PHYSICAL REVIEW E

VOLUME 48, NUMBER 6

RAPID COMMUNICATIONS

DECEMBER 1993

Theory of diffusion-limited growth

Herbert Levine
Department of Physics and Institute for Nonlinear Science, University of California,
San Diego, La Jolla, California 92093-0402

Yuhai Tu
Condensed Matter Physics 11/-36, Caltech, Pasadena, California 91125
(Received 14 October 1993)

We review and extend the field-theoretic approach to diffusion-limited growth at a finite back-
ground walker density. This approach leads to an Ito-type stochastic evolution equation with a
multiplicative noise term. We show that a consistent mean-field (i.e., deterministic) reduction of
this problem contains an unexpected low-density cutoff induced by the net probability drift due
to the aforementioned noise. At the conclusion, implications of these findings for a first-principles
theory of diffusion-limited-aggregation fractals are discussed.
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The formation of spatial patterns via diffusion-limited
growth continues to be a topic of great interest [1]. These
nonequilibrium systems form structures via the evolution
of a phase boundary under the influence of transport ef-
fects and microscopic attachment kinetics. The types of
patterns which form seem to be independent of many of
the details of any specific experimental realization of this
type of process. Because of this, similar structures have
been observed in crystal growth [2], viscous fingering [3],
electrochemical deposition [4], and most recently bacte-
rial colony growth [5].

One of the most popular models for studying
these growth processes has been the diffusion-limited-
aggregation (DLA) simulation of Witten and Sander [6].
Their original algorithm involving one walker which al-
ways sticks to a growing cluster has been generalized to
include finite walker density, nontrivial sticking proba-
bilities, etc. [7]. The most important aspect of this work
has long been the ease with which this approach can pro-
duce disordered, fractal structures which are remarkably
realistic. Despite many attempts, however, there is still
lacking a first-principles theory which can explain DLA
results regarding fractal scaling [8].

The purpose of this paper is to take a step in this di-
rection. Specifically, we will reformulate (finite walker
density) DLA as a stochastic evolution equation, extend-
ing the long-ignored work of Peliti [9], Shapir [10], and
others [11] on field-theoretic approaches to DLA. We will
then show that a proper continuum limit of this equation
leads to a new mean-field theory. Crucial to this result
is the realization that multiplicative noise can give rise
to unexpected stabilization effects, when the underlying
discrete time process leads to the Ito interpretation of a
stochastic equation. This concept will emerge clearly in
what follows.

Before proceeding, we would like to discuss the con-
nection of this work to recent ideas regarding modified
mean-field theory for DLA. As shown in several recent
papers, experiments which measure the DLA probability
distribution as a function of imposed geometry, walker
density, anistropy, etc., cannot be explained by using the
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familiar Witten-Sander mean-field equation [6]

p = u(p+a®V?p), 1
u = Viu—p. (1)

Instead, a phenomenological modification was proposed
[12] which artificially introduced a reduction in the clus-
ter growth rate (by replacing the cluster density p by
p?, v > 1 in the p evolution equation). This model
then agreed rather well with the aforementioned findings
[12-14]. As we shall see, one can now derive a mean-field
theory with a true reduction in the small p growth rate;
it takes a slightly different form than was postulated in
those papers, but will have the same desired effect and
hence will agree with all experimental findings to date.
We will return to a discussion of this at the conclusion of
this paper.

First, we review the field-theoretic approach to DLA.
The basic idea of Peliti [9] and others [11] is to asso-
ciate an occupation number Fock space with the state
of the aggregation process at some (discrete) time t. If
the probability of the system having a given configura-
tion of walkers {n,} and cluster particles {myx} (x is a
lattice site) is given as p({n}, {m}), the associated state
is simply

o) = >

p({n}, {m}) ] Inximx). (2)
{n}{m} x

Then, the evolution of the system via a given Markov
process can be used to define a Liouvillian operator.

eF AT = |Typag).

The only difference between this and a more familiar
quantum evolution problem is that one does not take
squares of amplitudes to get probabilities; these are given
merely by overlaps of the system state with the “bare”
state T, (nx; mx |-

For the specific case of “transparent” DLA, the proba-
bility changes by two dynamical processes. First, walkers
can move to a neighboring site. This changes the state
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by removing a walker from site x and adding one to site
X+ a when « is one of (+a%, +ay). This process causes
an increase in probability at time ¢t + At at some site
if there is a walker at a neighboring site at time ¢t and
a decrease in probability at time ¢ + At of any time ¢
walker-occupied site, due to diffusion away from the site.
It is clear that this can be implemented by

Lwalk =D Z (7rx+ox,n - 7rx,n) Ax.n (3)

X,

where [Ty, Gx'.n] = Oxx are the usual commutation
relations for creation and destruction operators m,a.
The other process in transparent DLA is the conver-
sion of a walker to a cluster particle if it has any nearest
neighbors which already belong to the cluster (i.e., have
m # 0). Again, there are both positive and negative con-
tributions to the probability evolution. This process can

|

/ DpDpD$D¢ exp— >

2|

Here V2¢, is the lattice Laplacian Y _(¢xt+a —
walker and cluster densities, respectively.

We now wish to rewrite this as a set of coupled stochastic partial differential equations.

¢x) and qS =
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be described by

['stick =M Z (ﬂ-x,m - 7Tx,n) Az.n Tx+a,m Ax+oa,m; (4)

X,

where we have also introduced operators which create
and destroy cluster particles. The sum of these two pieces
constitutes the entire Liouvillian. In more recent work
[15], Sandow and Trimper have added additional factors
to enforce the nontransparent one particle per site growth
of standard DLA; we will operate under the assumption
that the university class is insensitive to this change in
the microscopic dynamics.

Given this operator formulation, it is straightforward
to derive a path integral for the time evolution of the
system. The final result derived by Peliti [9] is that the
evolution of the system from time 0 to time ¢ is given by

D (ihxdx + ipxix — iD e V2 ) — iy (hx — bx) bx (1 + ifxra) Pxra| At (5)

X,
(Pt+at — ¢1)/At. ¢ and p have the interpretation of

This was first suggested

by Shapir [10], but our calculation differs in some important technical details. To do this, we express

exp [l

To prove this, we notice that the integral over 7 sets

77+ = Z(ﬁx - ¢x) .u“z)x px+aAta
which converts the last term in the exponential to that
of the left-hand side.

We now imagine introducing an independent pair of
noises 7, for each directed link labeled by x, a. Doing
this allows us to obtain a path integral which is linear
in both p, (5; hence the functional integration over these
objects reduces to a 6 function on the ¢ and p variables.
The evolution is thus equivalent to the classical equations

éx = DV2¢x - (z px+a) hx— Z ﬁx,a vV HPx Pxtas
7
x—usz+a¢x+znxa Vﬂ¢xpx+a ()

+ Z nx+a, —aV /J'¢x+a Px

9P[¢, pl

X

0 0
+ —_— e
Z ( 3Px ¢x ) 8px+ot

X,

— 8)dx pxia puva O] = [ DDyt exp - + (o

o} o
ot L 2*2 (—p,:_qu) [NZ px+a¢x ¢7 Z
o

(//‘ Px+a ¢x

- ‘Z)X)n V Hdx Px+a At

+i77+.5x+a :U'd)xpx—i»a At] (6)

[

where we have now defined a noise field 7 = n/\/A—t,
which will become white in the continuous time limit.
As x — oo, we must impose p = 0 and ¢ — A, the
background walker density.

The most important fact about this set of equations
is that the multiplicative noise is defined via the Ito
prescription [16] of evaluating the multiplicative factor
V B®xPxt+a at time t where p. = (pzirat — pPue)/AL.
We now want to take the continuum limit (in time). It is
well known in the literature on stochastic equations [17]
that the Ito prescription differs from the more symmet-
ric Stratonovich approach by an additional contribution
to the deterministic piece of the above equation. The
easiest way to derive this extra piece is to return to the
path integral and recognize that it is equivalent to the
Ito form Fokker-Planck equation for the probability func-
tional P[¢, p]

DV2¢P[¢, rl)

X

P[¢, p]). (8)
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Going exactly to the Stratonovich version is difficult because one must find the square root of the (symmetrized
form of the) second derivative operator; if, however, we approximate pxi+a ~ px in this diffusive term, we obtain the

Stratonovich form equation [18]

oP 0] 0
t

Opx

where the drift term now takes the form

Ueff,x = /‘L¢x Z[px+a - 1/20(.0)] (10)

(a3

Note that the § function arose because whenever pyx o ~
px = 0 there is no quadratic (in p) term in the path
integral and hence no fluctuation induced contribution
to the deterministic part of the equation of motion.

To complete our derivation, we rescale p and ¢ by
D/p and rescale time by 1/D. This leads to the final
(Stratonovich form) stochastic differential equation

Px = ¢xz (px+a - % e(px)) +N@7

i 2 iy ﬁ
be= Ve et N[ (1)

where N represents noise terms. Our mean-field theory
then amounts to simply dropping the noise terms. It only
makes sense to do this in the Stratonovich form because
here the noise represents symmetric diffusion around the
deterministic path. This has been extensively discussed
[19] in the context of the stabilization effect of multi-
plicative noise in cases where it multiplies the field; this
occurs, for example, in the Landau equation with a fluc-
tuating control parameter [20]. In these systems, the Ito
prescription gives rise to a shifted threshhold which is
due precisely to the extra term which comes about from
going to the Stratonovich form. What is different here is
that the noise is proportional to the square root of the
field and hence gives rise to a constant (field independent)
shift, as long as p # 0.

We thus see explicitly that the microscopic theory
gives rise to a minimum growth density proportional to
u/D. Physically, this ratio represents how fast the clus-
ter changes as compared to how fast the diffusion field
can react. Because of this low-density cutoff, we expect
that this model will exhibit the same qualitative behavior
as the v > 1 phenemenological model alluded to earlier.
Specifically, three connected facts should emerge.

(a) If we take the limit A — 0 and keep the flux fixed
(formally this is just arrived at by eliminating the b
term and replacing ¢ — A at oo by ¢ — Jz), this model
exhibits a stable steady-state solution with some value
p(z = —o0) = po which depends on /D and vanishes
as u/D — 0.

(b) At finite A, the steady-state solution vanishes at
some value A* which is of order of pg. This is actually a
direct consequence of the last point [21].

(c) There is a Mullins-Sekerka instability [22] at some

0 15) 15] 0
a—=—2x: (——%) [Ueﬂ,xP]*zx_:%:[DV2¢P]+2dzx: (EE—%) Vpxbx 77— Vpx dx P, (9)

Opx

r

A** > A* which is also at order po.

We have checked items (a) and (b) by regularizing the
0(p) function (as an arctangent) and numerically inte-
grating the equations of motion. A discussion of why
these facts are necessary in order to explain results to
date on walker probability distributions and on morphol-
ogy transitions has been presented elsewhere [12-14].

The fact that p/D gives rise to a lower limit on where
the mean-field theory can maintain stability is not sur-
prising, in light of the fact that lowering A means that
correlating the motion of the interface on longer and
longer length scales requires that the cluster field change
more and more slowly as compared to the walker proba-
bility distribution — in fact, in the original DLA model,
each infinitesimal change in the cluster gives rise to
a completely instantaneously updated walker field, for-
mally corresponding to D — oo.

It is interesting to speculate on the prospects for go-
ing beyond mean-field theory so as to include fluctuation
effects. The simplest extension would involve some type
of random-phase approximation, which would lead to a
coupled set of equations for the mean fields and two-point
correlations for the field fluctuations. This idea will be
pursued elsewhere.

So, where does this leave us in our quest for a theory of
DLA? Our perspective is as follows. We can now justify
all the qualitative results (which agreed with direct ex-
perimental findings) which emerged from the mean-field
theory approach in which a density cutoff was introduced
in a phenemenological manner. Next, true DLA simula-
tions clearly produce a stable interface on a large enough
length scale for any value of A > 0; this is just a restate-
ment of the fact that there is always an upper length
to fractal scaling at finite walker density. Owur results
indicate that a field-theoretic approach starting from a
mean-field description and adding fluctuations in after-
ward will only be valid if we require A > p/D; recovering
fractal scaling, say in the Uwaha-Saito form [23]

v~ AV a5 A 50

for the interface velocity v, will clearly require taking
the limit /D — 0. Exactly how to take into account
fluctuations so as to alter the mean-field prediction v ~ A
(for 1 > A > u/D) or equivalently dy = d — 1 is still a
significant challenge.
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