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6-20 The Schrödinger equation, after rearrangement, is ( ) ( ){ } ( )
ψ ψ= −

=

2

2 2
2d m U x E x

dx
. In the well 

interior, ( ) = 0U x  and solutions to this equation are sin kx  and cos kx , where =
=

2
2

2mEk . The 

waves symmetric about the midpoint of the well ( = 0x ) are described by  
 

 ( )ψ = cosx A kx   − < < +L x L  
 
 In the region outside the well, ( ) =U x U , and the independent solutions to the wave equation 

are α± xe  with ( )( )α = −
=

2
2

2m U E . 

 
(a) The growing exponentials must be discarded to keep the wave from diverging at 

infinity. Thus, the waves in the exterior region, which are symmetric about the 
midpoint of the well are given by 

 
 ( ) αψ −= xx Ce   >x L  or < −x L . 

 
 At =x L  continuity of ψ  requires α−=cos LA kL Ce . For the slope to be continuous 

here, we also must require α−− = −sin LAk kL Ce . Dividing the two equations gives the 
desired restriction on the allowed energies: α=tank kL . 

 

(b) The dependence on E (or k) is made more explicit by noting that α+ =
=

2 2
2

2mUk , 

which allows the energy condition to be written { }= −
=

1 2
2

2
2tan mUk kL k . Multiplying 

by L, squaring the result, and using θ θ+ =2 2tan 1 sec  gives ( ) ( ) =
=

2
22

2
2sec mULkL kL  

from which the desired form follows immediately, ( ) =
=

2sec mUk kL . The ground 

state is the symmetric waveform having the lowest energy. For electrons in a well of 
height = 5 eVU  and width =2 0.2 nmL , we calculate 

 

 
( )( )( )( )

( )
×

= =
⋅=

3 2 22

2 2

2 511 10  eV 5 eV 0.1 nm2 1.312 7
197.3 eV nm

cmUL
c

. 
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 With this value, the equation for θ = kL  
 

 ( )θ
θ
= =1 21.312 7 1.145 7

cos
 

 
 can be solved numerically employing methods of varying sophistication. The 

simplest of these is trial and error, which gives θ = 0.799  From this, we find 
−= 17.99 nmk , and an energy  

 

 
( ) ( )

( )
−⋅

= = =
×

=
22 12 2

3 2

197.3 eV nm 7.99 nm
2.432 eV

2 2 511 10  eV
ckE

m c
. 

 
6-21 = 4n  
 

 

0 

0 

L

L

ψ x( )

ψ 2

 
 
 Note that the = 4n  wavefunction has three nodes and is antisymmetric about the midpoint 

of the well. 

n = 4  
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6-23 Inside the well, the particle is free and the Schrödinger waveform is trigonometric with 

wavenumber ( )=
=

1 2

2
2mEk : 

 
 ( )ψ = +sin cosx A kx B kx  ≤ ≤0 x L . 
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 The infinite wall at = 0x  requires ( )ψ = =0 0B . Beyond =x L , ( ) =U x U  and the 

Schrödinger equation ( ){ } ( )
ψ ψ= −

=

2

2 2
2d m U E x

dx
, which has exponential solutions for <E U  

 

 ( ) α αψ − += +x xx Ce De ,  >x L  
 

 where ( )
α − =   =

1 2

2
2m U E . To keep ψ  bounded at = ∞x  we must take = 0D . At =x L , 

continuity of ψ  and ψd
dx

 demands 

 

 
α

αα

−

−

=

= −

sin

cos

L

L

A kL Ce

kA kL Ce
 

 
 Dividing one by the other gives an equation for the allowed particle energies: α= −cotk kL . 

The dependence on E (or k) is made more explicit by noting that α+ =
=

2 2
2

2mUk , which 

allows the energy condition to be written ( ) = − −  =

1 2
2

2
2cot mUk kL k . Multiplying by L, 

squaring the result, and using θ θ+ =2 2cot 1 csc  gives ( ) ( ) =
=

2
22

2
2csc mULkL kL  from which 

we obtain  
=  
 =

1 22

2
2

sin
kL mUL

kL
. Since θ

θsin
 is never smaller than unity for any value of θ , 

there can be no bound state energies if <
=

2

2
2 1mUL . 

 

6-24 After rearrangement, the Schrödinger equation is ( ) ( ){ } ( )
ψ ψ= −

=

2

2 2
2d m U x E x

dx
 with 

( ) ω= 2 21
2

U x m x  for the quantum oscillator. Differentiating ( ) αψ −=
2xx Cxe  gives  

 

 ( ) αψ α ψ −= − +
2

2 xd x x C
dx

 

 
 and 
 

 ( ) ( ) ( ) ( ) ( )αα ψψ αψ α α ψ αψ−= − − − = −
22

2
2

2
2 2 2 6xxdd x x Ce x x x

dxdx
. 
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 Therefore, for ( )ψ x  to be a solution requires ( ) ( ){ } ( )ωα α− = − = −
== =

2
2 2

2 2
2 22 6 m m mEx U x E x . 

Equating coefficients of like terms gives ωα =
=

2 m  and α =
=2

26 mE . Thus, ωα =
=2

m  and 

α
ω= =

=
=

23 3
2

E
m

. The normalization integral is ( ) αψ
∞

−

−∞
= =∫ ∫

222 221 2 xx dx C x e dx  where the 

second step follows from the symmetry of the integrand about = 0x . Identifying a with 

α2 in the integral of Problem 6-32 gives ( )( )π
α α

=
1 2

2 11 2
8 2

C  or α
π

 
=  
 

1 4332C . 

6-25 At its limits of vibration = ±x A  the classical oscillator has all its energy in potential form: 

ω= 2 21
2

E m A  or 
ω

 =  
 

1 2

2
2EA

m
. If the energy is quantized as ( ) ω= + =1

2nE n , then the 

corresponding amplitudes are ( )
ω
+ =   

= 1 22 1
n

nA
m

. 

 
6-26 ( )cP x dx  is proportional to the time that the particle spends in the interval dx. This time dt is 

inversely related to its speed v as =
dxdt
v

, so that ( ) =cP x dx Cdt  or ( ) =c
CP x
v

. But the speed 

of the oscillator varies with its position in such a way as to keep the total energy constant: 
 

 ω= +2 2 21 1
2 2

E mv m x   or  ω= −2 2 22Ev x
m

. 

 

 Writing E in terms of the classical amplitude as ω= 2 21
2

E m A  gives ( )ω= −
1 22 2v A x  and 

( ) ( )
ω

−
= −

1 22 2
c

CP x A x . The constant C is a normalizing factor chosen to ensure a total 

probability of one: 
 

 ( ) ( )
ω

−

− −
= = −∫ ∫

1 22 21
A A

c
A A

CP x dx A x dx . 

 
 The integral is evaluated with the trigonometric substitution θ= sinx A  (so that 

θ θ= cosdx A d ) to get 
π

π

π
θ

ω ω−
= =∫

2

2
1

CC d . Thus, 
ω
C  is just 

π
1  and ( )

( )
π

=
−

1 22 2

1
cP x

A x
 for a 

classical oscillator with amplitude of vibration equal to A. 
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6-32 The probability density for this case is ( )ψ −=
22 2

0 0
axx C e  with ( )π

=
1 4

0
aC  and ω

=
=

ma . For 

the calculation of the average position ( )ψ
∞

−∞
= ∫ 2

0x x x dx  we note that the integrand is an 

odd function, so that the integral over the negative half-axis < 0x  exactly cancels that over 
the positive half-axis ( > 0x ), leaving = 0x . For the calculation of 2x , however, the 

integrand ψ 22
0x  is symmetric, and the two half-axes contribute equally, giving 

 

 ( )( )π∞
−= =∫

2 1 2
2 2 2 2

0 0
0

12 2
4

axx C x e dx C
a a

. 

 

 Substituting for 0C  and a gives 
ω

= =
=2 1

2 2
x

a m
 and ( ) ( )ω

∆ = − =
= 1 21 22 2

2
x x x

m
. 
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6-33 (a) Since there is no preference for motion in the leftward sense vs. the rightward sense, 

a particle would spend equal time moving left as moving right, suggesting = 0xp . 
 
(b) To find 2

xp  we express the average energy as the sum of its kinetic and potential 

energy contributions: = + = +
22

2 2
xx pp

E U U
m m

. But energy is sharp in the 

oscillator ground state, so that ω= = =0
1
2

E E . Furthermore, remembering that 

( ) ω= 2 21
2

U x m x  for the quantum oscillator, and using 
ω

=
=2

2
x

m
 from Problem 6-

32, gives ω ω= = =2 21 1
2 4

U m x . Then ( ) ( )ω ω
= − = =

= =2
02 2

4 2x
mp m E U m . 

 

(c) ( ) ( )ω
∆ = − =

= 1 21 222

2x x x
mp p p  

 

6-34 From Problems 6-32 and 6-33, we have ( )ω
∆ =

= 1 2

2
x

m
 and ( )ω

∆ =
= 1 2

2x
mp . Thus, 

( ) ( )ω
ω

∆ ∆ = =
= = =1 2 1 2

2 2 2x
mx p

m
 for the oscillator ground state. This is the minimum 

uncertainty product permitted by the uncertainty principle, and is realized only for the 
ground state of the quantum oscillator. 

 

6-35 Applying the momentum operator [ ] ( )=
=

x
dp

i dx
 to each of the candidate functions yields 

 

(a) [ ] ( ){ } ( ) ( ){ }=
=sin cosxp A kx k A kx
i

 

 

(b) [ ] ( ) ( ){ } ( ) ( ) ( ){ }− = +
=sin cos cos sinxp A kx A kx k A kx A kx
i

 

 

(c) [ ] ( ) ( ){ } ( ) ( ) ( ){ }+ = − +
=cos sin sin cosxp A kx iA kx k A kx iA kx
i

 

 

(d) [ ] ( ){ } ( ) ( ){ }− −=
=ik x a ik x a

xp e ik e
i

 

 
 In case (c), the result is a multiple of the original function, since 
 

( ) ( ) ( ) ( ){ }− + = +sin cos cos sinA kx iA kx i A kx iA kx . 
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 The multiple is ( )( ) =
= =ik k
i

 and is the eigenvalue. Likewise for (d), the operation [ ]xp  

returns the original function with the multiplier =k . Thus, (c) and (d) are eigenfunctions of 
[ ]xp  with eigenvalue =k , whereas (a) and (b) are not eigenfunctions of this operator. 
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6-37 (a) Normalization requires 
 

 
{ }{ }

{ }

ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

∞ ∞

−∞ −∞
= Ψ = + +

= + + +

∫ ∫

∫ ∫ ∫ ∫

2 * *2
1 2 1 2

2 22 * *
1 2 2 1 1 2

1 dx C dx

C dx dx dx dx
. 

 
 The first two integrals on the right are unity, while the last two are, in fact, the same 

integral since ψ1  and ψ 2  are both real. Using the waveforms for the infinite square 
well, we find 

 

 { }π π π π
ψ ψ        = = −       

       ∫ ∫ ∫2 1
0 0

2 32 1sin sin cos cos
L Lx x x x

dx dx dx
L L L L L L

 

 
 where, in writing the last line, we have used the trigonometric exponential identities 

of sine and cosine. Both of the integrals remaining are readily evaluated, and are 

zero. Thus, { }= + + + =2 21 1 0 0 0 2C C , or =
1
2

C . Since ψ1,2  are stationary states, 

they develop in time according to their respective energies 1,2E  as − =iEte . Then 

( ) { }ψ ψ− −Ψ = += =1 2
1 2, iE t iE tx t C e e . 

 
(c) ( )Ψ ,x t  is a stationary state only if it is an eigenfunction of the energy operator 

[ ]
∂

=
∂
=E i

t
. Applying [ ]E  to Ψ  gives 

 

 [ ] { } { }ψ ψ ψ ψ− − − −− −   Ψ = + = +   
   

= = = == =
= =

1 2 1 21 2
1 2 1 1 2 2

iE t iE t iE t iE tiE iEE C i e i e C E e E e . 

 
 Since ≠1 2E E , the operations [ ]E  does not return a multiple of the wavefunction, and 

so Ψ  is not a stationary state. Nonetheless, we may calculate the average energy for 
this state as  



100 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION 

 

 
[ ] { }{ }

{ }
ψ ψ ψ ψ

ψ ψ

+ + − −= Ψ Ψ = + +

= +

∫ ∫

∫ ∫

= = = =1 2 1 2* 2 * *
1 2 1 1 2 2

2 22
1 1 2 2

iE t iE t iE t iE tE E dx C e e E e E e dx

C E dx E dx
 

 

 with the cross terms vanishing as in part (a). Since ψ1,2  are normalized and =2 1
2

C  

we get finally +
= 1 2

2
E EE . 

 
6-38 The average position at any instant is given by 
 

 
{ }{ }ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

∞ ∞
+ + − −

−∞ −∞
∞ ∞ ∞ ∞

− Ω + Ω

−∞ −∞ −∞ −∞

= Ψ = + +

 
= + + + 

 

∫ ∫

∫ ∫ ∫ ∫

= = = =1 2 1 22 * *2
1 2 1 2

2 22 * *
1 2 1 2 2 1

iE t iE t iE t iE t

i t i t

x x dx C x e e e e dx

C x dx x dx e x dx e x dx
 

 

 where −
Ω =

=
2 1E E . The last two integrals on the right are identical, since ψ1,2  are real. 

Furthermore, ( )− Ω + Ω+ = Ω2cosi t i te e t  and =2 1
2

C  from Problem 6-37. Thus, the result takes 

the form ( )= + Ω0 cosx x A t  with definitions given. To evaluate 0x , we note that =
2
Lx  for 

any stationary state of the well. Therefore, { }= + = =0
1 0.5 nm
2 2 2 2

L L Lx  no matter which two 

stationary states we use in the superposition. To find A, we use the ground and first excited 
state waves of the infinite well to write 

 

 { }π π π π       = = −       
       ∫ ∫

0

2 32 1sin sin cos cos
L x x x x

A x dx x dx
L L L L L L

. 

 
 Integrating by parts once, we obtain 
 

 
( ){ } ( ) { }

( ) { } { }

π π π π
π π

π π
π π π

       = − − −       
       

   = + − = − + − + = − = −   
   

∫
0 0

2

2 2
0

3 31 13sin sin 3sin sin
3 3

31 160 9 cos cos 9 1 9 1 0.18 nm.
3 9 9

L L

L

x x x xL LA dx
L L L L L L

x xL L L
L L L

 

 
 For electrons in this well we have the energies 

( )
( )( )

⋅
= = =

22

1 2 2 2
1.24 keV nm

0.376 eV
8 8 511 keV 1 nm

chE
mL c

 and ( )= =2
2 12 1.50 eVE E . The period of 

oscillation is π
=
Ω
2T , or 

 

 
−

−× ⋅
= = = ×

−

15
15

2 1

4.136 10  eV s 3.68 10 s
1.124 eV

hT
E E

. 
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 A classical electron with (kinetic) energy +
=1 2 0.94 eV

2
E E  would have speed  

 

 ( ) ( )−= = ×
1 2

32 1.92 10Ev c
m

 

 

 and would require −= × 152 3.47 10  sL
v

 to shuttle back and forth in the well one time, a 

distance =2 2 nmL . 
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7 
Tunneling Phenomena 
 
 

7-2 (a) To the left of the step the particle is free with kinetic energy E and corresponding 

wavenumber ( )=
=

1 2

1 2
2mEk : 

 
( )ψ −= +1 1ik x ik xx Ae Be  ≤ 0x  

 
 To the right of the step the kinetic energy is reduced to −E U  and the wavenumber is 

now ( )− =   =

1 2

2 2
2m E Uk  

 
( )ψ −= +2 2ik x ik xx Ce De  ≥ 0x  
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 with = 0D  for waves incident on the step from the left. At = 0x  both ψ  and ψd
dx

 

must be continuous: ( )ψ = + =0 A B C  
 

( )
ψ

= − =1 2
0

d ik A B ik C
dx

. 

 

(b) Eliminating C gives ( )+ = −1

2

kA B A B
k

 or    − = +   
   

1 1

2 2
1 1k kA B

k k
. Thus, 

 
( )
( )

( )
( )

( )

− −
= = =

++

= − =
+

2 22
1 2 1 2

2 2
1 21 2

1 2
2

1 2

1
1

41

k k k kBR
A k kk k

k kT R
k k

 

 
(c) As →E U , →2 0k , and → 1R , → 0T  (no transmission), in agreement with the 

result for any energy <E U . For →∞E , →1 2k k  and → 0R , → 1T  (perfect 
transmission) suggesting correctly that very energetic particles do not see the step 
and so are unaffected by it. 

 
7-3 With = 25 MeVE  and = 20 MeVU , the ratio of wavenumber is 

( ) ( )= = = =
− −

1 2 1 2
1

2

25 5 2.236
25 20

k E
k E U

. Then from Problem 7-2 
( )
( )

−
= =

+

2

2

5 1
0.146

5 1
R  and 

= − =1 0.854T R . Thus, 14.6% of the incoming particles would be reflected and 85.4% would 
be transmitted. For electrons with the same energy, the transparency and reflectivity of the 
step are unchanged. 

 
7-4 The reflection coefficient for this case is given in Problem 7-2 as 
 

( )
( )

( )
( )

− −
= = =

++

2 22
1 2 1 2

2 2
1 21 2

1
1

k k k kBR
A k kk k

. 

 
 The wavenumbers are those for electrons with kinetic energies = 54.0 eVE  and 

− = + =54.0 eV 10.0 eV 64.0 eVE U : 
 

( ) ( )= = =
−

1 2 1 2
1

2

54 eV 0.918 6
64 eV

k E
k E U

. 

 

 Then, ( )
( )

−−
= = ×

+

2
3

2
0.918 6 1

1.80 10
0.918 6 1

R  is the fraction of the incident beam that is reflected at the 

boundary. 
 




