First Midterm Exam:

- 1. An electric field of magnitude E points in the direction of the x-axis in a certain inertial frame K''. No magnetic field is detected in that frame. Frame K'' moves with speed v_2 along the direction of the y-axis as seen from frame K'. Frame K' is in turn moving along the x-axis with speed v_1 as seen in frame K. Determine the magnetic field in frame K.
- 2. The action integral S describing the motion of a point particle of mass m in the field of a 2-index symmetric tensor potential $\phi_{\alpha\beta}(x)$ is given by

$$S = \int d\lambda \left[-mc\sqrt{u_{\mu}u^{\mu}} - \phi_{\alpha\beta} \frac{u^{\alpha}u^{\beta}}{\sqrt{u_{\mu}u^{\mu}}} \right]$$

,

where the potential is evaluated on the trajectory $x^{\mu} = x^{\mu}(\lambda)$ and $u^{\mu} = \frac{dx^{\mu}}{d\lambda}$ is the 4-velocity.

- (a) Show that S is invariant under reparametrizations, $\lambda \to \lambda' = f(\lambda)$.
- (b) Find the equation of motion.
- (c) Assuming $\phi_{\alpha\beta}/mc \ll 1$ use the equation of motion to determine $\frac{d\mathcal{U}_{\alpha}}{d\lambda}$ where we have defined $\mathcal{U}_{\alpha} \equiv u_{\alpha}/\sqrt{u_{\mu}u^{\mu}}$. Put your result in the form

$$\frac{d\mathcal{U}_{\alpha}}{d\lambda} = t_{\alpha\mu\nu} u^{\mu} u^{\nu}$$

with the tensor $t_{\alpha\mu\nu}$, a function of $\phi_{\alpha\beta}$ and u^{α} , satisfying $t_{\alpha\mu\nu} = -t_{\mu\alpha\nu}$, and use this to show that $u^{\alpha} d\mathcal{U}_{\alpha}/d\lambda = 0$.

- (d) Using time for the parameter for the trajectory, determine the canonical momentum \vec{P} .
- 3. An infinitely long straight wire of negligible cross sectional area is at rest and has a uniform linear charge density λ in the inertial frame K'. The wire and the frame K' move with speed v in the direction of the wire as observed from frame K. Determine the electric and magnetic fields observed in frame K.