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Abstract

Strongly magnetized rotating neutron stars, oft-known as pulsars, are a fascinating field of study
due to their origins as supernovae, when the progenitor fails to reach sufficient mass to form a
black hole. The original observation of pulsars was only recently, in 1967 — and accompanied by
the 1974 Nobel Prize — and there has been a plethora of research done since. This discussion
will be focused on the various mechanical properties of these pulsars, with a special examination
of the effects of superfluidity and quantized magnetic vortices on their astoundingly precise pulse
frequency.

Introduction and Pulsar Origins

Pulsars were first observed by a research team at Cambridge on November 28, 1967. They no-
ticed pulses at a constant period from a constant position in the sky which obeyed sidereal time,
eliminating the possibility of earth-side interference. The origin of this radio-frequency radiation
was unknown, but further observations revealed similar astronomical objects pulsing with different
periods with radiation spanning the electromagnetic spectrum.

Just seventeen days earlier, a letter to the editor of Nature sent by Pacini was published in the
November 11, 1967 issue, discussing the possibility of a very dense core left behind after a super-
nova, during which the vast majority of nuclei are converted to neutrons via positron emission, so
that only neutrons and electrons remain. This neutron star would be very hot — but quickly dis-
sipate its thermal energy through neutrinos, possess significant angular momentum, and be highly
magnetized.

A highly magnetized object which is quickly rotating is a recipe for a strong beam of radiation,
rotating much like the lamp of a lighthouse — the radiation observed by the Cambridge team. Over
the decades following the categorical discovery of pulsars, thousands of individual pulsars have been
observed and catalogued.

The Vela Pulsar, the brightest pulsar observable from Earth, is quite famous and very relevant to
our discussion, since it features all the typical phenomena of pulsars in the x-ray and gamma bands,
but also exhibits frequent glitches due to the superfluid effects we will discuss in the latter half of
this paper.
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Figure 1: (a) Near- and (b) wide-field views of the Vela Pulsar, PSR J0835-4510, from NASA.

Basic Mechanics of Pulsars

From here, the first questions must be that of the titular feature of a pulsar — the frequency of the
pulse itself, and the period with which it happens. These are a pulsar’s most basic and prominent
identifiers, and where we will commence our study.

First off, note that the radiation frequency of a pulsar is dictated by its rotation frequency, since
pulsars constantly emit a beam of electromagnetic radiation in a direction which rotates with the
pulsar itself. Ostriker and Gunn (1969) laid out the mechanics for such a pulsar, which we will
review here.

To begin, we require that there is a force-free region near the surface of the neutron star, so that
an equilibrium region can exist. This field would take the form

∣∣E∣∣ = −
∣∣v ×B∣∣ ≈ ΩBsr

−2 (1)

where Bs ≈ 1012G is the magnetic field on the surface and Ω is simply the rotation rate, i.e. Ω−1

is a pulsar’s period. The corresponding charge density is

ρ =
1

4π
∇ · E ≈ ΩBs

4πr3
. (2)

With plasma frequency ωp ≡
√

4πeρ/me and gyrofrequency ω ≡ eBs/mec, we can reduce the above
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equation and relate the plasma density of a pulsar to its observed rotation frequency; that is,

ω2
p ≈ Ωω ⇒ ρ ≈ Ω

Bs
4πc

. (3)

Figure 2: The radiation of PSR 0329 + 54, at 410 MHz from Manchester and Taylor (1977). The
pulse period (i.e. Ω−1) is about 0.714s.

The next point of discussion is the distance L to an observed pulsar. This may be inferred by
its dispersion measure, DM ≡

∫ L
0 ned` = 〈ne〉L, so-called due to the dispersion of the pulsar’s

radiation during interstellar propagation — that is, propagation velocity is directly correlated to
frequency — so the temporal width of a received signal implies a total propagation time, and thus
a travel distance.

Returning to basic electrodynamics, we can follow Shapiro and Teukolsky (1983) in saying that the
motion of an electron forced by a magnetic field is governed by

mẍ = −eE = −eE0 exp(iωt)⇒ x =
eE

mω2
(4)

for the electric field associated with a propagating electromagnetic wave. The phase and group
velocities associated with this propagation are

vp =
ω

k
= cε−1/2 which tells us that ω2 = ω2

p + k2c2

vg = dkω(k) = c

(
1−

ω2
p

ω2

)1/2

≈ c

(
1−

ω2
p

2ω2

)
if ω � ωp

(5)

All this lets us calculate the time it takes each individual frequency composing a pulse centered at
frequency ω to travel a distance L,

t(ω) =

∫ L

0

d`

vg
≈ 1

c

∫ L

0

(
1−

ω2
p

2ω2

)
d` =

L

c
+

2πe2

mcω2
DM. (6)
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So, if we know two parameters in the set of {〈ne〉 , t(ω), L}, we can find the third. This trinity has
been used to find the electron density of pulsars at known distances, which can then be applied to
other pulsars to estimate their distance based on their observed dispersion.

Another useful feature for cataloging pulsars is the time evolution of their period, which is as
slow as it is predictable, and allows us to determine the age of a pulsar. The oblique rotator model
proposed by Pacini (1967) and Ostriker and Gunn (1969) posits that a neutron star can be modeled
as a magnetic dipole in a vacuum, rotating with frequency Ω, and having a dipole moment at an
angle α to the rotation axis.

The strength of this dipole is given by m = 1
2BpR

3, with Bp as the magnetic field at the star’s
pole, at radius R. Since Bp is not a constant, there is an associated radiation energy

Ė = − 2

3c3

∣∣m̈∣∣2 (7)

which effects as a braking torque. We can break m down into its components,

m =
1

2
BpR

3
(
î sinα cos Ωt+ ĵ sinα sin Ωt+ k̂ cosα

)
(8)

letting the rotation axis align with k̂. Then, we can rewrite the radiation power,

Ė = −
B2
pR

6Ω4 sin2 α

6c3
. (9)

This radiated energy goes out in pulses every Ω−1 composed of radiation at frequency ω, as discussed
earlier. This energy can only come from the rotational energy E = 1

2IΩ2, so

Ė = −IΩΩ̇ (10)

which confirms the intuitive sentiment that the pulsar will slow down as it radiates energy. We can
use this to find the age of the pulsar by integrating (9) and (10) to get

Ω(t) = Ω0

(
1 +

2Ω2
0B

2
pR

6 sin2 α

6Ic3
t

)−1/2

(11)

where Ω0 = Ω(t = 0). Note that this age is dependent only on observations from the radiation, not
observations of the star itself. While this model is accurate for the vast majority of pulsars over
the vast majority of times, sometimes glitches have been observed, where the rotation frequency
abruptly increases. These glitches are the result of superfluid effects, which is the next subject of
our discussion.
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Superfluid Magnetohydrodynamics in Pulsars

In 1969, Baym et. al. proposed that the core of these neutron stars is in a superfluid state, and
that coupling between the superfluid core and the radiative shell causes small but abrupt changes
in the rotation frequency. Before we can discuss the glitches themselves, we must understand their
genesis through underlying superfluid magnetohydrodynamic effects.

The basic two-component model lays out the pulsar as two shells: the outer crust with charged
particles, and a core of superconducting protons and normal electrons — composing a plasma —
on a background of superfluid neutrons. The key difference between this and a traditional magne-
tohydrodynamic plasma is that the nucleons will form an array of quantized vortices, dominated
by the proton vortices due to their energy density.

The proton vortices will each carry one quantum of magnetic flux, Φ0 = hc/2e, separated by a

distance dp =
√
h/2
√

3mpΩC , where ΩC = eB0/mpc is the cyclotron frequency. The neutron

vortices are similarly separated by dn =
√
h/2
√

3mnΩ. Since this scale is so small, we will be
examining effects averaged over large numbers of vortices.

To get some reference frequencies we will use in our discussion, we examine Kelvin waves traveling
parallel to the vortices with frequencies

ωvp =
2mpεpk

2

hρp
and ωvn =

2mnεnk
2

hρn
(12)

for protons and neutrons, respectively, with corresponding εs as energy per unit length of the
vortices — a constant we will not discuss further for the sake of not losing sight of the problem at
hand. For further discussion of these frequencies, refer to Sonin (1987).

From here, to understand the mechanics of the core, we will follow the approach of Mendell (1998) in
studying waves in a uniformly rotating pulsar with the vortices we have just described — specifically,
showing Alfvén waves cannot exist. For the sake of keeping things sufficiently complicated, we will
take the coordinate system where the star is rotating about its z axis. The coordinates can be
written in terms of their s-subscripted static versions as

x = xs cos Ωt+ ys sin Ωt

y = ys cos Ωt− xs sin Ωt

z = zs and t = ts,

(13)

as can the convective derivative and fields,

∂tvs + v0 · ∇vs + vs · ∇v0 = ∂tv − 2Ω (v × ẑ)

E = Es +
v0

c
×B0 and B = Bs,

(14)
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with v0 as the equilibrium velocity, with associated equilibrium vorticity ω0. Now, we can write
Maxwell’s equations, for neutrons and protons, subscripted with n and p, respectively,

− iω

2Ω
δvn − (δvn × ẑ) =

ρnp

ρn
(δvp − δvn)× ẑ +

ik

ρn
δλn

− iω

2Ω
δu− (δu× ẑ) =

ρnp

ρp
(δvn − δvp)× ẑ +

(2Ω + ΩC) ik

2Ωρp
δλp +

1

2Ωρp

(
δJ

c
×Boẑ

) (15)

where the average charged fluid velocity and weighted combination density are defined as

u ≡ ρp

ρ̃p
vp +

ρe

ρ̃p
ve

ρnp = ρpn = ρp

[
1− mp

m∗
p

(1 + F pp
1 /3)

]
,

(16)

respectively, where m∗
p is the effective proton mass, and F pp

1 is a generalized version of the Landau
parameter. Furthermore, we let the descriptive λ vector fields be

δλn =

[
2mnεn

2Ωh
−
(
ρnn

ρpp

)2 m2
pc

2

4πe2

]
(ikẑ × δvn) and

δλp =

[
2mpεp

h (2Ω + ΩC)
−
m2

pc
2

4πe2

]
[ik (ẑ × δvp) + apδB] .

(17)

To show that Alfvén waves cannot exist, we need to study the electron fluid velocity, which comes
from Maxwell’s equations and the MHD equations,

δve =
iωmp

eρpωh
δJ × ẑ, (18)

where ωh = Ωcc
2k2/ω2

p is the helicon frequency, a characteristic associated with superconductors.
These particle velocities tell us the current is

δJ +
iω

ωh
δJ × ẑ =

eρp

mp

(
ρpp

ρp
δu+

ρnp

ρp
δvn

)
, (19)

and for frequencies far above the helicon frequency,

δJ × ẑ ≈ ωh

iω

eρp

mp

(
ρpp

ρp
δu+

ρnp

ρp
δvn

)
⇒ δvp = δu− ρeρnp

ρp
2
δvn. (20)
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Substituting this back into equations (15) and (17), we see that

iωδvn + 2Ω
ρnp

ρn
(δu× ẑ) + 2Ω

(
ρnn

ρn
+
ωVn

2Ω
− c2k2

ω2
P

ρpρ
2
np

ρnρpp

)
(δvn × ẑ) = 0

2Ω
ρnp

ρp
(δvn × ẑ) +

ρnp

ρp

(
2iΩωh

ω
−
iΩCωVp

ω

)
δvn + 2Ω

(
ρpp

ρp
+
ωVp

2Ω
− c2k2

ω2
P

− ωh

2Ω

)
(δu× ẑ)

+

(
iω −

iΩCωVp

ω

ρpp

ρp
+

2iΩωh

ω

ρpp

ρp

)
δu = 0.

(21)

From here, we can solve the first equation for δu, and put the result into the second to get a
relatively simple dispersion relation for δvn. We will take some assumptions of scale, namely

{
ω,Ω

}
�
{
ωh, ωvp, ωvn

}
and ωp

2 � c2k2, (22)

to simplify the dispersion relation down to

ω3 ± 2Ω

(
ρnn

ρn
+
ρpp

ρp

)
ω2 +

(
4Ω2 ρnnρpp − ρnp

2

ρnρp
− ΩCωVp

ρpp

ρp

)
ω ∓ 2ΩΩCωVp

ρnnρpp − ρnp
2

ρnρp
= 0,

(23)

which is solved by

δu =
ρn

ρnp

(
± ω

2Ω
− ρnn

ρn

)
δvn. (24)

Under the assumption that{
ρn, ρnn

}
� ρp and ρnnρpp − ρnp

2 ≈ ρnρpp, (25)

this provides frequencies of the form

ω = ±


2Ω

2Ω
ρpp
ρp

ωcv2

2Ω
ρp
ρpp

(26)

in the rotating frame — these must all have ∓Ω added to retrieve the frequencies in the in-
ertial frame. Notice that the third branch features the “cyclotron-vortex” frequency, ωcv =√

ΩCωvpρppρp
−1, which is totally distinct from the Alfvén frequency. Without an oscillation at

the Alfvén frequency, Alfvén waves cannot be excited. Nevertheless, when these superfluid effects
couple to the shell of the neutron star, they cause the abrupt changes in Ω we know and love.
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Glitches in Pulsar Rotation Frequencies

The idea of a glitch in the rock-steady rotation frequency of a pulsar was first supposed after a
sudden increase in both Ω̇ and Ω of one part in one hundred and two in one million, respectively,
were observed in the Vela pulsar, in the form of the exaggerated example pictured below.

Figure 3: Frequency-exaggerated example of a pulsar glitch from Baym et. al. (1969).

The majority of the rotational kinetic energy of a neutron star resides with the largest part of
the moment of inertia, in the superfluid neutron core. The coupling between the core and the
crust which generates the observed pulses is primarily dictated by interactions between the charged
particles of the core and the vortices as discussed above.

Alpar and Sauls (1988) posit that these interactions arise from the huge hyperlocal magnetic field
contained in a quantum of flux from a vortex, each around 1015G within ∼ 30fm, which have large
effects on the rotational velocity of neighboring electrons and protons. Despite the difference in
rotational acceleration of protons and electrons, the tremendous transient currents induced force
the protons to co-rotate with the electrons. This coupling from both protons and electrons then
affects the rotation of the crust, and thus a glitch has occurred.

Earlier, Alpar et. al (1984) discussed the time-scale of this coupling to be

τd ∼
ρ/ρc

Ω(xρ)1/6

(
mp

δmp
∗

)2
√
mp

∗

mp
. (27)
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Then, if we let the crust have moment of inertia Ic and rotation frequency Ω, the same as the
pulse frequency, and let the core have moment of inertia In and rotation frequency Ωn, their shared
angular momentum can be examined individually,

IcΩ̇ = −N − Ic
τ

(Ω− Ωn) and InΩ̇n =
In
τ

(Ω− Ωn) , (28)

with braking torque N from the coupling discussed above. Note that for long times, Ω̇ ≈ −N/I
where I = Ic + In. Furthermore,

Ωn − Ω =
N

I

In
Ic
τ. (29)

Next, over a post-glitch timescale, we notice that the fractional change in rotation frequency is
opposite the fractional change in moment of inertia, that is,

∆Ω

Ω
= −∆Ic

Ic
and

∆Ωn

Ωn
= −∆In

In
. (30)

We can substitute these values into equation (28) and drop small terms to see that

∆Ω̇

Ω̇
=
I∆Ω

τN

[
1− Ic∆In

In∆Ic

]
, (31)

meaning that changes in moment effect change in Ω̇ with a factor of I∆Ω
τN . This factor of usually

∼ 5000 is responsible for the large difference in fractional change of Ω̇ over Ω.

Conclusion

The study of pulsars is still a relatively young one in astronomy, with their first observation just over
fifty years ago. Nonetheless, since they have been such a prominent field of research, the scientific
community has made large strides in understanding the physics underlying these astronomical
objects.

In this brief review, we have seen what forms the radiation takes; how to relate several observed
properties like a pulsar’s distance from an observer and its frequency bandwidth; how a pulsar’s
frequency changes with age; the effects of quantized vortices on the rotation frequencies and how
they couple to the radiative outer crust; and related these back to real astronomical observations
throughout.

These semi-ideal systems afford us the luxury of studying basic physical concepts in the real world
without elaborate experimental apparatuses or the clutter of nonideal theory. The basic science
extracted from these pulsars can be applied to numerous other phenomena, both in and outside of
plasma physics.
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