PHYSICS 211B : CONDENSED MATTER PHYSICS HW ASSIGNMENT #1

(1) Define the operator

$$\Pi_N = \frac{1}{N!} \int_{\mathbb{R}^{dN}} d^d x_1 \cdots d^d x_N \, | \, \boldsymbol{x}_1 \cdots \boldsymbol{x}_N \, \rangle \langle \, \boldsymbol{x}_1 \cdots \boldsymbol{x}_N \, |$$

where

$$| \boldsymbol{x}_1 \cdots \boldsymbol{x}_N \rangle = \psi^{\dagger}(\boldsymbol{x}_1) \cdots \psi^{\dagger}(\boldsymbol{x}_N) | 0 \rangle$$

where $\left[\psi(\boldsymbol{x}), \psi^{\dagger}(\boldsymbol{x}')\right]_{\mp} = \delta(\boldsymbol{x} - \boldsymbol{x}')$ for bosons (–) and fermions (+). Here each $\boldsymbol{x}_j \in \mathbb{R}^d$.

(a) Show that Π_N is a projector onto the totally symmetric and totally antisymmetric parts of the *N*-body Hilbert space for bosons and fermions, respectively.

(b) Show that one can also write

$$\Pi_N \equiv \int_{\Delta_N} d^d x_1 \cdots d^d x_N \, | \, \boldsymbol{x}_1 \cdots \boldsymbol{x}_N \, \rangle \langle \, \boldsymbol{x}_1 \cdots \boldsymbol{x}_N \, | \quad ,$$

where Δ_N is defined to be the subset of \mathbb{R}^{dN} for which

$$\Delta_N = \left\{ (\boldsymbol{x}_1, \dots, \boldsymbol{x}_N) \mid x_1^{(1)} < x_2^{(1)} < \dots < x_N^{(1)} \right\} \quad .$$

(2) Compute the Hartree-Fock self-energy $\Sigma(\mathbf{k})$ for a two-dimensional electron gas with interactions $u(\mathbf{r}) = e^2 \ln(a/r)$ (where *a* is some fixed length scale), and the one-dimensional electron gas, with interactions $u(x) = -e^2 |x|$. Take note of any divergences you encounter as a function of \mathbf{k} .

(3) Consider a polarized electron gas (three dimensions, Coulomb interactions) in which N_{σ} denotes the number of electrons with spin polarization σ .

(a) Find the ground state energy to first order in the interaction potential as a function of $N = N_{\uparrow} + N_{\downarrow}$ and the magnetization $M = N_{\uparrow} - N_{\downarrow}$.

(b) Prove, to this order in the interaction, that the ferromagnetic state (M = N) has a lower energy than the unmagnetized state (M = 0) provided r_s exceeds a critical value $r_{s,1}$. Find that critical value $r_{s,1}$.

(c) Define $\varepsilon(\zeta) = E/N$ with $\zeta = M/N$. Show that $\varepsilon''(0) < 0$ when r_s exceeds a critical value $r_{s,2}$. Find $r_{s,2}$. You should find $r_{s,1} < r_{s,2}$. What happens for $r_s \in [r_{s,1}, r_{s,2}]$?