DPA notes Sep 2010

1 Quadratic Hamiltonians

1.1 Bosonic Models

The general noninteracting bosonic Hamiltonian is written
]fl = %\III’ %T’S\IIS ) (1)
where U is a rank-2/N column vector whose Hermitian conjugate is the row vector
qu:(wI,...,@v’wl,...,@bN) ) (2)
Since [T,Z)Z-, 1/);] = .., we have

@57

[\Ilra \Ili] = 27’5 ) Y= <HNXN 0 ) ) (3)
0 _]INXN

with I the identity matrix. Note that the indices r and s run from 1 to 2NV, while 7 and j
run from 1 to N. The matrix H is of the form

n=p 2 @

where A = A" is Hermitian and B = Bt is symmetric.

The Hamiltonian is brought to diagonal form by a canonical transformation:

S

HEABIHE

which is to say ¥ = S ®, or in component form
V; = U b + Vg ¢Z
U = Viada + U6l

where a, like 4, runs from 1 to N. In order that the transformation be canonical, we must
preserve the commutation relations, meaning [qﬁa, (b};] =0, i.€.

(6)

[(I)r7 (I)Te] = Ers : (7)

This then requires
SYSt=8xs=5 |, (8)



which entails

UU-VIV=I UV -VvVUu =0 (9)
UUt - vVt =1 Uvt—vut=o0 . (10)
Note that X2 = Z, where T = (g (]%>’ hence
iyt
Sl=xsty= (_th UK > (11)

Thus, the inverse relation between the ¥ and ® operators is ® = S~ = Y STY U, or

bo = Ut b, — Vit

(12)
oL = Via s + U] .
1.1.1 Bogoliubov equations
We are now in the position to demand
E 0
T _ e
S’HS—E—<0 E) , (13)
where FE is a diagonal N x N matrix. Thus,
HS=SI"l¢e=x8x¢e | (14)

which is to say

<ﬁk®<553=ﬁi‘¥ﬁﬁf$ ' (15)

If the bosonic system is stable, each of the eigenvalues F, is nonnegative. In component
form, this yields the Bogoliubov equations,
Aij Uja + Bij Vi = +U;0 E, (16)
B:] Uja + A:} ‘/ja = _‘/ia Ea ’

with no implied sum on a on either RHS. The Hamiltonian is then

H=Y E,(¢lo,+3) . (17)
At temperature T, we have
<¢er1 ¢b> = n(Ea) 5ab ) (18)
where )
(19)

"E) = BT =1



is the Bose distribution. The anomalous correlators all vanish, e.g. (¢,¢,) = 0. The finite
temperature two-point correlation functions are then

W) =3 {ra Ui Usa + (L4 10) Vi Vi } (20)

a

W) =D {naVia Uja + L+ m,) Up, Vi (21)

a

where n, = n(E,).

1.1.2 Ground state

We have found
P=S'v=xSyv | (22)

hence

¢a - UL‘ wi - chz‘ wg

(23)
=4, Uiy, — 4] Vi
We assume the following Bogoliubov form for the ground state of H:
1G) = Cexp (30 0l0l) 10) (24)

where C' is a normalization constant, @) is a symmetric matrix, and |0) is the vacuum for
the 1 bosons: 1,|/0) = 0. We now demand that |G) be the vacuum for the ¢ bosons:
¢,/ G) = 0. This means

6,¢210) =e? (e724,e2) J0) (25)
where R
Q=3Qyvlv] (26)
We now define X X
U (x) = e "9 ), 79 (27)
and we find 2 ()
i\ —z0 A1 20
726 Q[l/fin]eQ:Qijw; ) (28)
and integrating! we obtain
hi(x) = ey €9 = o)y (z) + @ Qij 7/);[ . (29)
We may now write A A
e g, e = UL’ (e (U; Qi — VaT]) 7/’} , (30)

INote that e~2@ 1/)2 "9 = 1/11 since [T/JLQ] =0.



and we demand that the coefficient of ¢j’ vanish for all a, which yields
Q=@H"vi . (31)

or, equivalently, QT = VU~!. Note that Q' = V*(U*)~! = Q since UTV* = VIU*.

1.1.3 A final note on the boson problem

Note that STHS has the same eigenvalues as H only if ST = S, i.e. only if S is Hermitian.
We have ST = ¥S~1X and therefore

SHS=xS'THS . (32)

2%:(_%* _@) . (33)

Consider the characteristic polynomial P(F) = det(E — XH). Since det(M) = det(M?") for
any matrix M, we consider

Al —BT> - <A* B

e = 5 =(% 5)--rteng (59

where
7=(% ) (3)

and 7! = —7, i.e. 72 = —T. But then we have
P(E)=det(E — Y H)=det(E+J ' YHJT)=det(E+ X H) = P(-E) . (36)

We conclude that the eigenvalues of X H come in (+FE, —F) pairs. To obtain the eigenener-
gies for the bosonic Hamiltonian H , however, as per eqn. 32, we must multiply ST X H S on
the left by >, which reverses the sign of the negative eigenvalues, resulting in a nonnegative
definite spectrum of bosonic eigenoperators (for stable bosonic systems).

1.2 Fermionic Models

The general noninteracting fermionic Hamiltonian is written
H=3V[H,, (37)

where once again ¥ is a rank-2/N column vector whose Hermitian conjugate is the row
vector

\IIT:<¢I,...,¢}V7¢1,...,¢N) . (38)



In contrast to the bosonic case, we now have {wi, w;r} = (5ij with the anticommutator,
hence

{v, v} =6, . (39)
The matrix H is of the form )
B
where A = A" is Hermitian and B = — B! is antisymmetric. Since this is of the same form

as eqn. 33, we conclude that the eigenvalues of # come in (+E, —E) pairs?.

As with the bosonic case, the Hamiltonian is brought to diagonal form by a canonical

transformation: S

—N—
(G U v (¢
()= ) (3) - @
which is to say ¥ = S ®, or in component form

b, = Upy b + Vi 0

Ul = Vig b + UL 66 )

In order that the transformation be canonical, we must preserve the anticommutation rela-
tions, .e. {qba, gb}:} = 0,;, meaning

{2, 0} =4, . (43)
which requires that S is unitary:

Sts=8st=1 , (44)
where 7 is again the identity matrix of rank 2/N. Thus,

UU+VIV=I UV 4+ ViU =0 (45)
UUT + VvVt =1 Uvt+vut=o0 . (46)

The inverse relation between the operators follows from ® = S~1¥ = STU:

bo = Uk, + Vi !

(47)
b = Viat; + U 0],
The transformed Hamiltonian matrix is
SHS =€ = (ﬁ _0E> . (48)

2This is true even though B in eqn. 33 is symmetric rather than antisymmetric. In proving the evenness
of the characteristic polynomial P(F) = P(—FE), we did not appeal to the symmetry or antisymmetry of B.



Without loss of generality, we may take E to be a diagonal matrix with nonnegative entries.
In component notation, the eigenvalue equations are

AijUje + B Vg = U B, (49)

_ij Uja - A;kj ‘/ja = ‘/ia Ea
The Hamiltonian then takes the form
H=Y E,(di¢.—3) - (50)
At temperature T, we have
<¢:rz¢b> = f(Ea) 5ab ) (51)

where

1
~ exp(E/k,T) +1

is the Fermi distribution. As for bosons, the anomalous correlators all vanish: (¢,¢;,) = 0.
The finite temperature two-point correlation functions are then

f(E) (52)

Whey) = {fa Ui Uja + (1= £) Vi Vi }

a

(53)
W) =D {fuVirUia+ (1= f) U Viu}
where f, = f(E,).
1.2.1 Ground state
We write
1G) =Cexp (3@, vful)0) (54)

with Q = —Q', and we demand, as in the bosonic case, that ¢, |G) = 0. Again we define
Q= 1Q;; vyl and

Pilx) = e Q. (55)
We then have
Wilo) _ =@ [y, Q)0 = Q0] = w0 =v+2Quul . (0)
Thus, A A
e @ g, e = UL’ (e (VaTj + UL’ Qij) 7/’;' ) (57)
from which we obtain
Q=—(Uhvt . (58)

Since UTV* + VIU* = 0, we recover Q = —Q".



1.3 Majorana Fermion Models

Majorana fermions satisfy the anticommutation relations {6, 9-} = 20,;. Thus, 0,)? =1

for every i. We also have HT 0, and for this reason they are sometlmes called ‘real’
fermions. If ¢ is the anmhllator for a Dirac particle, with {c cT} = 1, we may define
Majorana fermions 7 and 7 as follows:

(n—in') (59)
(n+im) . (60)

n:c—ch c=

DN[—= N[—=

7=ilc—c) =

The most general noninteracting Majorana Hamiltonian is of the form

H _ Z M@] 62 0] , (61)
where M = —M"' = M* is a real antisymmetric matrix of even dimension 2/N. This is

brought to canonical form by a real orthogonal transformation,
0; =Riala > (62)
where R'R = Z, and where {éa, éb} = 20,,. We have
0 —-F O 0

E, 0 0 0
RIMR=E®icV=|0 0 0 —Ey - . (63)
0 0 Ey 0 e
Thus,
A . N
H= _% ZEa £2a—1 £2a = ZEa(Cthca - %) ) (64)
a=1 a
where
Co = %(£2a—1 - i£2a) ) o = %(£2a 1 + Z£2a) . (65)
1.4 Majorana chain
Consider the Hamiltonian N
H=—i Z Tp Oy Qg (66)
n=1

where 0, = %1 is a Z, gauge field and {am,an} = 2, is the Majorana fermion anti-
commutator. Periodic boundary conditions are assumed, i.e. ay,; = a;. We now make a
gauge transformation to a new set of Majorana fermions,

b=a, , bhy=0y0y , b3=00003 , ... , Oy=009--05_jay . (67)



The Hamiltonian may now be written as
R N
H=-i> 0,0, |, (68)
n=1

where 0y, = 06, with 0 = vazl ;. So the boundary conditions on the § Majoranas are

either periodic (0 = +1) or antiperiodic (0 = —1). We now switch to crystal momentum
space, defining

N
. 1 . 1 L
6 :—Eje—”mo , en:—Eje"me . 69
k /_anl n /—N - k ( )

N

The k-values are quantized according to e?*¥ = . The anticommutators are

{Hm’ 071} = 25m—n,0modN ’ {ek’ ép} = 25k+p,0mod27r . (70)

There are four cases to consider:
Case I: 0 = +1, N even. We have ¢?*V = +1, and the N allowed k values are
27 1
k‘eiﬁx{l,...,§N—1} L k=0 , k=m . (71)

Note that the allowed crystal momenta all occur in {+k,—k} pairs, with the exception of
k =0 and k = 7, which are unpaired.

Case IT : 0 = +1, N odd. We have ¢**V = 41, and the N allowed k values are
2
keiﬁﬂx{l,...,%(N—l)} L k=0 . (72)
Only k = 0 is unpaired.
Case ITI : ¢ =1, N even. We have e?*V = —1, and the N allowed k values are
27 1 1
kexx {4 dw -1} (73)
All the crystal momenta are paired.
Case IV : 0 =1, N odd. We have e**V = —1, and the N allowed k values are
27 1 1
kextx{d . AN-1) L k=r . (74)
Only k = 7 is unpaired.



We may now write

k

= —3 Z <eik é_ ék + ek ék é_k> —1 Z ek 9,% (75)
ke(0,m) keU
ZZsmk‘G 0 —2ZZ€Z —Z'Ze_ik
ke(0,m) ke(0,m) keU

where U denotes the set of unpaired (or self-paired) crystal momenta, i.e. the set of k
for which e¢’* = e~*. Note that {H_k, Hk,} = 20, and 0_, = 9};, so we may define
é_ p = V2 CL and ék =2 ¢, where ¢, is a complex fermion. Thus, we have

H= Z4Sink‘czck—|—E0 , (76)
ke(0,m)
where ' '
By=-2i ) e ®—iY e | (77)
ke(0,m) keU

We now proceed to evaluate £, for our four cases.
Case I : Since U = {0, 7}, we have >, ;e "* = 0. For k € (0, ) we may write k = 2m(/N
with £ € {1, e %N— 1}. We then have

N
N1

B = =2i Y7 N = petn(L) (78)

Note that we have used the identity

Case IT : We have U = {0}. For the main set k£ € (0,7) we may write k = 27¢/N with
te{l,..., (N —1)}. We then have

N+1 1 ' '
e—27rz/N_|_e—z7r/N

am _ 2mil/N _ . _ o I T
E; ZZZE i 2@( = > i ctn<2N> . (80)

Case IIT : We have U = {0}. For k € (0,7) we may write k = 27¢/N + 7/N with
¢€{0,..., 3N —1}. Then

N
N1



Case IV : We have U = {r}. For k € (0,7) we may write k = 27¢/N — /N with
le {1, e %(N—l)}. Thus,
NAL g

(Iv) N N —2mit/N (e TN 41 , m
EO = —2Z€ Z e 41 = —2Z m +1=— ctn (W) . (82)
/=1

Note that in the N — oo limit, in all four cases we have E, = 2N/m + O(1).
2 Jordan-Wigner Transformation

The Jordan-Wigner transformation is an equivalence, in one-dimensional lattice systems,
between the S = % SU(2) algebra and the algebra of spinless fermions. Explicitly, we have

n—1
St =exp <z’7r Z c}cj> o
j=1

n—1 (83)
S, =exp <z’7r Z c}cj> ¢,
j=1
Srzz = CILCn - %
The inverse is then
n—1
cl =exp (iw (5% + %)) St
j=1
n—1 (84)
¢, = exp (iw (SjZ + %)) S,
j=1
Note that €™ has eigenvalues 41, and that
cemle — ¢ , ceime’e = ¢t (85)
Taking the Hermitian conjugate,
eimelect — _f , eimclee — ¢ (86)

The expression
1

exp <z7r§ (8% + %)) = nljllexp (2'77(55 + %)) (87)

Jj=1

is known as a Jordan- Wigner string.
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The nearest-neighbor bilinear transverse spin interaction terms are

. |
+ T iTChC N
STL n+1_ € nncn-i—l_cncn—i-l
hen T
iTCy,C
Sy St =c, el L =cl e,

;
+ ot imepen b F T
Sy Sy 1—ce O 1 = O Gy
t
1T Cy,C o
Sy S =, €T e, =i Cp

On an N-site ring, however, on the ‘last’ link, which connects site NV back to site 1, yields

Sy Sy =— el c}r\,c1
Sy ST = eimM cIcN (89)
Sy St = —eimM C}L\,CI
Sy S = —ei™™ ciCy
where N
M = Zc}cj . (90)
j=1

Note that ™ — (—1)M must commute with every possible term we could write, since
fermion number parity must be conserved.

2.1 Anisotropic XY model

Consider the anisotropic XY model in a perpendicular field on an N-site chain®, with

N-1 N
Hoin = 3 {2 S5 850+ 1, SUSLL  +1 S (1)
n=1 n=
N-1 N
=3 {Ui(henn +ele) + (el +ennen) D (che—3)
n=1 n=1

where J = 3(J, £ J ,)- On an N-site ring, we add the term
AH = J, S5 ST + J, 5% 57

- 92
:—%e”M{JJr(c;fvcl—kcJ{cN)—i-J (chJ{—FclcN)} (92)

Since e™ commutes with H chain and with all fermion bilinears (hence with AH as well),
M

we can specify the eigenvalues as n = ¢ = +1, which are the even and odd fermion

3See E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).
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number sectors, respectively. We then define

— if n=+1

o= e BUET (93)
teyyy ifn=-1

If we write

ik Cr (94)

1
Cn:\/—NEk;e

where the index n refers to real space and k£ to momentum space, we have the wave vector

quantization rule e* = —p, i.e. for even and odd sectors
2r(j + 3)/N ifn=+1
27§ /N ifn=-1
Thus, the Hamiltonian becomes
ﬁring = Z {(JJr cosk + h) CL o+ 3J_ ek c}; cT_k +3J_ e~k c_y ck} + Nk
k
Hy, (96)
A
_ ) > (Wk k ) %
= ¢ . ,
l§)< F " Ak W C]L_k
where
w, =Jycosk+h . A, =iJ_sink . (97)
Diagonalizing via a unitary transformation, we obtain
I:Iring = Z Ek (’Ylifyk B %) ’ (98)
k
where the dispersion relation is
By = Jw? + 18,2 = /(T cosk+ 1) + T2 sin’k (99)
Note that 5,1 H, S, = diag(E,,—E,), where
_ (e vk
a2
where 5 A*
wy, = — ki L= : (101)
V2EL(E) +wy) V2E, (B + wp)
Thus,
Ve = Uy, G, — U, CT—k
i i (102)
Vi = TR Cop T U G,
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Note that u_, = u; = uj, while v_, = —v, = v, and that

Cp = Uy YV +v,’;7T_k

t t (103)
Cp = Up Vg T U Yy,
When we compute correlation functions, we use the fact that
eimele — (cf +e)c —¢)=—=(ch =)l +¢) | (104)

and, defining A; = c} +¢; and B; = c;r- — ¢;, Then the correlation functions are

pm(e) = <Sﬁ ﬁ+€> = % <Bn An+1 Bn—l—l U An—l—f—l Bn+€—1 An+£>
py(0) =Sy Sy ) =

Ioz(é) = < 7ZL 7ZL+Z> = i <An Bn An-l—f Bn+€> ;

where, without loss of generality, we presume £ > 0. These expressions may be evaluated
using Wick’s theorem,

(_1)£< An Bn—i-l An—i—l e Bn-i—é—l An-i—é—l Bn+€> (105)

=

(0105 - Ogp) = Y (=1)7 (0,11 Op2)) ** (Os2r-1) Ogar)) (106)
oelC,y,
where o is one of a special set of permutations C,, of the set {1,...,2r} called contractions,

which are arrangements of the 2r indices into r pairs. Exchanging any two pairs, or ex-
changing the indices within a pair results in the same contraction, so the number of such
contractions is [Cy,.| = (2r)!/(2" - r!). Here (—1)7 is the sign of the permutation 0. As an
example, for r = 2 there are 4!/(4 - 2) = 3 contractions. We then have

pz(e) = % <Aan><An+£Bn+€> - % <AnAn+Z><Ban+Z> + % <Aan+Z><BnAn+Z> . (107)

Now we need the following:

(A Ay =0, (B,B,)=—0p,y (A, B,)=G(n'—n) (108)
The first two of these relations follow by inversion symmetry, i.e.
(A, A,)={(A A,) = (A A)=3{A,.A}) =06, . (109)
with a corresponding argument showing (B, B,,) = —6,,.,. We then have
G(n' —n) = ((c}, +¢,) (ch =)
= 5 30 ({eheb) = (eogeu) + (eoyel ) = () 0= o

kK

1 < 2 2 Zikn ik L Wi F ALY ik —n)
:—Z uy, — || +2ukvk)e e :—Z £ _——F e
NZ N2 \"E,
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for n #n/, and at T' = 0. Note that (B,, A, ) = —G(n—n’) for n # n’ and that G(0) = 1—2v

where v = <c}cj> is the fermion occupation per site, which is translationally invariant. Thus,
we have
p-(0) = 1G2(0) ~ L GO G(-0) (111)
The transverse spin correlations may be expressed as determinants, viz.
G(1) G2 - GO
G(0 G(1 e GUU—1
p,(0) = det ( ) ( ) , ( . ) (112)
G2-4) GB-Y G(1)
and
G(-1) G(0) Gl —2)
G(-2) G(-1) -+ GU-3)
py(£) = det : : . : . (113)
G(-¢) G1-¢) --- G(-1)

Matrices like these which are constant along the diagonals are called Toeplitz matrices. A
matrix M is Toeplitz if M, ; = M, 4 ;4 = m(i — j).

2

2.2 Majorana representation of the JW transformation

With Eqn. 65, which describes how one can write a single Dirac fermion with operators ¢
and ¢! in terms of two Majorana fermions o and 3, i.e. a = ¢+ ¢l and 8 = i(c — cf), we
can write the JW transformation as follows:

X, =(iayBy) (iag By) - (i,_y Br1) vy
Y, =(iay By) (iayBy) - (ia,_1 B,1) By (114)
Z, =—ia, [,

Here we write (X,,,Y,,, Z,,) for the Pauli matrices (o%,0%,02) = (25%,25Y,25%). Note that

n? n’ n’»-n’’n
X, Y, =iZ,. Thus, we have written the N spin operators along the chain in terms of
T

2N Majorana fermions {ay,f;,..., oy, By}, and, through the relations a,, = ¢, + ¢, and
Bn = i(cn — ch), in terms of N Dirac fermions {(cy, c];), s (e C}L\,)} Note that
ia, B, =—27, =exp(inclc,) =1—2cec, (115)

and we thereby recover Eqn. 84.
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