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(a)

Normalization requires

1= |yfdx= A? j'i cos? (
4

(HNE D on (),

2
ﬂx)dx:
L
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The time development of ¥ is given by Equation 6.8 or

¥(x, t)= J‘a(k)ei{kx—w(k)t}dk _ (CTQ)EOOO e{ikx—iw(k)t—azkz}dk )

T

2
with o(k)= o for a free particle of mass m. As in Example 6.3, the integral may be reduced
m

ht
to a recognizable form by completing the square in the exponent. Since @(k)t = (—2 )kz , we
m
iht
group this term together with a?k* by introducing 42 = o? +12— to get
m

. 2 2
i — VL% S 3 L
tkx—w(k)t—a“k (ﬂk Zﬁj e .

Then, changing variables to z = Sk —% gives

O e :(C—aj 2[4
‘P(x/ t) [ﬂ\/;je I_we ﬂ e .

To interpret this result, we must recognize that fis complex and separate real and

a2 | o int RtV
imaginary parts. Thus, £ | =la"+—| =« +(2—) and the exponent for V¥ is
m m
2(,2_int

X (0‘ _1271) x? . .

v P o +(imaginary terms)

'8 4|ﬂ| 4|:a +(2ma):|
then

W (x, B =GOl



We see that apart from a phase factor, ¥ (x, t) is still a gaussian but with amplitude

27\1/2
diminished by and a width Ax(t) = (az +(2—j j wherea = Ax(0) is
ma

. *
(a4 +(2%)2)1/4

the initial width.

6-5 (a) Solving the Schrodinger equation for U with E=0 gives

_ d*y 1\ _e/p n? [ 4x?
If w=Ae "' then LY = (4Ax° — 6 AxI? (—Jex/L,LI: 2 6.
v dx? ( ) Iy 2ml? )\ I?

-3h%

e <0:

(b) U(x) is a parabola centered at x =0 with U(0)=

Au
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6-10

CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

Since the particle is confined to the box, Ax can be no larger than L, the box length. With
2,2

n =0, the particle energy E, = g is also zero. Since the energy is all kinetic, this implies

ml?
<p§> =0.But (p,)=0 is expected for a particle that spends equal time moving left as right,

giving Ap, =, l<p,2(>—(px )2 =0. Thus, for this case Ap,Ax =0, in violation of the uncertainty

principle.

n*h? 352

E =" o AE=E,-E =2 _
" 8mI? 2 T g2

(1240 eV nm/c)
8(938.28x10° eV/c?)(10™ nm)
hc 1240 eV nm
TAE 6.14x10° eV

This is the gamma ray region of the electromagnetic spectrum.

AE=(3)

- =6.14 MeV

=2.02x10"* nm

_ n*h?
8ml?

) 34 1.\?
L. (663x10™ Js) —=6.03x107% [ =37.7 eV
8mL”  8(9.11x10™" kg)(10™"" m)

n

(a) E, =377¢eV
E, =37.7x2% =151 eV
E, =37.7x3% =339 eV
E, =37.7x4* =603 eV

(b) hf:%:Eni—E

g

he 1240 eV-nm

E, -E, E, -E,

For ny =4, n; =1, E, —-E, =603eV-37.7eV=565eV, 1=219 nm
n=4,n =2, A=275nm

n=4,n =3, 1=470 nm
n=3,n=1, =412 nm
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n=3,n =2, A=659 nm
n=2,n=1, 1=109 nm

6-12

6-13

) 1/2
AE:’ZC:( h 2][2212] and L:{@/SW} =793x10"" m =7.93 A.
8mL

A

mc

(a) Proton in a box of width L=0.200 nm =2x107"" m

2 6.626x107* J-s)’
E =" = ( I's) ~=822x107 ]
8m,L"  8(1.67x10™ kg)(2x107" m)
-22
82210 7] _ 5134107 ev

T 1.60x107° JjeV
(b) Electron in the same box:

2 6.626x107 J-s)°
L ( ) - =1.506x10""" ] =9.40 eV .

em I 8(9.11x107" kg)(2x10°° m)

E,

(c) The electron has a much higher energy because it is much less massive.



(VL1 (1 T (<7/3)e (<7/3)ke?
@) u_(élﬂgodj[ 3 §+( 1+E)+( 1)}_ dred  d

21? n?

b K =2F, = -
() 1 8mx 94 36md>

(+7/3)ezk} h? 0

(o) E=U+K and d—E:O for a minimum 5 - 3=
dd d 18md
2 2
d :LZ or d= h 5
(7)(18ke*m) 42mke

(663x10™ J-s)’

= ~=0.5x10""" m =0.050 nm
(42)(9.11x107" kg)(9x10” N-m?-C?)(1.6x107" C)

d

(d) Since the lithium spacing is 4, where Na® =V and the density is % where m is the

mass of one atom, we get

m=28x10""m

13 1/3
a:(v—m) = =| 1.66x107 kgx
Nm density

=0.28 nm

1/3
7
530 kg/m?> ]

(2.8 times larger than 2d)
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6-16  (a) v (x)= Asin (”Tx) , L=3 A. Normalization requires
L L
1=[ly*dx=[A®sin’ (”—x)dx =

12
so A= (E)
L

13 1/3 573 12
P=] |y/|2dx=(3) | sinz(ﬂ—x) . j sin? gdg = 2[”—(3) }:0.1955.
! L L 6 8

1007 x 2\V2
b =Asin| —— |, A==
®) v Sm( L ) (L)

L3 1 1007/3
:3.[ ( OOEXde 2( L ) [ sin? ¢d¢— 1 [100ﬂ_lsin(2007rﬂ
L 1007/ 6 4 3
:1—[ ! }sin(z—ﬁ) _1 V3 0.3319
3 L2007 3/ 3 400x
(c) Yes: For large quantum numbers the probability approaches % .
6-17  (a) The wavefunctions and probability densities are the same as those shown in the two

lower curves in Figure 6.16 of the text.

35A

2 X
b P = Tdx=—"— ( jd
(b) A j|w|x 0 J'sm ETY

154 1 15 A
1[35 10 . (nij‘S
—| =——sin| —
502 4r 5 15

1
In the above result we used jsin2 axdx = §—4—sin (2ax) . Therefore,
a

RTINS VR e BREWEE)
1

1.5

= [2.0 +2 (sin0.37 —sin 0.77z)} =1 12.00+0.0]=0.200
10 7 10

35 35 35
(c) P, -1 [ sin® (ﬂ—xjdx :l[ﬁ—isin(o.élﬁx)} :i[x—isin(O.lLﬁx)}
5 15 5 5 2 472' 1.5 10 27[ 15

= %{Z.O +(0.798){sin[0.47 (1.5)]—sin[0.47(3.5)]}} = 0.351



212

n°h
d Using E =
(d) R

we find E; =0.377 eV and E, =1.51eV.
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A particle within the well is subject to no forces and, hence, moves with uniform speed,
spending equal time in all parts of the well. Thus, for such a particle the probability density is
uniform. That is, P, (x) = constant . The constant is fixed by requiring the integrated

L

probability to be unity, thatis, 1= [P, (x)dx=CL or C = % . To find (x) we weight the
0

possible particle positions according to the probability density P. to get

k 12
(x) = gxPC (x)dx —2[71)

= é . Similarly, <x2> is found by weighting the possible values of

x? with P.:

L

<x2> = £x2PC (x)dx = I(%j

0

The classical and quantum results for (x) agree exactly; for <x2> the quantum prediction is
2

L . . ..
smaller by an amount 2—2 which, however, goes to zero in the limit of large quantum
nr

numbers n, where classical and quantum results must coincide (correspondence principle).

(a) Normalization requires
1= [yl dx=C*[e? (1-¢ )2 dx =C?[(e?* =2¢7 +¢7*)dx . The integrals are
o 0 0

2
elementary and give 1=C> {% -2 (%) + i} = (1:—2 . The proper units for C are those of

(length) ™" thus, normalization requires C = (12)2 nm 2.
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(b) The most likely place for the electron is where the probability |y|* is largest. This is

also where i itself is largest, and is found by setting the derivative Z—"y equal zero:

d -x —2x -x -x
0:%:C{—e +2€2}:C6 {26 —1}.

X

The RHS vanishes when x =0 (a minimum), and when 2¢™" =1, or x=In2 nm .

Thus, the most likely position is at x, =In2 nm =0.693 nm .

(o) The average position is calculated from

(x)y= Oj? x|y dx :Czofxe_zx (1—6_" )2 dx = Czoj?x(e_zx —2e7%% +e_4x)dx.
0 0

—00

The integrals are readily evaluated with the help of the formula [ xe™dx = iz to get
0 a

x)=C? —1 -2 —1 +—1 =(C? —13 . Substituting C> =12 nm™" gives
g g
4 9/ 16 144

(x)= 13 nm =1.083 nm .
12

We see that (x) is somewhat greater than the most probable position, since the

probability density is skewed in such a way that values of x larger than x, are

P
weighted more heavily in the calculation of the average.

The possible particle positions within the box are weighted according to the probability

L L
density |y|* = %sin2 (nLij The position is calculated as (x) = J'xll,z/l2 dx = %j xsin’ (mzxjdx .
0 0

d V4
Making the change of variable 6 = % (so that d6 = ”Tx) gives (x)= %J' @sin” nfde . Using
70

the trigonometric identity 2sin” @ =1-cos26, we get (x) = Lz{j' 6d6— [ 6 cos2nd d@} .An
7o 0

2
integration by parts shows that the second integral vanishes, while the first integrates to %

Thus, (x)= é, independent of n. For the computation of <x2> , there is an extra factor of x in

2 (z T
the integrand. After changing variables to 6 = ”Tx we get <x2> = L—3{j 6°do - ) 6* cos2n6 d&} .
7o 0

3
The first integral evaluates to %, the second may be integrated by parts twice to get

[6% cos2n0d0 =~ | psin2n0d6 = (%)acosznmg ==
0 ny 2n 2n
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Then <x2> :ﬁ{ﬁ—s—i} :L—2— 5

213 2n2] 3 2mn)*’

The symmetry of |y (x)|* about x=0 can be exploited effectively in the calculation of

average values. To find (x)

(x)= | 2y (0P dx

—00

We notice that the integrand is antisymmetric about x =0 due to the extra factor of x (an odd
function). Thus, the contribution from the two half-axes x >0 and x <0 cancel exactly,

leaving (x)=0. For the calculation of <x2> , however, the integrand is symmetric and the

half-axes contribute equally to the value of the integral, giving

(x)= [ 2|y dx =2C* [ xPe > 0dx .
0 0

3
Two integrations by parts show the value of the integral to be Z(X?Oj . Upon substituting for
1 ) x3 2 2 2 X
C%, weget (x*)=2| — 2(—()) =% and Ax= 2 =% In
weget (1) =2( L)) 2] -2 ana sv= (o)) <[ 2] -2
calculating the probability for the interval —Ax to +Ax we appeal to symmetry once again to
write

Ax
pP= j ly|? dx = 2C? j e 20 gy = 2(:2( 2) 200 Z1-e2 20757

—Ax

0

or about 75.7% independent of x .





