
PHYSICS 211B : CONDENSED MATTER PHYSICS

HW ASSIGNMENT #4

(1) Consider an anisotropic superconductor with free energy
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where Kµν is a real symmetric matrix. We may write Kµν ≡ KNµν where det(N) = 1 and
K sets the overall scale of Kµν . We continue to define the quantity λ

L
via Eq. 1.46 in the

notes.

We showed in the Lecture Notes that

−λ2
L
∇×(∇×B) = B + φ

L
δ(ρ) ẑ .

This result holds for isotropic systems, i.e. when N is the identity matrix. In a layered
anisotropic material, along symmetry axes we may write N = diag(N⊥, N⊥, N‖), with

N2

⊥N‖ = 1.

(a) Show that if B remains along ẑ that the penetration depth in the above equation is

replaced by the expression λ
L⊥ = λ

L
/N

1/2
⊥ .

(b) If B is along ŷ, the above equation is modified. Find the modified form, and solve for
the magnetic field profile of a vortex line. (Hint: try rescaling one of your coordinates.)

Defining λ
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‖

, derive an expression for H
c1

.

(c) For the field orientation in part (b), derive an expression for H
c2

.

(2) The nonlinear Schrödinger equation,
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is often used to describe the dynamics of superfluids.

(a) Show that the NLSE follows from a variational principle based on the following La-
grangian density:
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(b) Show that by identifying a velocity scale c and a length scale ξ, that one can write

Ψ(x, t) =
√

n
0
ψ(x/ξ , ct/ξ) .

Find the dimensionless NLSE for ψ(r, s), where r = x/ξ and s = ct/ξ.

(c) Show that the NLSE respects Galilean invariance, in that if ψ(r, s) is a solution, so is

ψ̃(r, s) = eiv·r e−iv2s/2 ψ(r − vs , s) .
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(d) The Madelung transformation converts the complex NLSE into two real equations for
amplitude and phase variables. Writing ψ =

√
n eiφ, show that
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Obtain the linearized equations for long wavelength oscillations and show that the c you
found in part (b) is the speed of wave propagation. (The speed in terms of dimensionless
variables should be unity.) Show that your dispersion interpolates between acoustic and
ballistic as one goes from large to small wavelength.

(e) Write ψ(r) = A(r) eiϕ, where ϕ = tan−1(y/x) is the planar azimuthal angle. Find the
equation for A(r) , and solve it in the limits r ≪ 1 and r ≫ 1. Make a sketch of A(r) based
on what you think is a reasonable interpolation between these limits.

(3) Analyze the problem of a bound state in the vicinity of the bottom of a band where the
dispersion behaves as ε(k) ∝ k4. Under what conditions do you expect a bound state to
form for arbitrarily weak attractive interactions?
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