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6-2 (a) Normalization requires  
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6-4 The time development of Ψ is given by Equation 6.8 or  
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 with ( )ω =
= 2

2
k

k
m

 for a free particle of mass m. As in Example 6.3, the integral may be reduced 

to a recognizable form by completing the square in the exponent. Since ( )ω  =  
 
= 2

2
t
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β
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2
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  To interpret this result, we must recognize that β is complex and separate real and 

imaginary parts. Thus, β α α  = + = +  
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 We see that apart from a phase factor, ( )Ψ ,  x t  is still a gaussian but with amplitude 

diminished by 
( )( )
α

α + = 1 424
2

t
m

 and a width ( ) α
α

  ∆ = +   
  

= 1 22
2

2
t

x t
m

 where ( )α = ∆ 0x  is 

the initial width. 
 
6-5 (a) Solving the Schrödinger equation for U with = 0E  gives 
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(b) ( )U x  is a parabola centered at = 0x  with ( )
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6-7 Since the particle is confined to the box, ∆x  can be no larger than L, the box length. With 

= 0n , the particle energy =
2 2

28n
n hE
mL

 is also zero. Since the energy is all kinetic, this implies 

=2 0xp . But = 0xp  is expected for a particle that spends equal time moving left as right, 

giving ∆ = − =22 0x x xp p p . Thus, for this case ∆ ∆ = 0xp x , in violation of the uncertainty 

principle. 
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 This is the gamma ray region of the electromagnetic spectrum. 
 

6-10 =
2 2
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 For =i 4n , =f 1n , − = − =
i f

603 eV 37.7 eV 565 eVn nE E , λ = 2.19 nm  

 =i 4n , =f 2n , λ = 2.75 nm  
 =i 4n , =f 3n , λ = 4.70 nm  
 =i 3n , =f 1n , λ = 4.12 nm  
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 =i 3n , =f 2n , λ = 6.59 nm  
 =i 2n , =f 1n , λ = 10.9 nm  
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6-13 (a) Proton in a box of width −= = × 100.200 nm 2 10  mL  
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(b) Electron in the same box: 
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(c) The electron has a much higher energy because it is much less massive. 
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6-15 (a) ( ) ( )
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(d) Since the lithium spacing is a, where =3Na V  and the density is Nm
V

 where m is the 

mass of one atom, we get 
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 (2.8 times larger than 2d) 
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6-16 (a) ( )
π

ψ  =  
 
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x

x A
L
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(c) Yes: For large quantum numbers the probability approaches 1
3

. 

6-17 (a) The wavefunctions and probability densities are the same as those shown in the two 
lower curves in Figure 6.16 of the text. 
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(d) Using =
2 2

28
n hE
mL

 we find =1 0.377 eVE  and =2 1.51 eVE . 
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6-28 A particle within the well is subject to no forces and, hence, moves with uniform speed, 
spending equal time in all parts of the well. Thus, for such a particle the probability density is 
uniform. That is, ( ) = constantcP x . The constant is fixed by requiring the integrated 

probability to be unity, that is, ( )= =∫
0

1
L

cP x dx CL  or =
1C
L

. To find x  we weight the 

possible particle positions according to the probability density cP  to get 
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 
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LL

c
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L
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2x  with cP : 
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 The classical and quantum results for x  agree exactly; for 2x  the quantum prediction is 

smaller by an amount 
( )π

2

22
L
n

 which, however, goes to zero in the limit of large quantum 

numbers n, where classical and quantum results must coincide (correspondence principle). 
 
6-29 (a) Normalization requires 
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CC . The proper units for C are those of 

( )−1 2length  thus, normalization requires ( ) −= 1 21 212  nmC . 
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(b) The most likely place for the electron is where the probability ψ 2  is largest. This is 

also where ψ  itself is largest, and is found by setting the derivative ψd
dx

 equal zero: 

 

 { } { }ψ − − − −= = − + = −20 2 2 1x x x xd C e e Ce e
dx

. 

 
 The RHS vanishes when = ∞x  (a minimum), and when − =2 1xe , or = ln 2 nmx . 

Thus, the most likely position is at = =ln 2 nm 0.693 nmpx . 

 
(c) The average position is calculated from 
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 The integrals are readily evaluated with the help of the formula 
∞

− =∫ 2
0

1axxe dx
a

 to get 

( ){ } { }= − + =2 21 1 1 132
4 9 16 144

x C C . Substituting −=2 112 nmC  gives  

 

 = =
13 nm 1.083 nm
12

x . 

 
 We see that x  is somewhat greater than the most probable position, since the 

probability density is skewed in such a way that values of x larger than px  are 

weighted more heavily in the calculation of the average. 
 
6-30 The possible particle positions within the box are weighted according to the probability 

density 
π

ψ  =  
 

22 2 sin
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L L
 The position is calculated as 
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Making the change of variable θ =
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L

 (so that 
π
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d
L
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θ θ θ

π
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2
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2 sinLx n d . Using 

the trigonometric identity θ θ= −22sin 1 cos 2 , we get 
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π
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 
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0 0
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integration by parts shows that the second integral vanishes, while the first integrates to π
2

2
. 

Thus, =
2
Lx , independent of n. For the computation of 2x , there is an extra factor of x in 

the integrand. After changing variables to 
π

θ =
x

L
 we get 
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The first integral evaluates to π
3

3
, the second may be integrated by parts twice to get  
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 Then 
( )

π π
ππ

 
= − = − 

 

2 3 2 2
2

3 2 23 3 22
L L Lx

nn
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6-31 The symmetry of ( )ψ 2x  about = 0x  can be exploited effectively in the calculation of 

average values. To find x  
 

 ( )ψ
∞

−∞
= ∫ 2x x x dx  

 
 We notice that the integrand is antisymmetric about = 0x  due to the extra factor of x (an odd 

function). Thus, the contribution from the two half-axes > 0x  and < 0x  cancel exactly, 
leaving = 0x . For the calculation of 2x , however, the integrand is symmetric and the 

half-axes contribute equally to the value of the integral, giving 
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 Two integrations by parts show the value of the integral to be   
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3
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2
x . Upon substituting for 
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x xx

x
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1 221 22 2 0 0

2 2
x xx x x . In 

calculating the probability for the interval −∆x  to +∆x  we appeal to symmetry once again to 
write 

 

 ψ
∆+∆ ∆
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x x x x

x
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 or about 75.7% independent of 0x . 
 




