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5-2 The issue is: Can we use the simpler classical expression p =(2mK)’/< instead of the exact

K(1+222)"

relativistic expression p = ? As the relativistic expression reduces to

c

p=(2mK)"? for K <<2mc?, we can use the classical expression whenever K <<1MeV

because mc?* for the electron is 0.511 MeV.

(a) Here 50 eV <<1MeV, so p=(2mK)"?

Lo h ~ he
T 0511 MeV 12 7 (2)(0.511 MeV)(50 eV)]"?
P [(2)(01MY)(50 V) | 511 Me e
1240 eV nm 0173 nm

“[@)(0511x10°)(50) eV |

(b) As 50 eV <<1MeV, p=(2mK)"?

A= he ——=549x10" nm.

[(2)( 0.51152MeV)(50 %103 eV)J /

As this is clearly a worse approximation than in (a) to be on the safe side use the

20172
1+ 2mc )
. . (1+ 2
relativistic expression for p: p = K—— so
c
_h he 1240 eV nm
= 7z = 12
Po(K? +21<mc2)/ [(50x103)2 +(2)(50x10°)(0.511x10° eV)]/

=5.36x10" nm = 0.005 36 nm
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A 10 MeV proton has K =10 MeV << 2mc? =1877 MeV so we can use the classical
expression p =(2mK)"?. (See Problem 5-2)

h hc 1240 MeV fm

- - -905fm=9.05x10"m
P [(2)(9383 MeV)(10 MeV)I”*  [(2)(938.3)(10)(MeV)? |2

h b h_{h} 1
p mK)"?  (2meV)? | (2me)"?

A=

o 6626x107Js | e
(2x9.105x10°" kgx1.602x107"° C)"*

1.226x107° kg"*m? | 4,




70 CHAPTER 5 MATTER WAVES

5-10 As A=2a;,=2(0.0529) nm =0.1058 nm the energy of the electron is nonrelativistic, so we

can use

2 6.626x107* J-s)
__h - ( Js) - =215x107% J=134 eV
2mA~ 2(9.11x10~ kg)(1.058x107" m)

This is about ten times as large as the ground-state energy of hydrogen, which is 13.6 eV.

5-11  (a) In this problem, the electron must be treated relativistically because we must use

relativity when pc = mc? . (See problem 5-5). the momentum of the electron is

—34
p =%=%=6.626x10_20 kg-m/s

and pc =124 MeV >> mc* =0.511 MeV . The energy of the electron is
E= (p202 +mct )1/2

20 2 8 2 6 2 _19 21/2
= [(6.626>< 107 kg-m/s)"(3x10° m/s) +(0.511x10° V)" (1.602x107" J/eV) J
=1.99x1071 J=1.24x10% eV

so that K = E—mc? ~124 MeV .

(b) The kinetic energy is too large to expect that the electron could be confined to a
region the size of the nucleus.

b 6.626x10™ J-s
mA  (9.11x107 kg)(1x107" m)

the principle of conservation of energy, we get

5-12  Using p= % =mv, we find that v = =7.27x10° m/s. From

2 (911x10°% kg )(7.27x10° m/s)’
eV:m; | g)(z /s) =2.41x1077 J=151 V.

Therefore V =151V .
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2 2

e m.v )
5-15 For a free, non-relativistic electron E = 7 0 2} . As the wavenumber and angular
m

frequency of the electron’s de Broglie wave are given by p =#k and E =%, substituting

e

. o . nk* do _hk _ p
these results gives the dispersion relation w=——.50 v, =—=—= P vp -
2m, °c dk mg mg
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5-17

CHAPTER 5 MATTER WAVES
2_ .22 22
E*=p°c +(mec )
2.2 2\27/2
E:[p c +(mec ) J .As E=hwo and p=rk

heo = [hzkzc2 +(mec2 )2 T/Z or

2 7Y2
w(k)=[k2c2+(mecz) ]

hZ

_a)_
Up—¥—

k nk

i

_do

2\2 72 2
Vg =7~ :1{1{%2 +(mccj } 2kc? = ke 212
dklg, 2 h [k2c2+(mec2/h) }

. {[kzcz +(mcc2/h)2T/2

P8

p }{[kzcz +(mec2/h)2 T/z} =c?

<c if v, >C.

Therefore, v N
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5-23  (a) ApAx = mAvAx > g

Ap > h 2z J-s

> = =0.25 m/s
drmAx 4z (2kg)(1m)

(b) The duck might move by (0.25 m/s)(5 s) =1.25 m . With original position
uncertainty of 1m, we can think of Ax growingto 1m+1.25m=225m.

5-24  (a) AxAp=h soif Ax=r, Ap = u
B
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b k=P

2m,  2m,  2mr?
T
r
2 2
S
2m.r r
L dE ke’ n .
(c) To minimize E take = 3 +L2 =0=r=——-=Bohrradius =4, . Then
T myr”  r mgke

22 2 2.4
Eo| [ MR} (ke | _mKE g3y
2m, h h 2h

5-26  The full width at half-maximum (FWHM) is 110 MeV. So AE =55 MeV and using
AE

At

min~*min :E'
n658x107° eV.s
2AE 2(55><106 ev)

7 = lifetime ~ 2At_; =1.2x107% s

min

=6.0x10%* s

5-27 For a single slit with width a, minima are given by siné = ﬂ where n=1, 2, 3, ... and
a

sin@ztanﬁzﬁ, x—]zi and ﬁ:ﬁzuzi or
L L a L a L a
}v:anZSAXZ.l Cm:O.SZSA
L 20 cm
2R (he) (1.24x10* eV-A)’

2m  2mA*  2mc*2* 2(5.11x10° eV)(0.525 A
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1.8)(1.6x107Y
5-32  (a) _E_! ) J ):4.34><1014 Hz
h 6.63x107* s

(b) /1:?:691 nm

© AEs 1 6:63x107 ]s
S At 27(2x107° s)

AE>5276x107%° J=3.30x107" eV

g(@)=2r)"? [ V(t)(coswt—isinwt)dt, V(t)sinwt is an odd function so this

534 (a)

—00

T 1/2 :
integral vanishes leaving g(w)= 227)7 V2 IVO coswtdt = (5) Vo Smor . A sketch of
7 @

g(w) is given below.

AQ(w
8@ =
: —V,t
7 S o T
"7|\ \/I\Y‘ 7))
“‘4\\/: 0 :\/—r"‘
| Sro i |
27 |7 27
T T T T
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b As the major contribution to this pulse comes from @ ’s between —— and —, let
] p
T T

T .
Aw ~— and since At=r1.
T

AwAt = (ﬁ)r =7
T

A1

2At 2(05x107° s)
the range is 2Af , the range is 2x10° Hz . For At =0.5 ns, the range is
2Af =2x10° Hz.

(c)  Substituting At =0.5 us in Aa)zé we find =1x10° Hz . As

400 . +00 5 5 . 2.0 +00 —0!2 2_ ix az
5-35 (a) f(x) :% ﬂ(k)e’kxdk =% J‘ o=@ (k=ko)” pikx 7. 2%6—05 K j e (K2 —(2k; +ie/ )k)dk '
Now complete the square in order to get the integral into the standard form
| e dz

—o0
. ) 2 ) 2
e—az(kz—(Zkoﬂx/az)k) _ e+a2(k0+1x/2a2) e—az(k—(koﬂx/Zaz))

f(.X') _ A e_azkg eaz(ko +1'x/2a2 )2 +J?O e—az(k—(ko +1'Jc/20¢2 ))2 dk
2

N2z k=—o0
A —x2/4a2 ikox i —a?z?
=——c¢ e e dz
N2 Z:J._w
ix +00 . 7[1/2 A 2/4 -
where z =k—(k +—). Since e dz=", f(x)=—=¢e "/ "% The real
0 2a? Z:I_oo a f®) av?2
partof f(x), Re f(x) is Re f(x)= 35 e 4 cos kyx and is a gaussian envelope
a
multiplying a harmonic wave with wave number k;. A plot of Re f(x) is shown
below:
Re f(x)
A
4 7x2/4a2
T / \/ 2"
Al N e
28y YR
cos kox I SUNN - 4 -
Comparing A_54a g pex28) implies Ax=a .
a2
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Ak = L Finally AxAk = a(i) 1 .
2a 2a) 2

1
C By same reasoning because a =,
(c) y g AR

2
mu _h “ . This is different from the

5-36 E:K:%muzzhf and ﬂv:%'vphase:fﬂ:

o a2 e

speed u at which the particle transports mass, energy, and momentum.






