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5 
Matter Waves 
 
 

 
5-2 The issue is: Can we use the simpler classical expression ( )= 1 22p mK  instead of the exact 

relativistic expression 
( )+

=

2 1 221 mc
KK

p
c

? As the relativistic expression reduces to 

( )= 1 22p mK  for << 22K mc , we can use the classical expression whenever << 1 MeVK  

because 2mc  for the electron is 0.511 MeV. 
 
(a) Here <<50 eV 1 MeV , so ( )= 1 22p mK  
 

 
( )( )( ) ( )( )( )[ ]

( )( )( )( )

λ = = =
  

= =
 × 

2

1 2 1 20.511 MeV

1 26 2

2 0.511 MeV 50 eV2 50 eV

1 240 eV nm
0.173 nm

2 0.511 10 50 eV

c

h h hc
p

 

 
(b) As <<50 eV 1 MeV , ( )= 1 22p mK  
 

 
( )( )( )

λ −= = ×
 × 2

3
1 230.511 MeV

5.49 10  nm
2 50 10  eV

c

hc . 

 
 As this is clearly a worse approximation than in (a) to be on the safe side use the 

relativistic expression for p: 
( )+

=

2 1 221 mc
Kp K
c

 so 

 

 ( ) ( ) ( )( )( )
λ

−

= = =
 + × + × × 

= × =

1 2 1 22 2 23 3 6

3

1 240 eV nm

2 50 10 2 50 10 0.511 10  eV

5.36 10  nm 0.005 36 nm

h hc
p K Kmc  
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5-7 A 10 MeV proton has = << =210 MeV 2 1 877 MeVK mc  so we can use the classical 

expression ( )= 1 22p mK . (See Problem 5-2) 
 

 
( )( )( )[ ] ( )( )( )( )

λ −= = = = = ×
  

15
1 2 1 22

1 240 MeV fm
9.05 fm 9.05 10  m

2 938.3 MeV 10 MeV 2 938.3 10 MeV
h hc
p

 

 

5-8 
( ) ( ) ( )

λ − = = = =   
1 2

1 2 1 2 1 22 2 2
h h h h V
p mK meV me

 

 ( )
λ

λ

−
−

− −

−
−

 × =
 × × × × 
 ×

=  
 

34
1 2

1 231 19

1 29 2
1 2

1 2

6.626 10  Js

2 9.105 10  kg 1.602 10  C

1.226 10  kg m

V

V
sC
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5-10 As ( )λ = = =02 2 0.052 9  nm 0.105 8 nma  the energy of the electron is nonrelativistic, so we 
can use 

 

 ( )
( )( )

λ

λ

−
−

− −

= =

× ⋅
= = = × =

× ×

2

2342
18

2 231 10

 with ;
2

6.626 10  J s
21.5 10  J 134 eV

2 2 9.11 10  kg 1.058 10  m

php K
m

hK
m

 

 
 This is about ten times as large as the ground-state energy of hydrogen, which is 13.6 eV. 
 
5-11 (a) In this problem, the electron must be treated relativistically because we must use 

relativity when ≈ 2pc mc . (See problem 5-5). the momentum of the electron is 
 

 
λ

−
−

−
× ⋅

= = = × ⋅
34

20
14

6.626 10  J s 6.626 10  kg m s
10  m

hp  

 
 and = >> =2124 MeV 0.511 MeVpc mc . The energy of the electron is 
 

 

( )
( ) ( ) ( ) ( )− −

−

= +

 = × ⋅ × + × × 
= × = ×

1 22 2 2 4

1 22 2 2 220 8 6 19

11 8

6.626 10  kg m s 3 10  m s 0.511 10  eV 1.602 10  J eV

1.99 10  J 1.24 10  eV

E p c m c

 
 
 so that = − ≈2 124 MeVK E mc . 
 
(b) The kinetic energy is too large to expect that the electron could be confined to a 

region the size of the nucleus. 
 

5-12 Using 
λ

= =
hp mv , we find that 

( )( )λ

−

− −
× ⋅

= = = ×
× ×

34
6

31 10
6.626 10  J s 7.27 10  m s

9.11 10  kg 1 10  m
hv

m
. From 

the principle of conservation of energy, we get  
 

 
( )( )−

−× ×
= = = × =

231 62
179.11 10  kg 7.27 10  m s

2.41 10  J 151 eV
2 2

mveV . 

 
 Therefore = 151 VV . 
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5-15 For a free, non-relativistic electron = =
22

e 0

e2 2
pm vE
m

. As the wavenumber and angular 

frequency of the electron’s de Broglie wave are given by = =p k  and ω= =E , substituting 

these results gives the dispersion relation ω =
= 2

e2
k
m

. So ω
= = = =

=
0

e e
g

pd kv v
dk m m

. 
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5-17 ( )= +
22 2 2 2

eE p c m c  

 ( ) = + 
1 222 2 2

eE p c m c . As ω= =E  and = =p k  

 

( )

( )
( )

( )

( )

( )

ω

ω

ω

ω
−

 = + 

 
 = +
  

 +    = = = +  
   

  
= = + =  

      + 
  +  =  
 
 

= =

=

=

=

= =

=

0

1 222 2 2 2
e

1 222
e2 2

2

1 22 1 22 2 2 22e 2 e

1 222 2
2 2 2e

1 222 2 2
e

1 222 2 2
e 2

 or

1 2
2

p

g
k

p g

k c m c

m c
k k c

k c m c m cv c
k k k

m cd kcv k c kc
dk k c m c

k c m c
v v k

k ( ){ } + = =
1 222 2 2

ec m c c

 

 Therefore, <gv c  if >pv c . 
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5-23 (a) ∆ ∆ = ∆ ∆ ≥
=
2

p x m v x  

 
( )( )
π

π π
⋅

∆ ≥ = =
∆

2  J s 0.25 m s
4 4 2 kg 1 m

hv
m x

 

 
(b) The duck might move by ( )( ) =0.25 m s 5 s 1.25 m . With original position 

uncertainty of 1m, we can think of ∆x  growing to + =1 m 1.25 m 2.25 m . 
 

5-24 (a) ∆ ∆ = =x p  so if ∆ =x r , ∆ ≈
=p
r
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(b) ( )∆
= ≈ =

=22 2

2
e e e2 2 2

pp
K

m m m r
 

 
= −

= −
=

2

2 2

2
e2

keU
r

keE
rm r

 

 

(c) To minimize E take = − + = ⇒ = = =
= =2 2 2

03 2 2
e e

0 Bohr radiusdE ke r a
dr m r r m ke

. Then 

    
= − = = −    
    

=
= = =

22 2 2 4
2e e e

2 2 2
e

13.6 eV
2 2

m ke m ke m k eE ke
m

. 

 

5-26 The full width at half-maximum (FWHM) is 110 MeV. So ∆ = 55 MeVE and using 

∆ ∆ =
=

min min 2
E t , 

 

 ( )
τ

−
−

−

× ⋅
∆ = = ≅ ×

∆ ×

= ∆ = ×

= 16
24

min 6

23
min

6.58 10  eV s 6.0 10  s
2 2 55 10  eV

lifetime ~ 2 1.2 10  s

t
E

t

 

 

5-27 For a single slit with width a, minima are given by λθ =sin n
a

 where = …1, 2, 3,n  and 

θ θ≈ =sin tan x
L

, λ
=1x

L a
 and λ λ−

= ⇒ =2 2 12x x x
L a L a

 or 

 

 
( ) ( )

( )( )

λ

λ λ

∆ ×
= = =

× ⋅
= = = = =

×

242 2 2

2 2 2 25

5 Å 2.1 cm 0.525 Å
20 cm

1.24 10  eV Å
546 eV

2 2 2 2 5.11 10  eV 0.525 Å

a x
L

p h hcE
m m mc
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5-32 (a) 
( )( )−

−

×
= = = ×

× ⋅

19
14

34

1.8 1.6 10  J
4.34 10  Hz

6.63 10  J s
Ef
h

 

 

(b) λ = = 691 nmc
f

 

 

(c) 
( )π

−

−
× ⋅

∆ ≥ =
∆ ×
= 34

6
6.63 10  J s
2 2 10  s

E
t

 

 − −∆ ≥ × = ×29 105.276 10  J 3.30 10  eVE  
 

5-34 (a) ( ) ( ) ( )( )ω π ω ω
∞

−

−∞
= −∫1 22 cos sing V t t i t dt , ( ) ωsinV t t  is an odd function so this 

integral vanishes leaving ( ) ( ) ( )τ ωτ
ω π ω

π ω
−= =∫

1 2
1 2

0 0
0

sin22 2 cosg V tdt V . A sketch of 

( )ωg  is given below. 
 

 

g(ω)

ω
0

−
2π
τ

−
π
τ

π
τ

2π
τ

2
π
V t,
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(b) As the major contribution to this pulse comes from ω ’s between π
τ

−  and π
τ

, let 

πω
τ

∆ ≈  and since τ∆ =t . 

 

 ( )πω τ π
τ

∆ ∆ = =t  

 

(c) Substituting µ∆ = 0.5 st  in πω∆ =
∆t

 we find 
( )−

∆
= = ×

∆ ×
6

6
1 1 1 10  Hz

2 2 0.5 10  st
. As 

the range is ∆2 f , the range is × 62 10  Hz . For ∆ = 0.5 nst , the range is 

∆ = × 92 2 10  Hzf . 
 

5-35 (a) ( ) ( ) ( ) ( )( )α αα α

π π π

+∞ +∞ +∞
− − +− − −

−∞ −∞ −∞
= = =∫ ∫ ∫

2 2 222 2 2
00 0 21

2 2 2
k k ix kk k kikx ikxA Af x a k e dk e e dk e e dk . 

Now complete the square in order to get the integral into the standard form 
+∞

−

−∞
∫

2aze dz : 

 

 

( )( ) ( ) ( )( )

( ) ( ) ( )( )

α α α α α α

α α α αα

α α

π

π

− − + + + − − +

+∞
+ − − +−

=−∞
+∞

− −

=−∞

=

=

=

∫

∫

2 22 2 2 2 2 2 2
0 0 0

2 22 2 2 22 2
0 00

2 2 2 2
0

2 2 2

2 2

4

2

2

k k ix k k ix k k ix

k ix k k ixk

k

x ik x z

z

e e e
Af x e e e dk

A e e e dz

 

 

 where 
α

 = − + 
 0 22

ixz k k . Since α π
α

+∞
−

=−∞
=∫

2 2
1 2

z

z
e dz , ( ) α

α
−=

2 2
04

2
x ik xAf x e e . The real 

part of ( )f x , ( )Re f x  is ( ) α

α
−=

2 24
0Re cos

2
xAf x e k x  and is a gaussian envelope 

multiplying a harmonic wave with wave number 0k . A plot of ( )Re f x  is shown 
below: 

 

 

Re f x( )

x  

A e x

α
α

2
2 24−

cos k x0  
 

 Comparing α

α
− 2 24

2
xA e  to ( )− ∆ 22x xAe  implies α∆ =x . 
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(c) By same reasoning because α =
∆

2
2

1
4 k

, 
α

∆ =
1

2
k . Finally ( )α

α
∆ ∆ = =

1 1
2 2

x k . 

 

5-36 = = =21
2

E K mu hf  and λ =
h

mu
. λ= = = =

2

phase phase2 2
mu h uv f v

h mu
. This is different from the 

speed u at which the particle transports mass, energy, and momentum. 
 




