} \int_{0}^{\infty} d\omega' \, \tilde{C}_{1}(\omega')$$

But from Drude's model, $\tilde{\mathcal{T}}(\omega) \simeq i \frac{nq^2}{m\omega}$ as $\omega \to \infty$, and

we explained this is model independent. Comparing

$$\frac{Mg^2}{M\omega} = \frac{2}{\pi\omega} \int_0^\infty d\omega' \, \tilde{C}_i(\omega)$$

or
$$\int_{0}^{\infty} d\omega \, r'(\omega) = \frac{7nq^{2}}{2m} \quad \text{"} f - svm \quad rule"$$

We can rewrite this as $\overrightarrow{\nabla}_{X} \overrightarrow{H} + i \frac{\omega}{c} \left(\tilde{c} + i \frac{4\pi \tilde{c}}{\omega} \right) \overrightarrow{E} = 0 \qquad \text{or} \qquad \overrightarrow{\nabla}_{X} \tilde{H} = \overset{\vee}{c} \left(\tilde{c} - i \frac{\omega \tilde{e}}{4\pi} \right) \tilde{E}$ sort of effective permitivity or kink of effective conductivity. We also have $\vec{\nabla} \cdot \vec{D} = 4\pi p$. From continuity $\frac{\partial f}{\partial t} = -\vec{\nabla} \cdot \vec{f}$ we have -icup = - \(\vec{7} \). Using \(\vec{D} = e^{\vec{E}} \) and $\vec{j} = \check{\sigma} \, \check{E}$ $\vec{\nabla} \cdot \vec{0} = 4\pi p \Rightarrow \vec{\nabla} \cdot (\tilde{e}\tilde{E}) = -4\pi i \vec{\nabla} \cdot (\sigma \tilde{E})$ $= \nabla \cdot \left[\left(\tilde{\epsilon} + i \frac{4\eta \tilde{\sigma}}{\omega} \right) \tilde{\epsilon} \right] = 0$ Although you will find some textbooks that state that Mere is an ambiguity in whether we combine E20 ujuldielechic funchon into permitivity or conductivity, the interpretation of Gauss's law suggests ar effective permitivity is a heller Choice. Garg invents the term (I have not seen it used elsewhere) "electric propensity" for propensity " for = the squiggle $S(\omega) = \tilde{E}(\omega) + \frac{4\pi i \tilde{J}(\omega)}{\omega}$ as greek-zeta is Much of the literature calls it dielectric contant, or complex names capture the facts Mat W) not a constant, (ii) not purely dielectric and (iii) not he same as E(a) (even Moug this symbol is often used for 5(a)).

	We'll stick unth Garg.
_	<u> </u>
	Aside: if there are additional currents j'not subject
	Ohm's law (eg, superconducting current) then add
	to right hand side:
	7xH+i& SE = 47 3'
	7. 3Ê = 47P'
	Garg also defines = 3 = 5 = so that in t-doma
	$\overrightarrow{\nabla}_{\times}\overrightarrow{H} - \overrightarrow{c} \frac{\partial \overrightarrow{Z}}{\partial t} = 4\overrightarrow{v}\overrightarrow{J}, \overrightarrow{\nabla}_{\cdot}\overrightarrow{Z} = 4\pi\rho'$
	Beware Man in most of the liferative $\vec{\tilde{Z}} = \tilde{S} \vec{\tilde{E}}$ is $\vec{\tilde{D}} = \tilde{\tilde{E}} \vec{\tilde{E}}$
	Best is to understand what you are doing! Then you don't get
	Composed with symbols.

Electromagnetic energy in material media

We saw that \$70 in the upper half w-plane, and in particular 0,70 on westaxis. This was a result

that followed from the 2nd law, that energy is

dissipated in the material body.

Now, the microscopic theory tells us exactly where the energy goe:

$$-\vec{\nabla}.\vec{S} = \vec{j}.\vec{e} + \frac{\partial v}{\partial t}$$

as was shown in 203A, where $\vec{S} = \frac{c}{4\pi} \vec{e}_{x} \vec{b}$ is the

(microscopic version of) Poynthy vector giving the energy flux and $u = 8\bar{p}(\dot{e}^2 + \bar{b}^2)$ the (microscopic energy density). The question is what replaces this that accounts for rate of heat disripsted in the presence of dielectrics.

The answer is
$$-\nabla \cdot \vec{S} = \vec{f}_{ree} \cdot \vec{E} + d\vec{U} + \vec{Q}$$

where (i) Fields are assumed grasimono chromatic

(ii) XII) means XII) is averaged over the period of the (grasi)

Monochromatic fields

(iii) U has he interpretation of internal energy and O is almost /at, with

$$\overline{U} = \frac{1}{8\pi} \left[\frac{d(\omega \in \omega)}{d\omega} \overline{E^2} + \frac{d(\omega \mu, \omega)}{d\omega} \overline{H^2} \right]$$

and

$$\dot{Q} = \frac{1}{4\pi} \left[\omega \, \epsilon_{z}(\omega) \, \overline{E^{l}} + \omega \, \mu_{z}(\omega) \, \overline{l} \, l^{2} \right]$$

The rest of his section is just computations deriving his result (plus a definition of leurs, eg, "grasimonochomatic").

Consider quasimonochromatic held Elb. That is

E(w) has frequencier centered on wo with small dispersion.

We want to show that

$$\vec{E}(t) = \vec{a}(t) \vec{e}^{i\omega ot} + c.c.$$

To show this, consider

$$\vec{E}(t) = \int_{-\infty}^{\infty} d\omega \, \vec{E}(\omega) \, e^{-i\omega t} = \int_{0}^{\infty} d\omega \, e^{-i\omega t} \, \vec{E}(\omega) + \int_{0}^{\infty} d\omega \, e^{i\omega t} \, \vec{E}^{*}(\omega)$$

Now unite $\hat{\vec{E}}(\omega_0 + \alpha) = \hat{\vec{a}}(\alpha)$ so that $(\omega = \omega_0 + \alpha \text{ above})$

$$\vec{E}(t) = e^{-i\omega_0 t} \int_{-\omega_0}^{\infty} d\alpha \, \vec{\tilde{\alpha}}(\alpha) e^{-i\alpha t} + c.c.$$

Now, assume that als is localized about some frequencies well above

zero. Then we can approximately replace the lower limit by - oo:

$$\vec{E}(t) = \vec{a}(t) e^{-j\omega_0 t} + c.c.$$

which is the desired result.

 $\widetilde{a}(t)$ varies little over a period $\frac{27}{\omega_0}$. So if we average $\widetilde{E}'(t)$ over $t >> \frac{27}{\omega_0}$ the $e^{\pm 2i\omega_0 t}$ terms do not contribute

 $\overline{\mathcal{E}^{2}(t)} = 2 \vec{a}(t) \cdot \vec{a}^{*}(t)$

The average is over t>> 27 but small over the typical time over which all varies.

Likewise for other fields, like HIt).

Now, we have shown

$$\vec{\nabla} \cdot \left[-\frac{c}{un} (\vec{E} \times \vec{H}) \right] = \vec{J} \cdot \vec{E} + \frac{1}{un} \left(\vec{E} \cdot \frac{\partial \vec{D}}{\partial t} + \vec{H} \cdot \frac{\partial \vec{B}}{\partial t} \right)$$

Integrate over volume, for some V. $\int_{V}^{dr} \vec{j} \cdot \vec{E} = work, done by \vec{E}$ on fine hee charges. $-\int_{Q}^{dr} \vec{\nabla} \cdot \left[\frac{c}{u_{D}} (\vec{E} \times \vec{H}) \right] = -\int_{QV}^{d^{2}r} \hat{n} \cdot \left[\frac{c}{u_{D}} (\vec{E} \times \vec{H}) \right]$ is then

energy/fine flowing into V, so $\vec{S} = \frac{c}{4\pi} \vec{E} \times \vec{H} = energy flox/vol.$

The last term must be the change in internal energy plus

hect produced.

Consider $\vec{E} \cdot \frac{\partial \vec{D}}{\partial t}$. Write \vec{E} and \vec{D} in terms of $\vec{E}(\omega)$ and $\vec{D}(\omega) = \hat{\epsilon}(\omega) \, \tilde{\epsilon}(\omega)$.

$$\vec{E} \cdot \frac{\partial \vec{D}}{\partial t} = \int \frac{d\omega_1}{2\pi} \int \frac{d\omega_2}{2\pi} \vec{E}(\omega_1)^* e^{i\omega_1 t} \cdot (-i\omega_2) \cdot e(\omega_1) \cdot \vec{E}(\omega_1) \cdot e^{-i\omega_2 t}$$

$$= \int \frac{d\omega_1}{2\pi} \int \frac{d\omega_2}{2\pi} \vec{E}(\omega_2) \cdot e^{-i\omega_1 t} \cdot (i\omega_1) \cdot \vec{E}(\omega_1) \cdot \vec{E}(\omega_1) \cdot \vec{E}(\omega_1) \cdot \vec{E}(\omega_1) \cdot \vec{E}(\omega_2)$$
50 adding these:

 $2\dot{E}.\dot{\bar{D}} = \int_{2D}^{\infty} d\omega_{1} e^{i(\omega_{1}-\omega_{2})t} \ddot{E}(\omega_{1}) \cdot \ddot{E}(\omega_{2}) i \left[\omega_{1}\dot{E}(\omega_{1}) - \omega_{2}\dot{E}(\omega_{2})\right]$

Write Jaco, eiw, t Elw, iw, e*(w,)

 $=\int_{0}^{\infty} d\omega_{i} \left(e^{i\omega_{i}t} \tilde{E}^{*}(\omega_{i})_{i}\omega_{i} \tilde{E}^{*}(\omega_{i}) + \tilde{e}^{i\omega_{i}t} \tilde{E}^{*}(\omega_{i}) (-i\omega_{i}) \tilde{E}^{*}(\omega_{i}) \right)$

and so on, so that we only integrate over positive frequencies. Sixce

we will wast to arrege over grasimono chomatic field, dop terms $\tilde{E}(\omega_1) \cdot \tilde{E}(\omega_2)$ or $\tilde{E}(\omega_1)^* \cdot \tilde{E}(\omega_2)^*$.

Next average over period T= 27 Use w= w. + x , and amp's all

 $\frac{1}{2\overline{E}.\overline{D}} \approx 2\int \frac{d\alpha_1}{2\overline{D}} \int \frac{d\alpha_2}{2\overline{D}} \int \frac{d\alpha_1}{2\overline{D}} \int \frac{d\alpha_2}{2\overline{D}} \left[\omega_1 e^{+(\alpha_1)} - \omega_2 e^{-(\omega_2)} \right] \left[\omega_2 - \omega_0 + \alpha_2 \right] \left[\omega_2 - \omega_0 + \alpha_2 \right] e^{-i(\alpha_1 - \alpha_2)t}$

We separate $E(\omega)$ into neal and imaginary parts since physically we expect $E_2 = \text{Im} E$ to be associated to heat (dissipation) while $E_1 = \text{Re} E$ ought to be related to internal energy for each of this we expand in $\alpha = \omega - \omega_0$ and retain leading terms:

 $Re\left[\omega_{i}e^{*}(\omega_{i}) - \omega_{z}e(\omega_{z})\right] = (\omega_{o} + \alpha_{i}) e_{i}(\omega_{o} + \alpha_{i}) - (\omega_{o} + \alpha_{z}) e_{i}(\omega_{o} + \alpha_{z})$ $= (\alpha_{i} - \alpha_{z}) \frac{d}{d\omega} (\omega e_{i}(\omega))$

 $[m[idem] = -(\omega_0 + \alpha_1) \in_2 (\omega_0 + \alpha_1) - (\omega_0 + \alpha_2) \in_2 (\omega_0 + \alpha_1)$ $= - \omega_0 \in_2 (\omega_0)$

Write this in time domain (and drop "o" in wo):
$ \frac{1}{\vec{E} \cdot \vec{D}} = \frac{1}{2} \frac{d}{d\omega} (\omega \epsilon_{i}(\omega)) \qquad \frac{d}{dt} \frac{\vec{E}^{2}(t)}{\vec{E}^{2}(t)} + \omega \epsilon_{i}(\omega) \qquad \hat{\vec{E}^{2}(t)} $
and his x 477 is Q
or advertised
What remains is justifying the interpretation of the
two terms as above. Note Matif you proceed slowly and adiabatically in polarizing the medium, the mechanical
work done (which should go billy into internal energy) is, \$7 6, \$\vec{E}^2\$. But \(\L \) \(\d\) (\omega \vec{G}(\omega)) \(\vec{E}^2 \) \(\gin \text{div} \) \(\vec{G}(\omega) \) \(\vec{E}^2 \) \(\gin \text{div} \) \(\vec{G}(\omega) \) \(\vec{E}^2 \) \(\gin \text{div} \) \(\vec{G}(\omega) \) \(\vec{E}^2 \) \(\gin \text{div} \) \(\vec{G}(\omega) \) \(\vec{E}^2 \) \(\gin \text{div} \) \(\vec{G}(\omega) \) \(\vec{E}^2 \) \(\gin \text{div} \) \(\vec{G}(\omega) \) \(\vec{E}^2 \) \(\vec{E}^2 \) \(\vec{G}(\omega) \) \(\vec{E}^2 \) \(\vec{E}^2 \) \(\vec{G}(\omega) \) \(\vec{E}^2 \)
grasistatic approximation. So we interpret the first term as $\frac{dU}{dt}$
and infer the 2nd is heat that shows up when the process of polaritins the medium is not adiabatic.
Beware of the limits of applicability: ne assumed linearity, grasi monochromatic fields, retained
leading kims in Taylor expansion,

Electronic Response Model of Drude, Kramers, Losentz. Leach atum/molecule a polarizable unit. Model the atom as a charge (electron) bound by a harmonic force, with dissipation and under and applied E-field force: $m\vec{r} + m\vec{r} + m\omega_{\delta}\vec{r} = q\vec{E}(t)$ (q = -e) charge q = -eIf the "atom" is neutral and has no permanent dipole moment then we need a charge -q (ie, te) at the "center" 7=0. The dipok moment is then d(t)=q7(t) In Fourier space (we have solved this Eg sever) times before) 06 $\vec{\tilde{r}} = -\frac{q}{m} \vec{E} \frac{1}{(\omega^2 - \omega^2 + i\omega)}$ With n = number density of bound electrons/volume Polarization vector $\vec{P} = nq\vec{r} = -nq^2\vec{E}$ $= \frac{\chi}{\chi_e} = -\frac{nq^2}{m} \frac{1}{(n^2 - 1)^2 + \sqrt{14}}$

and
$$\tilde{c}(\omega) = \int + 4\pi \tilde{\chi}(\omega) = \int - 4\pi n^3 q \frac{1}{w^3 - w^3 + i\omega \gamma}$$

This is for rare field media. For deuse media
a Clausius-Mossetti model heatment gives

$$\frac{\widehat{\mathcal{E}}(\omega)-1}{\widehat{\mathcal{E}}(\omega)+2}=\frac{u\pi}{3}\chi_{e}(\omega)$$

or
$$\tilde{\mathcal{E}}\left(1-\frac{u\pi}{3}\tilde{\chi}_{e}\right)=1+\frac{9\pi}{3}\tilde{\chi}$$
, $\tilde{\mathcal{E}}=1+\frac{u\pi\tilde{\chi}_{e}}{1-\frac{u\pi}{3}\tilde{\chi}_{e}}$

or
$$\hat{\mathcal{E}} = \int + \frac{4\pi n^2 q}{m} \cdot \frac{(-1)}{\omega^2 - \omega_0^2 + j\omega_0^2} \cdot \frac{1 - u_\pi^2 n^2 q}{3 \sin \omega^2 - \omega_0^2 + j\omega_0^2}$$

$$= 1 - \frac{47n^{2}q}{m} \frac{1}{\omega^{2} - (\omega_{0}^{2} - \frac{u_{0}^{2} n_{0}^{2}q}{3m}) + i\omega_{0}^{2}}$$

$$=1+\frac{4\pi n^2q}{m}\frac{1}{\omega_1^2-\omega^2-i\alpha f}$$

where
$$\omega_1^2 = \omega_0^2 - \frac{47}{3} \frac{N^2 q}{m}$$

Improvement: many resonant frequencies of electrons in real atoms, given by

and introduce fi = oscillator strength

= amplifude of dipole moment when oscillating between

j-th state and ground state, with

Zf; = Z = number of elections in atom

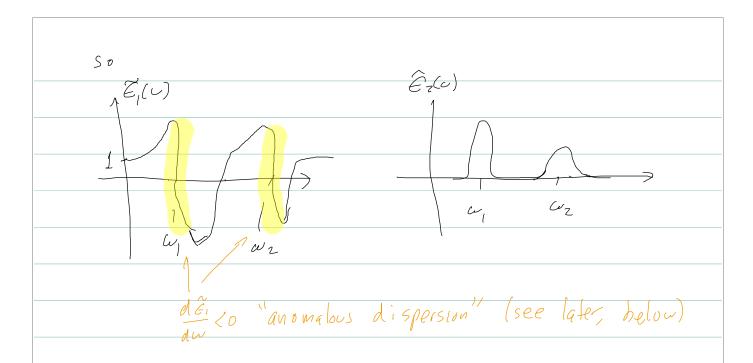
Then, the improved model is

$$\frac{\sim}{E(\omega)} = 1 + \frac{4\pi n g^2}{m Z} \sum_{i} \frac{f_i}{\omega_i^2 - \omega^2 - i \omega \xi}.$$

(j. = damping of response at frequency wi).

Nole:

This is a rough model. Do not attach too I, teral a meaning to Constants like N. 2.


Let's plot $\tilde{\epsilon}_{k\omega}$ and $\hat{\epsilon}_{i(\omega)}$ $4770^{2} \Rightarrow f_{i(\omega^{2}-\omega)}$

$$\widetilde{\mathcal{E}}_{i}(\omega) = Re(\widetilde{\mathcal{E}}(\omega)) = \int + \frac{U \overline{\eta} n q^{2}}{m Z} \frac{f_{i}(\omega_{i}^{2} - \omega^{2})}{(\omega_{i}^{1} - \omega^{2})^{2} + \omega^{2} \xi_{i}^{2}}$$

$$\widetilde{\mathcal{E}}_{2}(\omega) = \operatorname{Im}(\widetilde{\mathcal{E}}(\omega)) = \frac{\operatorname{Upn} g^{2}}{\operatorname{m} Z} = \frac{f_{1} \operatorname{cu}_{3}^{2}}{(\omega_{1}^{2} - \omega^{2})^{2} + \omega^{2} f_{1}^{2}}$$

Near resonance i,

Noles:

$$\widetilde{\mathcal{T}}(L) = \frac{N_f q^2 \tau}{m} \frac{1}{1 - i\omega \tau} \qquad \text{with } N_f = N \text{ for free e's.}$$

and professity is
$$\widehat{\zeta}(\omega) = \widetilde{\varepsilon}(\omega) + \frac{4\pi i \sigma(\omega)}{2}$$

So
$$S$$
 is D rude's model has $S(\omega) - \overline{E}(\omega) = \frac{4p\eta_{\xi}q^{2}}{m}$ is $\overline{U}(1-i\omega \overline{U})$

$$= -\frac{4p\eta_{\xi}q^{2}}{m} \frac{1}{\omega(\omega+i\tau^{-1})}$$

which matches the above with $M_f = \frac{M_f}{3}$ and $T = \chi_1^{-1}$ Nice to get a wified treatment in one simple Model 6 The static case $E(0) = 1 + \frac{4\pi nq^2}{m^2} = \frac{fi}{\alpha_i^2}$ The large frequency limit E(w) = (- 47119 -12 (or S(w)= Mis), where = = I = I was vsed. Again, as in The case of F, the woo behavior is model independent (does not depend on fi, Ji, wi,), since at high frequency elections are "paralyted" (in the words of Garg) We may write $\tilde{e}(\omega) = 1 - \frac{\omega_p^2}{c^2}$ where $\omega_p^2 = \frac{4\pi n q^2}{1}$ is the "Plasma" frequency A he medium.

Added don: Wave propagation in disposive medium In PHYS 203 A we discussed wave propagation in dispersive media briefly. We took $\omega(lc) = V k = \frac{c}{\sqrt{\hat{c}(\omega)}\hat{n}(\omega)} k$ and then found that is the phase Velocity, while $V_g = \frac{d\omega}{dk}$ gives the group velocity. $W = \frac{1}{2} \left(\frac{dk}{dw} \right)^{-1} = \int \frac{d\sqrt{\tilde{\epsilon}_{ij}} \omega}{d\omega} d\omega$ and taking $\tilde{N}=1$, we have $\tilde{V}_{q}=\tilde{V}_{e}^{2}+\frac{1}{2}\frac{\omega}{\sqrt{e}}\frac{d\tilde{E}}{d\tilde{E}}$ Ignoring (for now) the maginary part of ê, ne see that in the region of anomalors dispersion (de 20) Ve increases. Worse E, <0 so even if one neglects Ez, the index of refraction N(w) = VE 15 purely imaginary so neither Up nor Vy are well defined. Shicking to the n=1 case, generally $\widehat{N} = \widehat{N}_1 + i \widehat{N}_2 = \sqrt{\widehat{E}_1 + i \widehat{E}_2} \quad \text{and} \quad \widehat{N}_1 - \widehat{N}_2 = \widehat{E}_1, \quad 2\widehat{N}_1 \widehat{N}_2 = \widehat{E}_2$ $\left(S_{0}|_{Ve}: \tilde{h}_{1}^{2} - \tilde{\epsilon}_{1} - \frac{1}{4}|_{\frac{\tilde{\epsilon}_{1}}{2\tilde{\lambda}}}^{2} = O\right) = \tilde{h}_{1}^{2} = \frac{1}{2}\left(\tilde{\epsilon}_{1} + \sqrt{\tilde{\epsilon}_{1}^{2} + \tilde{\epsilon}_{1}^{2}}\right) = \tilde{h}_{1}^{2} = \frac{1}{2}\left(-\tilde{\epsilon}_{1} + \sqrt{\tilde{\epsilon}_{1}^{2} + \tilde{\epsilon}_{1}^{2}}\right)$ Recall were equation is [VXE - i&B=0, \$\vec{7}\vec{B} + i&\vec{e}(\vec{E})\vec{E} = 0) (72 + 62 Elw) (E=0 So in Ciltz-ut) for plane ware we have $C = \frac{C^2}{C^2} \frac{\partial^2 C}{\partial \omega}$ $k = \frac{c}{\sqrt{\epsilon}} = \frac{c}{\sqrt{\kappa_1 + i \kappa_2}}$ So le region of anomalous dispossion, which coincides with non-negligible Er aid therefore Wz, one has $E_{L} = e^{i\omega(\tilde{h}, \frac{1}{c} - t)} e^{-\tilde{N}_{L} \frac{\omega}{c} z}$ and Intensity ~ [E1] ~ e = 2/5 $\delta^{-1} = 2 \frac{\tilde{h}_{c}c_{o}}{\tilde{c}}$ where of is the penetration length.

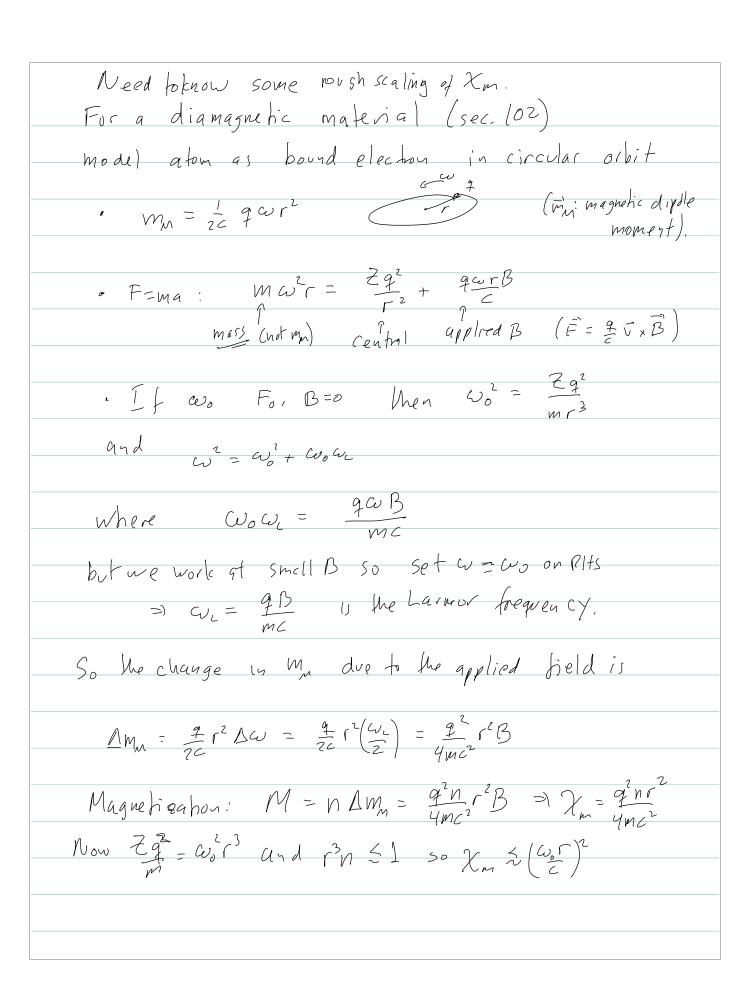
Sec 134: To make sense of velocity of papagation particularly in the region of anomalous dispersion one may define "energy velocity" \vec{V}_E :

with Poynting and internal energy defined as previously. Since we are interested in velocity of propagation, but not on attenuation along the wave we ignore absorption (set $\tilde{n}_1 = 0$ so \tilde{k} ; real). With this \tilde{S} is along \tilde{k} . Moreover $\tilde{E}[\tilde{E}]^2 = n|\tilde{F}|^2$ so

 $\frac{1}{S} = \frac{C}{16\pi} \left(\frac{E}{K} + \frac{H}{K} + C.C. \right) = \frac{C}{16\pi} \left(\frac{E}{K} + \frac{E}{K} + \frac{H}{E} + \frac{H}{E}$

Now V was defermined earlier, $V = \frac{1}{87} \left[\frac{d}{d\omega} \left(\omega \widetilde{\epsilon}_{i} \right) \left| \overline{\epsilon}^{i} \right| + \frac{\epsilon \rightarrow \mu}{\epsilon \rightarrow \mu} \right]$

So $\overline{S} = \frac{c}{8\pi} \sqrt{\tilde{\epsilon}} |\tilde{\epsilon}|^2$, $\overline{U} = \frac{1}{16\pi} \left[\frac{d(\omega \tilde{\epsilon}_i)}{aco} + \frac{\tilde{\epsilon}_i}{\tilde{\mu}_i} \frac{d(\omega \tilde{\mu}_i)}{a\omega} \right] |\tilde{\epsilon}|^2$ (He add, from $\frac{1}{2}$ from $\frac{1}{2}$ from $\frac{1}{2}$ $\frac{1}{2}$


 $=) \qquad \frac{C}{\sqrt{E}} = \frac{1}{2} \left[\begin{array}{ccc} \tilde{m}_{1} & d(\omega \tilde{e}_{1}) \\ \tilde{e}_{1} & d\omega \end{array} \right] + \left[\begin{array}{ccc} \tilde{e}_{1} & d(\omega \tilde{\mu}_{1}) \\ \tilde{n}_{1} & d\omega \end{array} \right]$

 $\frac{c}{V_{E}} = \frac{d}{d\omega} \left(\omega \sqrt{\tilde{c}_{i}} \tilde{\gamma}_{i} \right) = \frac{d}{d\omega} \left(\tilde{n}_{i} \omega \right) = \frac{c}{V_{g}}$

The group velocity.

In the region of anomalous dispersion one
Cannot neglect absorption. The above treatment
Jails. But for the harmonicly-bound charges model
one can compute explicitly.
See defails in textbook. It shows \frac{\Vec{r}}{c} \leq 1.
(End Addendum)

Note on new) Her frequencies we wo where wo is no higher than optical, but possibly lower, it makes no physical sense to distinguish helwen H.B. Recall H-B=47M and Found = CTXM + OP Under what condition is the 1st term bigger than Pshmate 1 C P x M 1 ~ C length of variation 2 Lm B ~ Xm CB Also for $\frac{\partial \vec{P}}{\partial L}$, use the induced \vec{E} field (it is magnetic response we care about!) $\vec{\nabla}_{x}\vec{E} + \frac{1}{c}\frac{\partial \vec{B}}{\partial t} \rightarrow E \times L \omega B/c$ and P=XoE ~ E /2P ~ 1 w B/c So pr lot | << c | \vert x m) we med loub << Xm (D) 1º 2< X = 2 Moreover, the dimensions of the body over which variations are Considered, l, should be much lurger than atomic, l. >) a.

Added comment: There are two problems will the above (correct) argumont (i) we go taking r = constant, but Mis is not gramhted. (ii) B' does no work but our higher w = w + a . state has higher energy; B as taken (I to place of orbit) does notorque, so I= m F x V = constart, so m r 2 w = constart, also not consisted with r= constant The solution to this is that since B increases, B=B(t) is not anstant -> TrE=- = 20 => E is indoud, does work and produces torque => r remais constant. Let's check: Increase on= Stat. Assum he coment padvad by circlins election produces a magu hic field De in direction opposite B e 1D west Then ODE is along Be the leasts law : \ \vec{E} \dl = - \frac{1}{c} \left(d\s^2 \right) \\ \vec{E} \dl = - \frac{1}{c} \l => EZTr = 1 712 AD . Note that Ezpr = world done on e. and N=gEr = \frac{4}{2c} i^2 \lambda B = torque on e . => BL = N dt. The initial trajectory has $\mathcal{E} = \frac{1}{2} m (\omega_r)^2 - \frac{2g^2}{r} \quad \text{and} \quad L_0 = m \omega_r^2$

The final one has
$$\mathcal{E}_{f} = \frac{1}{2} m (r\omega)^{2} - \frac{2q^{2}}{r} = \mathcal{E}_{o} + \frac{1}{2} \pi r_{o}^{2} \frac{\Delta r}{\Delta t} \qquad L = m r^{2} \omega$$

$$N_{ow} = L_{o} + \frac{2}{7} c^{2} \frac{\Delta B}{\delta t} \delta t \Rightarrow 2m r_{o} v_{o} \delta r + m r_{o}^{2} \delta \omega_{o} = \frac{4}{7} r_{o}^{2} \Delta B$$

$$m \dot{\omega}_{r} = qE = r\frac{q}{2c}B \rightarrow \omega = \omega + \frac{q}{2mc}$$

Mule, his already gives
$$\Delta \omega = \frac{1}{2} \omega_{c} = \frac{90}{2000}$$

$$m\omega(\omega_{-}\omega_{L})r = \frac{2g^{2}}{r}$$

$$m \cdot (\omega_0 - \frac{1}{2}\omega_1)(\omega_0 + \frac{1}{2}\omega_1)r = \frac{2g^2}{r} \left(- m\omega_0^2 r \right)$$

Something is wrong? Is the statement three only to linear ords?

pripose (linear response); but would be nice to figure it out
END ADDEADUM

Returning to the grestion of whom the frequency
response becomes relevant we had
$a^2 < l^2 < < \chi_m \frac{c}{\omega^2}$ and now we know $\chi_m = \frac{(\omega_0 a)^2}{c}$
(a=r= qtonic size = atonic separation; le " ¿" because
we used na = 1, but for more media na << 1).
Hyre Cu << coo ~ optical frequencies.
is the condition for Tulw to make sense physically.
Fur optical frequencies and above (and possibly
starting even below that, as the string of ">>" and
a Ssumptions above shows) we may as well
USE u=1 and keep track of c DVM + at
(dominated by $\frac{\partial \vec{P}}{\partial t}$) Mrugh $\tilde{\vec{E}}(\omega)$.
[Note addd: Why tepr fixed who having B \$0? D does no word and
(No be added: Why tepr hixed who having B \$0? D doos no word and no brigge: Eo=Ehigi , Eo=\frac{1}{2}m\ward no - \frac{1}{2} = \frac{1}{2}\frac{1}{m}\ward no -
=) mwfg = mw, r, and 12 = 292 - 12 - 292 + gwr B
=> legs, 2 Valadowus =>