
PHYS218B: Final Project

Hyper Resistivity in Presence of Stochastic Fields

Chang-Chun Chen, Patrick H. Diamond

Department of Physics, University of California San Diego

Abstract

In 1974, J. B. Taylor (Taylor, 1974) proposed a self-organized theory of turbulent magnetic

relaxation. This theory describes that a topological configuration of magnetic field at the

end-state will evolve to a configuration that has minimum magnetic energy. This turbulent

relaxation process is subjected to the conservation of large-scale magnetic helicity H, which
is defines as H0 ≡

∫
all space A · Bd

3x = const., where A is the magnetic potential field and

B is the magnetic field. This theory has no rigorous justification and its evolution process

remains unknown. At this stage, we know that the evolution of Taylor relaxation is related to

hyper resistivity and that, with criteria of the helicity does not change the large-scaleH0 and

it dissipates magnetic energy, the hyper resistivity can be derived. We are interested in the

hyper resistivity with a tangle magnetic field in presence of a weak mean field which is strong

enough to break the symmetry but weak enough to kill all the flow dynamo and to be modified

the current and hence defines the hyper resistivity. This weak mean field regime require a

model beyond simple quasi-linear closure. Here we present a “double-averag” method and

use the mean field theory to obtain the hyper resistivity analytically.

1 Taylor Relaxation and Helicity

Taylor (1974) proposed that small scale tube surfaces are destroyed by magnetic reconnec-

tions that caused by microturbulence, resistivity, and some other departure from perfect con-

ductivity. In classes, we have prove that the magnetic helicity will inverse decay and accumu-

late at large scale by using Lagrange multiplier and minimizing the magnetic energy at the

relaxation state. That is

δ

∫
d3x(

b2

8π
+ λA ·B) = 0. (1)

Taylor relaxation stating that any departure from the perfectly conductive leads to the

invariant of magnetic helicity at large scales, indicating that the topological structure of mag-

netic fields is invariant at large scale. This invariant is unique, and depends only on the helicity

at larger scale H0 ≡
∫
all space A ·Bd

3x = const and the toroidal flux ψ in a toroidal container

(Taylor, 1974), or equivalently, on the pinch ratio θ = H/ψ2. All tube surfaces are broken by

the mechanism of reconnection and hence the small scale helicity is not conserved in every

individual tube. Time asymptotically, only the large scale helicity will survive, leading to the
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Taylor Relaxation

Figure 1: Taylor Relaxation. All the small scale tube surfaces are destroyed while the magnetic helicity decay to larger

scales. At the relaxation state, large scale magnetic field can be pictured as a one distorted field line.

“ruggedness” of global helicity. This indicates that the magnetic field has one field line, which

still demonstrates the stochasticity (“ruggedness”) of the field at larger scales (see figure 2).

In 3D MHD, the energy is decay to small scales (forward cascade), while the magnetic

energy is decay to larger scales, which have minimal coupling to the dissipation. At larger

scale, magnetic energy decay, but the total energy (fluid energy plus the magnetic energy)

remains invariant. ∫
allspace

〈∇φ〉2 + 〈B〉2, (2)

where φ is the stream function and the angle bracket 〈 〉 is the ensemble average over a larger

scale. The above discussion is also known as the selective decay in 3D MHD.

At the relaxation state, the current is “flattened”, i.e. J·B
B2 → const or 〈J‖〉Taylor = const.

This indicates the free energy from current gradient in unavailable.

2 Hyper Resistivity Diffusion

One may ask how does a system evolve to Taylor state? Before the system evolve to the relax-

ation state, we’ll have J‖ 9 0. The diffusion of current in parallel direction contributes an

additional term in Ohm’s Law equation.

E + v ×B = ηJ + S, (3)

where η is the classical Spitzer resistivity and S is “something” unsolved. The “something” S

must satisfied two conditions:
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• S must not change the magnetic helicity H0.

• S must dissipate magnetic energy at larger scale.

In classes, we use the first criterion (
∂

∂t

∫
d3x〈A〉〈B〉 = 0) to derived that S must has a form

so that it can be related to the flux of magnetic helicity (ΓH):

S = (
b̂

B
)∇ · ΓH , (4)

where b̂ is the unit vector in the direction that is parallel to the magnetic field. The second

criterion gives

∂

∂t

∫
d3x
〈B2〉
8π

= −
∫
ηJ2d3x+ ES, (5)

ES < 0, (6)

where ES is the power modification of magnetic energy caused by the “something”. So we

have

ΓH = −λ∇
J‖

B
, (7)

where λ is an arbitrary positive function. Ans the parallel term in 3 can be rewritten with the

diffusion of current:

〈E‖〉 = η〈J‖〉 − ∇⊥λ∇⊥〈J‖〉. (8)

Note that in above equation, the λ absorb the B and other terms. Equation 8 can be written

as

∂

∂t
〈A‖〉 = 〈b̂ · ∇φ〉 − η〈J‖〉+∇⊥(−λ∇⊥∇2〈A‖〉) (9)

= 〈b̂ · ∇φ〉 − η〈J‖〉+∇⊥(−l2DJ∇⊥∇2〈A‖〉), (10)

where φ is velocity stream function and DJ is the current diffusivity with dimension [
m2

s
]

and the positive function λ is the hyper resistivity. Notice that we define J and the vorticity

w as

J = −∇2A, (11)

w = −∇2ψ. (12)

So the positive parameter λ has a form

λ = l2DJ , (13)

where l is a length need to be determined.

Now, we consider a prescribed, stochastic magnetic field in a slab. Note that we are in-

terested in the A‖, so we let the stochastic field depends on time, i.e.
∂

∂t
Ast 6= 0. Then, the

parallel current can be written as

J ≡ J0 + Jst, (14)

where st denotes the stochastic field. We order the magnetic fields and currents by spatial

scales as:

potential field A = A0 + Ã + Ast

magnetic field B = B0 + B̃ + Bst

magnetic current J = 0 + J̃ + Jst, (15)
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Figure 2: A slab with random magnetic field in x-y plane. The mean magnetic field is in z direction.

where J0 = 0 for B0 is a constant. The waves are described hydrodynamically by:

stream function ψ = 〈ψ〉+ ψ̃

flow velocity u = 〈u〉+ ũ

vorticity w = 〈w〉+ w̃, (16)

where the 〈 〉 is an average over a region that is in x-y plane and fast timescales. So the

stochastic magnetic potentials are mainly on z direction, while magnetic potentials on x and

y direction contribute to the mean magnetic field and hence they are static. Also note that

the vortices are mainly on x-y plane, leading to w = (0, 0, w) (see figure 2). We introduce

a “double-average” method which make this complex system approachable. A procedure to

calculate the mean effect of the stochastic fields is to average over the random field, within a

window of length scale (1/|kavg|):

F̄ =

∫
dR2

∫
dBst · P(Bst,x,Bst,y)F, (17)

where P(Bst, i) is the probability distribution function for the random field and F is the arbi-

trary function being averaged, and dR2 refers to integration over a region containing random

fields. And we assume that stochastic fields have the spatial symmetry in x and y direc-

tion Bst,i = 0 (where i = x, y) and that there’s no spatial correlation in x and y directions

Bst,xBst,y = 0. Under this assumption, the autocorrelation length of stochastic fields be comes

small lac → 0 which insures the magnetic Kubo number small

Kumag < 1, (18)
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and hence validates the use of mean field theory. However, we are interested in the “hyper-

resistive diffusion”, so we let Bst,x 6= 0. From above assumption, we have the Navier-Stoke

equation and the induction equation

∂

∂t
Ast,z = (Bst · ∇)ψz + η∇2

⊥Ast,z (19)

∂

∂t
w = − (Bst · ∇)∇2A

µ0ρ
+ ν∇2w. (20)

Then, the ẑ component in equation 20 is

∂

∂t
w =

1

ηµ0ρ

∂

∂x
(B2

st,x

∂

∂x
ψ) +

1

ηµ0ρ

∂

∂y
(B2

st,y

∂

∂y
ψ) +

B0

µ0ρ

∂

∂z
(∇2
⊥Az) + ν∇2

⊥w. (21)

The fourth term in equation 21 is the source for the hyper-resistivity diffusion. Now, we apply

the mean field theory to equation 21 and have

∂

∂t
w̃ =

1

ηµ0ρ

∂

∂x
(〈B2

st,x〉
∂

∂x
ψ̃) +

1

ηµ0ρ

∂

∂y
(〈B2

st,y〉
∂

∂y
ψ̃) +

B0

µ0ρ

∂

∂z
(∇2
⊥Ãz)

+
B̃st,x

µ0ρ

∂

∂x
(∇2
⊥〈Az〉) + ν∇2

⊥w̃. (22)

From equation 22, we have a linear response of vorticity to the stocahstic magnetic field:

w̃k =

(
i

ω + iνk2⊥ +
i(B2

st, xk
2
x +B2

st, yk
2
y)

µ0ρηk2⊥
+

−B2
0k

2
z

µ0ρ(ω + iηk2)

)
B̃st, x,k

µ0ρ

∂

∂x
∇2Az, (23)

where k2⊥ = k2x + k2y. And we also apply mean field theory on equation 19:

∂

∂t
〈Az〉 =

∂

∂x
〈B̃st,xψ̃〉+ η∇2

⊥〈Az〉. (24)

From equation 23, we have

∂

∂x
〈B̃st,xψ̃〉 = 〈B̃st,x(...)

−1

k2⊥

B̃st, x,k

µ0ρ

∂

∂x
Jz〉

=
∂

∂x

∑
k Re

[
i/k2⊥

ω + iνk2⊥ +
i(B2

st, xk
2
x +B2

st, yk
2
y)

µ0ρηk2⊥
+

−B2
0k

2
z

µ0ρ(ω + iηk2)

]
|B̃st,x|2

µ0ρ

∂

∂x
∇2〈Az〉(25)

Now, we compare the last term in equation 10 and the first term of RHS of equation 24:

∇⊥(−λ∇⊥∇2〈A‖〉) =
∂

∂x
〈B̃st,xψ̃〉 ≡ −

∂

∂x
〈Γ〉A, (26)

where 〈Γ〉A is the “ double-average” of magnetic potential flux. Notice that here ∇⊥ →
∂

∂x

since the “double-average” method allows us to drop
∂

∂y
〈 〉 → 0 terms for the system is

periodic in y direction and these terms will be 0 after we take averages. So, we have hyper

resistivity

λ = −
∑
k

Re
[

i

ω + iνk2⊥ +
i(B2

st, xk
2
x +B2

st, yk
2
y)

µ0ρηk2⊥
+

−B2
0k

2
z

µ0ρ(ω + iηk2)

]
|B̃st,x|2

µ0ρk2⊥
(27)

We check the dimension and find that λ = [m
4

s ] which matches the equation 26. This the “

double-average” of magnetic potential flux can be written as:

〈Γ〉A = −
∑
k

|B̃st, x, k|2

µ0ρk2⊥
Ck

∂

∂x
∇2
⊥〈Az〉 ≡ −DA

∂

∂x
〈Az〉, (28)
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where the resonance function (phase coherence)Ck, which defines the effective decorrelation

time τc, k, is:

Ck ≡
−(νk2⊥ +

ω2
Aηk

2

ω2 + η2k4⊥
+

(B2
st, xk

2
x +B2

st, yk
2
y)

µ0ρηk2⊥
)

ω2(1− ω2
A

ω2 + η2k4⊥
)
2

+ (νk2 +
ω2
Aηk

2
⊥

ω2 + η2k4⊥
+

(B2
st, xk

2
x +B2

st, yk
2
y)

µ0ρηk2⊥
)
2

< 0, (29)

where ωA ≡ B0,zkz/
√
µ0ρ is the Alfvén frequency of the mean field. So we have

λ =
∑
k

|Ck|
|B̃st,x|2

µ0ρk2⊥
> 0. (30)

Thus, since l2⊥DJ = DA, we have current diffusivity

DJ =
∑
k

|B̃st, x, k|2

µ0ρk2⊥
|Ck|. (31)

As the mean-square stochastic fields (B2
st,i) becomes large, we’ll have |Ck|→ 0 (see equation

30), we have

λ→ 0, (32)

indicating that the hyper diffusivity (or the current diffusivity) is suppressed by strong stochastic

feilds. In the form of magnetic potential evolution

∂

∂t
〈Az〉 = η∇2〈Az〉 − ∇⊥(λ∇⊥∇2〈Az〉). (33)

The classical resistivity will fight with the hyper resistivity and control the evolution of

magnetic potential (or the current diffusivity). The stochastic fields can modify the evolution

of magnetic potential via hyper resistivity and hence affect the 〈Az〉. But 〈Az〉 will also affect

the stochastic field itself via induction equation (see equation 19). Finally, notice that no

matter how big or small stochastic fields are, the large scale magnetic helicityH0 remains the

same so the topological structure of large-scale field remains unchanged, while the magnetic

energy dissipates. Recall that the magnetic energy dissipation flux ΓH = −λ∇
J‖

B
, we know

that when the stronger stochastic fields are (λ→ 0), the less magnetic energy dissipation we

have. This can be visualized that stochastic fields act as an ensemble of tangle springs that

can store the magnetic energy and can slow down the rate of magnetic energy dissipation.
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