8 Quantum Mechanics in Three Dimensions

8-1
$$
E = \frac{\hbar^2 \pi^2}{2} \left| \left(\frac{n_1}{r} \right)^2 + \left(\frac{n_2}{r} \right)^2 + \left(\frac{n_3}{r} \right)^2 \right|
$$

 $=\frac{\hbar^2\pi^2}{2m}\left[\left(\frac{n_1}{L_x}\right)^2+\left(\frac{n_2}{L_y}\right)^2+\left(\frac{n_3}{L_z}\right)^2\right]$ $2m \mid L_x$ $(L_y) \mid L_z$ $E = \frac{\hbar^2 \pi^2}{2m} \left| \left(\frac{n_1}{L_x} \right)^2 + \left(\frac{n_2}{L_y} \right)^2 + \left(\frac{n_1}{L_x} \right)^2 \right|$ $L_x = L$, $L_y = L_z = 2L$. Let $\frac{\hbar^2 \pi^2}{8mL^2} = E_0$ *mL* Then $E = E_0 \left(4n_1^2 + n_2^2 + n_3^2 \right)$. Choose the quantum numbers as follows:

Therefore the first 6 states are ψ_{111} , ψ_{121} , ψ_{112} , ψ_{122} , ψ_{113} , and ψ_{131} with relative energies = 0 $\frac{E}{E_0}$ = 6, 9, 9, 12, 14, 14. First and third excited states are doubly degenerate.

8-2 (a)
$$
n_1 = 1
$$
, $n_2 = 1$, $n_3 = 1$

$$
E_0 = \frac{3h^2 \pi^2}{2mL^2} = \frac{3h^2}{8mL^2} = \frac{3(6.626 \times 10^{-34} \text{ Js})^2}{8(9.11 \times 10^{-31} \text{ kg})(2 \times 10^{-10} \text{ m})^2} = 4.52 \times 10^{-18} \text{ J} = 28.2 \text{ eV}
$$

(b)
$$
n_1 = 2
$$
, $n_2 = 1$, $n_3 = 1$ or
 $n_1 = 1$, $n_2 = 2$, $n_3 = 1$ or

$$
n_1 = 1, n_2 = 1, n_3 = 2
$$

$$
E_1 = \frac{6h^2}{8mL^2} = 2E_0 = 56.4 \text{ eV}
$$

8-3 $n^2 = 11$

(a)
$$
E = \left(\frac{\hbar^2 \pi^2}{2mL^2}\right) n^2 = \frac{11}{2} \left(\frac{\hbar^2 \pi^2}{mL^2}\right)
$$

(b)
$$
\frac{n_1}{1} \frac{n_2}{1} \frac{n_3}{3}
$$

1 3 1 3-fold degenerate
 $\frac{3}{1} \frac{1}{1} \frac{1}{1}$

(c)
$$
\psi_{113} = A \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{\pi y}{L}\right) \sin\left(\frac{3\pi z}{L}\right)
$$

$$
\psi_{131} = A \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{3\pi y}{L}\right) \sin\left(\frac{\pi z}{L}\right)
$$

$$
\psi_{311} = A \sin\left(\frac{3\pi x}{L}\right) \sin\left(\frac{\pi y}{L}\right) \sin\left(\frac{\pi z}{L}\right)
$$

8-4 (a)
$$
\psi(x, y) = \psi_1(x)\psi_2(y)
$$
. In the two-dimensional case, $\psi = A(\sin k_1 x)(\sin k_2 y)$ where $k_1 = \frac{n_1 \pi}{L}$ and $k_2 = \frac{n_2 \pi}{L}$.

$$
(b) \tE:
$$

 $=\frac{\hbar^2 \pi^2 \left(n_1^2+n_2^2\right)}{n_1^2+n_2^2}$ $2mL^2$ $n_1^2 + n$ *mL* If we let $E_0 = \frac{\hbar^2 \pi^2}{mL^2}$, then the energy levels are:

8-7 The stationary states for a particle in a cubic box are, from Equation 8.10

$$
\Psi(x, y, z, t) = A \sin(k_1 x) \sin(k_2 y) \sin(k_3 z) e^{-iEt/\hbar} \quad 0 \le x, y, x \le L
$$

= 0 elsewhere

where $k_1 = \frac{n_1 \pi}{L}$, etc. Since Ψ is nonzero only for $0 < x < L$, and so on, the normalization condition reduces to an integral over the volume of a cube with one corner at the origin:

$$
1 = \int dx \int dy \int dz \left| \Psi(\mathbf{r}, t) \right|^2 = A^2 \left\{ \int_0^L \sin^2(k_1 x) dx \int_0^L \sin^2(k_2 y) dy \int_0^L \sin^2(k_3 z) dz \right\}
$$

Using $2\sin^2 \theta = 1 - \cos 2\theta$ gives $\int_0^1 \sin^2 (k_1 x) dx = \frac{L}{2} - \frac{1}{4k_1} \sin (2k_1 x) \Big|_0^1$ $\int_0^L \sin^2(k_1 x) dx = \frac{L}{2} - \frac{1}{4k_1} \sin(2k_1 x) \Big|_0^L$. But $k_1 L = n_1 \pi$, so the last term on the right is zero. The same result is obtained for the integrations over *y* and *z*. Thus, normalization requires $1 = A^2 \left(\frac{L}{2}\right)^3$ or $A = \left(\frac{2}{L}\right)^{3/2}$ for any of the stationary states. Allowing the edge lengths to be different at L_1 , L_2 , and L_3 requires only that L^3 be replaced by the box volume $L_1 L_2 L_3$ in the final result: $A = \left\{ \left(\frac{2}{L_1} \right) \left(\frac{2}{L_2} \right) \left(\frac{2}{L_3} \right) \right\}^{1/2} = \left(\frac{8}{L_1 L_2 L_3} \right)^{1/2} = \left(\frac{8}{V} \right)^{1/2}$ $1 / (2 / (23))$ (422) $A = \left\{ \left(\frac{2}{L_1} \right) \left(\frac{2}{L_2} \right) \left(\frac{2}{L_3} \right) \right\}^{\frac{1}{2}} = \left(\frac{8}{L_1 L_2 L_3} \right)^{\frac{1}{2}} = \left(\frac{8}{V} \right)^{\frac{1}{2}}$ where $V = L_1 L_2 L_3$ is the volume of the box. This follows because it is still true that the wave must vanish at the walls of the box, so that $k_1 L_1 = n_1 \pi$, and so on.

8-8 Inside the box the electron is free, and so has momentum and energy given by the de Broglie relations $|\mathbf{p}| = \hbar |\mathbf{k}|$ and $E = \hbar \omega$ with $E = (c^2 |\mathbf{p}|^2 + m^2 c^4)^{1/2}$ for this, the relativistic case. Here ${\bf k} = (k_1, k_2, k_3)$ is the wave vector whose components k_1 , k_2 , and k_3 are wavenumbers along each of three mutually perpendicular axes. In order for the wave to vanish at the walls, the box must contain an integral number of half-wavelengths in each direction. Since $\lambda_1 = \frac{2\pi}{k_1}$ $\frac{2\pi}{k_1}$ and so on, this gives

$$
L = n_1 \left(\frac{\lambda_1}{2}\right) \quad \text{or} \quad k_1 = \frac{n_1 \pi}{L}
$$
\n
$$
L = n_2 \left(\frac{\lambda_2}{2}\right) \quad \text{or} \quad k_2 = \frac{n_2 \pi}{L}
$$
\n
$$
L = n_3 \left(\frac{\lambda_3}{2}\right) \quad \text{or} \quad k_3 = \frac{n_3 \pi}{L}
$$

Thus, $|\mathbf{p}|^2 = \hbar |\mathbf{k}|^2 = \hbar^2 \left\{ k_1^2 + k_2^2 + k_3^2 \right\} = \left(\frac{\pi \hbar}{L} \right)^2 \left\{ n_1^2 + n_2^2 + n_3^2 \right\}$ and the allowed energies are $=\left[\left(\frac{\pi \hbar c}{L}\right)^2 \left\{n_1^2 + n_2^2 + n_3^2\right\} + \left(mc^2\right)^2\right]$ $\left(\frac{hc}{L}\right)^2 \left\{n_1^2 + n_2^2 + n_3^2\right\} + \left(mc^2\right)^2\right]^{1/2}$ $\left(\frac{hc}{L}\right)^2 \left\{ n_1^2 + n_2^2 + n_3^2 \right\} + \left(mc^2 \right)^2$. For the ground state $n_1 = n_2 = n_3 = 1$. For an electron confined to $L = 10$ fm, we use $m = 0.511$ MeV/ c^2 and $\hbar c = 197.3$ MeV fm to get $=\left\{3\left[\frac{(\pi)(197.3 \text{ MeV fm})}{10 \text{ fm}}\right]^2 + (0.511 \text{ MeV})^2\right\}^{1/2} =$ $E = \left\{ 3 \left[\frac{(\pi)(197.3 \text{ MeV fm})}{10 \text{ fm}} \right]^2 + (0.511 \text{ MeV})^2 \right\}^{1/2} = 107 \text{ MeV}.$

8-10 $n = 4$, $l = 3$, and $m_l = 3$.

- (a) $L = [l(l+1)]^{1/2} \hbar = [3(3+1)]^{1/2} \hbar = 2\sqrt{3}\hbar = 3.65 \times 10^{-34}$ Js
- (b) $L_z = m_l \hbar = 3\hbar = 3.16 \times 10^{-34}$ Js

(b) The probability of finding the electron in a volume element d*V* is given by $|\psi|^2 dV$. Since the wave function has spherical symmetry, the volume element d*V* is identified here with the volume of a spherical shell of radius r , $dV = 4\pi r^2 dr$. The probability of finding the electron between r and $r + dr$ (that is, within the spherical shell) is $P = |\psi|^2 dV = 4\pi r^2 |\psi|^2 dr$.

Integrating by parts, or using a table of integrals, gives

$$
\int |\psi|^2 \, dV = \left(\frac{4}{a_0^3}\right) \left[2\left(\frac{a_0}{2}\right)^3 \left(\frac{2}{a_0}\right)^3\right] = 1 \, .
$$

(e)
$$
P = 4\pi \int_{r_1}^{r_2} |\psi|^2 r^2 dr
$$
 where $r_1 = \frac{a_0}{2}$ and $r_2 = \frac{3a_0}{2}$

$$
P = \left(\frac{4}{a_0^3}\right)_{r_1}^{r_2} r^2 e^{-2r/a_0} dr \qquad \text{let } z = \frac{2r}{a_0}
$$

= $\frac{1}{2} \int_1^3 z^2 e^{-z} dz$
= $-\frac{1}{2} (z^2 + 2z + 2) e^{-z} \Big|_1^3$ (integrating by parts)
= $-\frac{17}{2} e^{-3} + \frac{5}{2} e^{-1} = 0.496$

8-13 $Z = 2$ for He⁺

(a) For $n = 3$, *l* can have the values of 0, 1, 2

$$
l = 0 \rightarrow m_l = 0
$$

\n
$$
l = 1 \rightarrow m_l = -1, 0, +1
$$

\n
$$
l = 2 \rightarrow m_l = -2, -1, 0, +1, +2
$$

(b) All states have energy
$$
E_3 = \frac{-Z^2}{3^2}
$$
 (13.6 eV)

$$
E_3 = -6.04 \text{ eV}.
$$

8-14 $Z = 3$ for Li^{2+}

(a)
$$
n = 1 \rightarrow l = 0 \rightarrow m_l = 0
$$

\n $n = 2 \rightarrow l = 0 \rightarrow m_l = 0$
\nand $l = 1 \rightarrow m_l = -1, 0, +1$

(b) For
$$
n = 1
$$
, $E_1 = -\left(\frac{3^2}{1^2}\right)(13.6) = -122.4 \text{ eV}$
For $n = 2$, $E_2 = -\left(\frac{3^2}{2^2}\right)(13.6) = -30.6 \text{ eV}$

- 8-16 For a *d* state, $l = 2$. Thus, m_l can take on values -2 , -1 , 0, 1, 2. Since $L_z = m_l \hbar$, L_z can be $\pm 2\hbar, \, \pm \hbar$, and zero.
- 8-17 (a) For a *d* state, *l* = 2

$$
L = [l(l+1)]^{1/2} \hbar = (6)^{1/2} (1.055 \times 10^{-34} \text{ Js}) = 2.58 \times 10^{-34} \text{ Js}
$$

(b) For an f state, $l = 3$

$$
L = [l(l+1)]^{1/2} \hbar = (12)^{1/2} (1.055 \times 10^{-34} \text{Js}) = 3.65 \times 10^{-34} \text{Js}
$$

8-18 The state is 6*g*

(a) $n = 6$

(b)
$$
E_n = -\frac{13.6 \text{ eV}}{n^2}
$$
 $E_6 = \frac{-13.6}{6^2} \text{ eV} = -0.378 \text{ eV}$

(c) For a *g*-state, $l = 4$

$$
L = [l(l+1)]^{1/2} \hbar = (4 \times 5)^{1/2} \hbar = \sqrt{20} \hbar = 4.47 \hbar
$$

(d)
$$
m_l
$$
 can be -4, -3, -2, -1, 0, 1, 2, 3, or 4
\n $L_z = m_l \hbar$; $\cos \theta = \frac{L_z}{L} = \frac{m_l}{[l(l+1)]^{1/2}} \hbar = \frac{m_l}{\sqrt{20}}$
\n m_l -4 -3 -2 -1 0 1 2 3 4
\n L_z -4 \hbar -3 \hbar -2 \hbar - \hbar 0 \hbar 2 \hbar 3 \hbar 4 \hbar
\n θ 153.4° 132.1° 116.6° 102.9° 90° 77.1° 63.4° 47.9° 26.6°

8-19 When the principal quantum number is *n*, the following values of *l* are possible: *l* = 0, 1, 2, ..., $n-2$, $n-1$. For a given value of *l*, there are 2*l* + 1 possible values of m_l . The maximum number of electrons that can be accommodated in the nth level is therefore:

$$
(2(0)+1) + (2(1)+1) + ... + (2l+1) + ... + (2(n-1)+1) = 2\sum_{l=0}^{n-1} l + \sum_{l=0}^{n-1} l = 2\sum_{l=0}^{n-1} l + n.
$$

But $\sum_{l=0}^{k} l = \frac{k(k+1)}{2}$ 1 2 *k l* $l = \frac{k(k+1)}{2}$ so the maximum number of electrons to be accommodated is $\frac{2(n-1)n}{n} + n = n^2$ 2 $\frac{n-1}{2}$ *n* + *n* = *n*².

8-21 (a)
$$
\psi_{2s}(r) = \frac{1}{4(2\pi)^{1/2}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0} \text{ At } r = a_0 = 0.529 \times 10^{-10} \text{ m we find}
$$

$$
\psi_{2s}(a_0) = \frac{1}{4(2\pi)^{1/2}} \left(\frac{1}{a_0}\right)^{3/2} (2 - 1) e^{-1/2} = (0.380) \left(\frac{1}{a_0}\right)^{3/2}
$$

$$
= (0.380) \left[\frac{1}{0.529 \times 10^{-10} \text{ m}}\right]^{3/2} = 9.88 \times 10^{14} \text{ m}^{-3/2}
$$

(b)
$$
|\psi_{2s}(a_0)|^2 = (9.88 \times 10^{14} \text{ m}^{-3/2})^2 = 9.75 \times 10^{29} \text{ m}^{-3}
$$

(c) Using the result to part (b), we get
$$
P_{2s}(a_0) = 4\pi a_0^2 |\psi_{2s}(a_0)|^2 = 3.43 \times 10^{10} \text{ m}^{-1}
$$
.

8-22
$$
R_{2p}(r) = Are^{-r/2a_0}
$$
 where $A = \frac{1}{2(6)^{1/2} a_0^{5/2}}$

$$
P(r) = r^2 R_{2p}^2(r) = A^2 r^4 e^{-r/a_0}
$$

$$
\langle r \rangle = \int_0^\infty r P(r) dr = A^2 \int_0^\infty r^5 e^{-r/a_0} dr = A^2 a_0^6 5! = 5a_0 = 2.645 \text{ Å}
$$

8-24
$$
P_{1s}(r) = \frac{4}{a_0^3} r^2 e^{-2r/a_0}
$$
 for hydrogen ground state, $U(r) = -\frac{ke^2}{r}$ is potential energy (Z = 1)

$$
\langle U \rangle = \int_{0}^{\infty} U(r) P_{1s}(r) dr = -\frac{4ke^{2}}{a_{0}^{3}} \int_{0}^{\infty} r e^{-2r/a_{0}} dr
$$

= $-\frac{4ke^{2}}{a_{0}^{3}} \left(\frac{a_{0}}{2}\right)^{2} \int_{0}^{\infty} z e^{-z} dz$ where $z = \frac{2r}{a_{0}}$
= $\frac{-ke^{2}}{a_{0}} = -2(13.6 \text{ eV}) = -27.2 \text{ eV}.$

To find $\langle K \rangle$, we note that $\langle K \rangle + \langle U \rangle = \langle E \rangle = -\frac{ke^2}{2}$ 0 $K\rangle + \langle U \rangle = \langle E \rangle = -\frac{ke^2}{2a_0} = -13.6 \text{ eV} \text{ so, } \langle K \rangle = \frac{ke^2}{a_0} = +$ $\mathbf{0}$ $K\rangle = \frac{ke^2}{a_0} = +13.6 \text{ eV}.$

8-30 The averages $\langle r \rangle$ and $\langle r^2 \rangle$ are found by weighting the probability density for this state $P_{1s}(r) = 4\left(\frac{Z}{a_0^3}\right) r^2 e^{-2Zr/a_0}$ $P_{1s}(r) = 4\left(\frac{Z}{r^3}\right)r^2e^{-2Zr/a}$ *a* with *r* and r^2 , respectively, in the integral from $r = 0$ to $r = \infty$:

$$
\langle r \rangle = \int_{0}^{\infty} r P_{1s}(r) dr = 4 \left(\frac{Z}{a_0^3} \right) \int_{0}^{\infty} r^3 e^{-2Zr/a_0} dr
$$

$$
\langle r^2 \rangle = \int_{0}^{\infty} r^2 P_{1s}(r) dr = 4 \left(\frac{Z}{a_0^3} \right) \int_{0}^{\infty} r^4 e^{-2rZ/a_0} dr
$$

Substituting $z =$ 0 $z = \frac{2Zr}{a_0}$ gives

$$
\langle r \rangle = 4 \left(\frac{Z}{a_0} \right)^3 \left(\frac{a_0}{2Z} \right)^4 \int_0^{\infty} z^3 e^{-z} dz = \frac{3!}{4} \left(\frac{a_0}{Z} \right) = \frac{3}{2} \left(\frac{a_0}{Z} \right)
$$

$$
\langle r^2 \rangle = 4 \left(\frac{Z}{a_0} \right)^3 \left(\frac{a_0}{2Z} \right)^5 \int_0^{\infty} z^4 e^{-z} dz = \frac{4!}{8} \left(\frac{a_0}{Z} \right)^2 = 3 \left(\frac{a_0}{Z} \right)^2
$$

and $\Delta r = (\langle r^2 \rangle - \langle r \rangle^2)^{1/2} = \frac{a_0}{Z} \left[3 - \frac{9}{4} \right]^{1/2} = 0.866 \left(\frac{a_0}{Z} \right)$ $r = (\langle r^2 \rangle - \langle r \rangle^2)^{1/2} = \frac{a_0}{Z} \left[3 - \frac{9}{4} \right]^{1/2} = 0.866 \left(\frac{a_0}{Z} \right)$. The momentum uncertainty is deduced from the average potential energy

$$
\langle U \rangle = -kZe^2 \int_0^{\infty} \frac{1}{r} P_{1s}(r) dr = -4kZe^2 \left(\frac{Z}{a_0}\right)^3 \int_0^{\infty} r e^{-2Zr/a_0} = -4kZe^2 \left(\frac{Z}{a_0}\right)^3 \left(\frac{a_0}{2Z}\right)^2 = -\frac{k(Ze)^2}{a_0}.
$$

Then, since $E = -\frac{k(Ze)^2}{2}$ $2a_0$ $E = -\frac{k(Ze)^2}{2a_0}$ for the 1*s* level, and $a_0 = \frac{\hbar^2}{m_e k e^2}$ $a_0 = \frac{n}{m_e k e^2}$, we obtain

$$
\left\langle p^2\right\rangle = 2m_e \left\langle K\right\rangle = 2m_e \left(E - \left\langle U\right\rangle\right) = \frac{2m_e k (Ze)^2}{2a_0} = \left(\frac{Zh}{a_0}\right)^2.
$$

With $\langle \mathbf{p} \rangle$ = 0 from symmetry, we get $\Delta p = (\langle p^2 \rangle)^{1/2} = \frac{Z\hbar}{2}$ $\boldsymbol{0}$ $p = (\langle p^2 \rangle)^{1/2} = \frac{Z\hbar}{a_0}$ and $\Delta r \Delta p = 0.866\hbar$ for any *Z*, consistent with the uncertainty principle.