PHYSICS 211B : CONDENSED MATTER PHYSICS HW ASSIGNMENT #1

(1) Define the operator

$$
\varPi_N = \frac{1}{N!} \int_{\mathbb{R}^{dN}} d^dx_1 \cdots d^dx_N \, | \, \boldsymbol{x}_1 \cdots \boldsymbol{x}_N \, \rangle \langle \, \boldsymbol{x}_1 \cdots \boldsymbol{x}_N \, | \quad ,
$$

where

$$
|\,\boldsymbol{x}_1\cdots\,\boldsymbol{x}_N\,\rangle = \psi^\dagger(\boldsymbol{x}_1)\cdots\psi^\dagger(\boldsymbol{x}_N)\,|\,0\,\rangle \quad ,
$$

where $\big[\psi(\bm{x})\,,\,\psi^\dagger(\bm{x}')\big]_\mp = \delta(\bm{x}-\bm{x}')$ for bosons (–) and fermions (+). Here each $\bm{x}_j\in\mathbb{R}^d$.

(a) Show that Π_N is a projector onto the totally symmetric and totally antisymmetric parts of the N-body Hilbert space for bosons and fermions, respectively.

(b) Show that one can also write

$$
\Pi_N \equiv \int_{\Delta_N} d^dx_1 \cdots d^dx_N \, | \, \boldsymbol{x}_1 \cdots \boldsymbol{x}_N \, \rangle \langle \, \boldsymbol{x}_1 \cdots \boldsymbol{x}_N \, | \quad ,
$$

where Δ_N is defined to be the subset of \mathbb{R}^{dN} for which

$$
\Delta_N = \left\{ (\boldsymbol{x}_1, \ldots, \boldsymbol{x}_N) \, | \, x_1^{(1)} < x_2^{(1)} < \cdots < x_N^{(1)} \right\} \quad .
$$

(2) Compute the Hartree-Fock self-energy $\Sigma(k)$ for a two-dimensional electron gas with interactions $u(r) = e^2 \ln(a/r)$ (where a is some fixed length scale), and the one-dimensional electron gas, with interactions $u(x) = -e^2 |x|$. Take note of any divergences you encounter as a function of k .

(3) Consider a polarized electron gas (three dimensions, Coulomb interactions) in which N_{σ} denotes the number of electrons with spin polarization σ .

(a) Find the ground state energy to first order in the interaction potential as a function of $N = N_{\uparrow} + N_{\downarrow}$ and the magnetization $M = N_{\uparrow} - N_{\downarrow}$.

(b) Prove, to this order in the interaction, that the ferromagnetic state $(M = N)$ has a lower energy than the unmagnetized state ($M = 0$) provided r_{s} exceeds a critical value $r_{\text{s},1}$. Find that critical value $r_{\mathsf{s},1}$.

(c) Define $\varepsilon(\zeta) = E/N$ with $\zeta = M/N$. Show that $\varepsilon''(0) < 0$ when r_s exceeds a critical value $r_{\mathsf{s},2}$. Find $r_{\mathsf{s},2}$. You should find $r_{\mathsf{s},1} < r_{\mathsf{s},2}$. What happens for $r_{\mathsf{s}} \in [r_{\mathsf{s},1}, r_{\mathsf{s},2}]$?