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Quantum Mechanics in Three
Dimensions

2 2 2
g1 plml(mY) [m| (1
2m |\ L, L, L,

2 2
L =L, L,=L,=2L.Let Zm—ﬂLz =E,.Then E=E, (41112 +15 + n§) . Choose the quantum
numbers as follows:
m ) 13 E£
0
1 1 1 6 ground state
1 2 1 9 * first two excited states
1 1 2 9 *
2 1 1 18
1 2 2 12 * next excited state
2 1 2 21
2 2 1 21
2 2 2 24
1 1 3 14 * next two excited states
1 3 1 14 *

Therefore the first 6 states are wq11, W21, Wi12, Wi, V113, and w3 with relative energies

E£ =6,9,9,12, 14, 14. First and third excited states are doubly degenerate.

0
8-2 (a) m=1,n=1,n3=1
a2e? 3R 3(6.626x10° Js)’

- - - =452x1078 =282 eV
2ml?  8ml?  8(9.11x10™ kg)(2x10™ m)’

0

(b) nm=2,n=1,n=1o0r

m=1,n=2,n3=1or
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n1=1, n2=1, Tl3=2

6h?
E,=——=2E,=56.4¢V
Vemrz T
8-3 n? =11
2 2 2 2
(@  E=|2T e HfrT
2mL 2\ mL
(b) o My 13
1 1 3
1 3 1 3-fold degenerate
3 1 1

(0) W13 = Asin ”—xjsin(%y Sin(&r_z)

8-4 (a) v(x, y) =y (x)y, (y). In the two-dimensional case, y = A(sink;x)(sink,y) where

k=17 and k, = 2%
L L
o g rlien)
o 2ml?
2_2

If welet E, = % , then the energy levels are:
m

m 1, E
E
1 1 1 S vy
1 2 k] - Y12
2 :|d0ubly degenerate
2 1 5 - Y
2
2 2 4 > Wy




124

8-7

8-8

CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

The stationary states for a particle in a cubic box are, from Equation 8.10

¥ (x, y, z, t)= Asin(kx)sin(kyy)sin(k;z)e E" 0<x, y, x<L
=0 elsewhere
where k; = anﬂ , etc. Since ¥ is nonzero only for 0 < x < L, and so on, the normalization

condition reduces to an integral over the volume of a cube with one corner at the origin:

1= [dx[dy[dz|¥ (x, t) = A {(f)sin2 (klx)dx£ sin’ (kzy)dy(f) sin? (kSZ)dZ}

L
.But kL =mnx, so the last

L
Using 2sin” @ =1-cos26 gives J'sin2 (kyx)dx = L —Lsin (2k;x)

0 2 4k 0
term on the right is zero. The same result is obtained for the integrations over y and z. Thus,

3 32
normalization requires 1= A* (%) or A= (%) for any of the stationary states. Allowing

the edge lengths to be different at L;, L,, and L; requires only that [’ be replaced by the
1/2 1/2 12
box volume L;L,L; in the final result: A = 2022 LN (i) where
L JLL, )\ Ly LiL,L, 1%
V =L,L,L; is the volume of the box. This follows because it is still true that the wave must

vanish at the walls of the box, so that k;L; =n;7, and so on.

Inside the box the electron is free, and so has momentum and energy given by the de Broglie
relations |p|=7|k| and E =he with E = (c2 p|” +m?c* )1/2 for this, the relativistic case. Here

k=(ky, k,, k3) is the wave vector whose components k; , k,, and k; are wavenumbers
along each of three mutually perpendicular axes. In order for the wave to vanish at the walls,

the box must contain an integral number of half-wavelengths in each direction. Since

27 o
A, ==— and so on, this gives
1
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L

/12) Ny 7

L= —-= k, =—=—
”2(2 or R=Tp
L:na(%) or k3:n3—ﬂ

h 2
Thus, |p|2 =nlk]* = #n? {kl2 +k3 + k§} = (”Tj {nlz +n3 +n§} and the allowed energies are

12
h 2

= KETC) {n12 +nk + ng} + (mc2 )2} . For the ground state n; =n, =n; =1. For an electron
confined to L =10 fm, we use m =0.511 MeV/c2 and 7c =197.3 MeV fm to get

2 1/2
E- {3[(”)(19Z§’fMQV fm)} +(0.511 MeV)Z} ~107 MeV .
m

8-10 n=4,1=3,and m; =3.
(a) L=[1(1+D]V?*n=[3(3+1)]"> h=2v3h=3.65x10"* Js

(b) L, =mh=3h=3.16x10""Js



126 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

12 3/2
812 w(r)= (l) (ij el
r

)

(a) yAr)

(b) The probability of finding the electron in a volume element dV is given by |y[>dV .
Since the wave function has spherical symmetry, the volume element dV is identified
here with the volume of a spherical shell of radius r, dV =4z r*dr . The probability of
finding the electron between r and r+dr (that is, within the spherical shell) is
P=lyldV =dzr* |y dr.

(© p

@ [PV = dxflp rdr - 4n(§)[i] femy2g, (ig

0./0 ay

joj?e_m/”"rzdr
0

Integrating by parts, or using a table of integrals, gives

[lwl*av :[%}{4%)3 (%ﬂ .

o202 4 34,
(e) P =4zx[|y|* r*dr where = and r, ==
"
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Ll
P= (éj [rPe®/odr  letz= 2r
a a

n
3
= l.|'z2e_zalz
23
= _%(22 +2z+ 2)(3’Z |f (integrating by parts)

=17 s 20 0496
2 2

8-13  Z=2 for He"
(a) For n=3, [ can have the values of 0, 1, 2

=0 — ml=0
=1 - m=-1,0,+1
=2 - m=-2,-1,0,+1, +2

72
(b) All states have energy E; = 3i2(1£3.6 eV)

E,=-6.04eV.

814  Z=3 for Li**

(a) n=1->1=0->m =0
n=2-1=0->m=0
and I=1->m;=-1, 0, +1
2
(b) For n=1, E 2—[:;’—2j(13.6):—122.4 eV

2
For n=2, E, = —[i—zjm.e) =-30.6 eV
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8-16 For a d state, [ =2. Thus, m; can take on values -2, -1, 0,1, 2. Since L, =m;h, L, can be

+2h, +h, and zero.
8-17  (a) For a d state, [ =2
L=[1(1+D]"* h=(6)"*(1.055x107* Js) =2.58x 107 Js
(b) For an fstate, =3
L=[1(1+D]"* n=(12)"*(1.055x10™* Js) = 3.65x10* Js
8-18  The state is 63

(a) n=6

~13.6
®)  E, = Ey=— eV=-0378eV

(c) For a g-state, [ =4
L=[1(I1+1)]V* h = (4x5)> h =v20h = 4.47h

(d) m; canbe -4,-3,-2,-1,0,1,2,3,0r4

L m m
L =mh; cos@=—%= L h=—L
= L [a+D]*" 20
m, —4 -3 -2 -1 0 1 2 3 4
L —4h -3h —2h —h 0 h 2% 3n 4h

Z

¢ 153.4° 132.1° 116.6° 102.9° 90° 77.1° 63.4° 47.9° 26.6°

8-19  When the principal quantum number is 7, the following values of [ are possible:
1=0,1,2,..., n-2, n—1. For a given value of ], there are 2/+1 possible values of m; . The

maximum number of electrons that can be accommodated in the n'" level is therefore:

(2(0)+1)+(2(1)+1)+...+(Zl+1)+...+(2(n—1)+1):21§11+n§l:2nz_zll+n.
=0 =0 1=0

k
But 3= k(k+1)
1=0

—2(n;1)n+n:n2.

so the maximum number of electrons to be accommodated is




821  (a)

(b)

(©)

822 Ry, (r)= Are % where A=

MODERN PHYSICS

3/2
1//25(1’):;12 ij (2—i]e‘f/2“0 At r=a;,=0529x10"" m we find
4(27)"*\ a, a,

, 1\ e 1\
Wzs(ﬂo)zm(%j (2-De =(0-380)[%J

1

3/2
W} =9.88 x 1014 m_3/2
. X m

= (0.380)[

Wae (a ) =(9.88x10™ m™2)* =9.75x10% m™

Using the result to part (b), we get Py, (ay) = 47a3 [, (ay)|* = 3.43x10"° m~.

1
2(6)"2 ay?

P(r)=1R3, (r)= A’rte

(ry=[rP(r)dr = A> [ r°¢”/dr = A%a§5! = 5a, = 2.645 A
0 0
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2
8-24 P, (;’):i1’26_2r/”0 for hydrogen ground state, ll(r):—kL is potential energy (Z=1)
1s 3 ydrogen g ; p gy
0

2w 5
[re” /0 gy
)

4ke

(U) = [U(r) P (r)dr =
0

2 2 o
= —%(%}j [ze*dz  where z = 2r

o 0 o
—ke?
= =-2(13.6eV)=-272¢€V.
o
. ke? ke?
To find (K), we note that (K)+(U)=(E) = Byl -13.6 eV so, (K)=—=+13.6 eV .
4o Ao



134 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

8-30  The averages (r) and <r2> are found by weighting the probability density for this state

P, (r)= 4(%} r?e 241" with r and 7, respectively, in the integral from 7 =0 to r =co:
ap

(ry=[rPy(r)dr= 4(%} [ 322130 4,

0 9 Jo
() =[P (r)dr= 4(%) [ e 2 gy
‘ 0/0

a

Substituting z = 2zr gives
o
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12
and Ar = ((rz > —(r)? )1/ 2 %0[3 —%} =0.866 (%0) . The momentum uncertainty is deduced

from the average potential energy

o 3% 3 2 2
Uy =-kze* | b, (rdr = —akz? (Ej [re?#1% = —4kZe? Zz (”—0) __kZey
o’ a ) b g 27 a
2 2
Then, since E =— k(Ze) for the 1s level, and a, = h_2 , we obtain
g m, ke

2
<P2>=2me<K>=2m6(E-(u»:M:(@j '

2a, ag
12 Zh

— and ArAp =0.866% for any Z,

With (p) =0 from symmetry, we get Ap = (<P2>)
Ay

consistent with the uncertainty principle.





