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In the past few years, Satoshi Kanaza-
wa, a reader in management and 

research methodology at the London 
School of Economics, published a se-
ries of papers in the Journal of Theoreti-
cal Biology with titles such as “Big and 
Tall Parents Have More Sons” (2005), 
“Violent Men Have More Sons” (2006), 
“Engineers Have More Sons, Nurses 
Have More Daughters” (2005), and 
“Beautiful Parents Have More Daugh-
ters” (2007). More recently, he has 
publicized some of these claims in an 
article, “10 Politically Incorrect Truths 
About Human Nature,” for Psychology 
Today and in a book written with Alan 
S. Miller, Why Beautiful People Have 
More Daughters.

However, the statistical analysis 
underlying Kanazawa’s claims has 
been shown to have basic flaws, with 
some of his analyses making the er-
ror of controlling for an intermediate 
outcome in estimating a causal effect, 
and another analysis being subject to 
multiple-comparisons problems. These 
are technical errors (about which more 
later) that produce misleading results. 
In short, Kanazawa’s findings are not 
statistically significant, and the pat-
terns he analyzed could well have oc-
curred by chance. Had the lack of sta-
tistical significance been noticed in the 
review process, these articles would 
almost certainly not have been pub-
lished in the journal. The fact of their 
appearance (and their prominence in 
the media and a popular book) leads 
to an interesting statistical question: 

How should we think about research 
findings that are intriguing but not sta-
tistically significant? A quick answer 
would be to simply ignore them: After 
all, anyone armed with even a simple 
statistics package can go through pub-
lic databases fishing for correlations to 
confirm a preexisting hypothesis. That 
dismissal would be too glib, however, 
because even nonsignificant findings 
can be suggestive. For example, an 
analysis might find the probability of a 
girl birth to be 5 percent more likely for 
attractive than for unattractive parents, 
but with a standard error of 4 percent. 
Not statistically significant, but if we 
had to guess whether girls are more 
likely to be born to beautiful or ugly 
parents, the data would suggest the 
former.

There are other substantive reasons 
why Kanazawa’s hypothesis should 
not be dismissed out of hand, even 
though his results are not statistical-
ly significant. For example, his find-
ings are motivated theoretically by a 
well-respected model put forward by 
Robert Trivers and Dan Willard in a 
classic 1973 paper. The Trivers-Willard 
Hypothesis suggests that if a heritable 
attribute is more beneficial to children 
of one sex than the other, then par-
ents will bear relatively more offspring 
of that sex. In addition, research has 
found that beautiful people are more 
liked and more respected, and the sex 
of children has been found to influ-
ence the attitudes of parents, with, 
for example, politicians with girl chil-
dren staking more liberal positions on 
women’s issues, compared to politi-
cians with boy children. 

The present article focuses on the 
question of how to interpret non-
significant results. We also touch on 
distortions of equivocal findings by 
the popular media. Considering the 
way that more careful statisticians and 

quantitative social scientists tend to 
surround their statements in clouds of 
qualifications and technical jargon, it 
is no surprise that reporters get influ-
enced by brash overstatements. One 
reason this topic is important is that 
systematic errors such as overestima-
tion of the magnitudes of small effects 
can mislead scientists and, through 
them, the general public.

Throughout, we use the term statisti-
cally significant in the conventional way, 
to mean that an estimate is at least two 
standard errors away from some “null 
hypothesis” or prespecified value that 
would indicate no effect present. An 
estimate is statistically insignificant if 
the observed value could reasonably 
be explained by simple chance varia-
tion, much in the way that a sequence 
of 20 coin tosses might happen to come 
up 8 heads and 12 tails; we would say 
that this result is not statistically sig-
nificantly different from chance. More 
precisely, the observed proportion of 
heads is 40 percent but with a standard 
error of 11 percent—thus, the data are 
less than two standard errors away 
from the null hypothesis of 50 percent, 
and the outcome could clearly have 
occurred by chance. Standard error is 
a measure of the variation in an esti-
mate and gets smaller as a sample size 
gets larger, converging on zero as the 
sample increases in size.

Classical and Bayesian Inference for 
Small Effects
We focus on Kanazawa’s 2007 analysis 
of data from the National Longitudi-
nal Study of Adolescent Health, which 
concluded that beautiful parents have 
more daughters. The study included 
interviewers’ subjective assessments 
of respondents’ attractiveness (on a 
1–5 scale) along with data including 
the sexes of respondents’ children (if 
any). For a group of just under 3,000 

Too little attention has been paid to the statistical challenges 
in estimating small effects

Andrew Gelman and David Weakliem

Andrew Gelman teaches in the Department 
of Statistics and the Department of Politi-
cal Science, Columbia University, New York. 
David Weakliem teaches in the Department of 
Sociology, University of Connecticut. Address 
for Gelman: Columbia University, 1016 Social 
Work Building, New York, NY 10027. Inter-
net: gelman@stat.columbia.edu



2009    July–August     311www.americanscientist.org © 2009 Sigma Xi, The Scientific Research Society. Reproduction 
with permission only. Contact perms@amsci.org.

parents, Kanazawa reported a statis-
tically significant 8 percentage point 
difference—a 52 percent chance of girl 
births for the parents in the highest at-
tractiveness category, compared to a 44 
percent chance for the average of the 
four lower categories. However, as one 
of us (Gelman) explained in a letter 
published in the Journal of Theoretical 
Biology, comparing the top category 
to the bottom four is just one of the 
many possible comparisons that could 
be performed with these data—this 

is the multiple-comparisons problem 
mentioned earlier. 

We are in the all-too-common situa-
tion of seeing a pattern in data that, in 
the jargon of social science, is sugges-
tive without being statistically signifi-
cant—that is, it could plausibly have 
occurred by chance alone, but it still 
provides some evidence in favor of a 
proposed model. As statisticians and 
social scientists, how can we frame the 
“suggestive but not statistically sig-
nificant” problem? The key will be to 

think about possible effect sizes: As we 
shall discuss, based on the scientific lit-
erature it is just possible that beautiful 
parents are 1 percent more likely than 
others to have a girl baby, but it is im-
plausible that the difference could be 
anything on the order of 5 percent. Us-
ing this as an example, we consider 
how the problem can be framed in two 
leading statistical paradigms: classical 
inference, which is based on hypothesis 
testing and statistical significance, and 
in which external scientific informa-

Figure 1. In 1973, Robert Trivers and Dan Willard hypothesized that sex ratio (boy births to girl births) was responsive to heritable traits that are 
selectively more advantageous to offspring of one sex than the other. Factors that affect sex ratio (race, maternal health and others) have been stud-
ied frequently. Any effects found are small—typically less than one percent. A series of recent sex-ratio studies reported much larger deviations, 
including a report that attractive parents were 26 percent less likely to have a son than a daughter as the first child. Published analyses followed, 
documenting methodological flaws in the studies and shrinking the findings below the level of statistical significance. The question arises: What 
is to be made of results that are suggestive but statistically insignificant, especially in an era when statistically insignificant findings may be widely 
reported as news?
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tion is encoded as a family of “null 
hypotheses”; and Bayesian inference, in 
which external information is encoded 
as a “prior distribution.”

Taking the data presented in 
Kanazawa’s article, we followed a 
standard analysis predicting the prob-
ability of girl births from the numerical 
attractiveness measure and found that 
more attractive parents were 4.7 per-
cent more likely to have girls, with a 
standard error of 0.043, or 4.3 percent. 
The challenge is to interpret this find-
ing, which is consistent with an exist-
ing hypothesis but is not statistically 
significant.

First we must recognize that the 
effects being studied are likely to be 
small. There is a large literature on 
variation in the sex ratio of human 
births, and the effects that have been 
found have been on the order of 1 per-
centage point (for example, the prob-
ability of a girl birth shifting from 
48.5 percent to 49.5 percent). Variation 
attributable to factors such as race, 
parental age, birth order, maternal 
weight, partnership status and season 
of birth is estimated at from less than 
0.3 percentage points to about 2 per-
centage points, with larger changes (as 
high as 3 percentage points) arising 

under economic conditions of poverty 
and famine. That extreme deprivation 
increases the proportion of girl births is 
no surprise, given reliable findings that 
male fetuses (and also male babies and 
adults) are more likely than females to 
die under adverse conditions. Based 
on our literature review, we would ex-
pect any effects of beauty on the sex 
ratio to be less than 1 percentage point, 
which represents the range of natural 
variation under normal conditions.

Classical Inference
Returning to our example: With an es-
timate of 4.7 percent and a standard 
error of 4.3 percent, the classical 95 
percent confidence interval for the dif-
ference in probability of a girl birth, 
comparing attractive to unattractive 
parents, is [−3.9 percent, 13.3 percent]. 
To put it another way, effects as low as 
−3.9 percent or as high as +13.3 per-
cent are roughly consistent with the 
data. Given that we only expect to see 
effects in the range of ±1 percent, we 
have essentially learned nothing from 
this study.

Another way to frame this is to con-
sider what would happen if repeated 
independent studies were performed 
with the same precision, and thus, ap-

proximately the same standard error of 
4.3 percent. Working with a 95 percent 
confidence interval, there is at mini-
mum a 5 percent chance of obtaining 
a statistically significant result, which 
would imply an estimate of 8.4 percent 
or larger in either direction (1.96 stan-
dard deviations from zero). If multiple 
tests are performed, the chance of find-
ing something statistically significant 
increases. In any case, though, the es-
timated effect—at least 8.4 percent—is 
much larger than anything we would 
realistically think the effect size could 
be. This is a Type M (magnitude) er-
ror: The study is constructed in such 
a way that any statistically significant 
finding will almost certainly be a huge 
overestimate of the true effect. In addi-
tion there will be Type S (sign) errors, 
in which the estimate will be in the 
opposite direction of the true effect. We 
get a sense of the probabilities of these 
errors by considering three scenarios 
of studies with standard errors of 4.3 
percentage points:

1. True difference of zero. If there is no 
correlation between parental beauty 
and sex ratio of children, then a sta-
tistically significant estimate will oc-
cur 5 percent of the time, and it will 
always be misleading.

2. True difference of 0.3 percent. If the 
probability of girl births is actually 
0.3 percent higher among attractive 
than among unattractive parents, 
then there is a 3 percent probabil-
ity of seeing a statistically signifi-
cant positive result—and a 2 percent 
chance of seeing a statistically signif-
icant negative result. In either case, 
the estimated effect, of at least 8.4 
percentage points, will be over an 
order of magnitude higher than the 
true effect, and with a 2/5 chance of 
going in the wrong direction. If the 
result is not statistically significant, 
the chance of the estimate being in 
the wrong direction (a Type S error) 
is 47.5 percent, so close to 50 percent 
that the direction of the estimate 
provides almost no information on 
the sign of the true effect. 

3. True difference of 1 percent. If the prob-
ability of girl births is actually 1 per-
cent higher among attractive than 
among unattractive parents—which, 
based on the literature, is on the high 
end of possible effect sizes—then 
there is a 4 percent chance of a sta-
tistically significant positive result, 
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Figure 2. Using a sample of 2,972 respondents from the National Longitudinal Study of Ado-
lescent Health, each of whom had been rated on a five-point scale of attractiveness, Satoshi 
Kanazawa compared the most attractive group to the average of the other four groups and 
concluded that there was a higher probability that the first-born child of the most attractive re-
spondents would be a girl. Using the same data, a more usual methodology determines the best- 
fit curve for all of the data, with a standard error based on the size of the study. A classical 95 
percent confidence interval reveals that effects as low as –3.9 percent and as high as 13.3 percent 
are consistent with these data. Thus, the finding of a 4.7 percent effect delivers little information 
about the association of parental beauty with the sex ratio of offspring in the population. 
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and still over a 1 percent chance of 
a statistically significant result in the 
wrong direction. Overall there is a 
40 percent chance of a Type S error: 
Again, the estimate gives us little 
information about the sign or the 
magnitude of the true effect.

4. True difference of 3 percent. Even if the 
true difference were as high as 3 per-
cent, which we find implausible from 
the literature review, there is still only 
a 10 percent chance of obtaining sta-
tistical significance, and the overall 
Type S error rate is 24 percent.

A study of this size is thus not fruit-
ful for estimating variation on the 
scale of one or a few percent. This is 
one reason that successful studies of 
the human sex ratio use much larger 
samples, typically from demographic 
databases where the sample size can 
be millions.

Bayesian Inference 
We can also redo Kanazawa’s analysis 
using a Bayesian prior distribution. 
In Bayesian inference, the prior distri-
bution represents information about 
a problem from sources external to 
the data currently being analyzed. A 
diffuse prior distribution is one that 
conveys essentially no information 
beyond the data at hand. To start 
with, given a sufficiently diffuse prior 
distribution, the posterior distribution 
would be approximately normal with 
a mean of 4.7 percent and a standard 
error of 4.3 percent, which would 
imply about an 86 percent probabil-
ity that the true effect is positive. In 
general, the more concentrated the 
prior distribution around zero (a pre-
sumption based on the sex-ratio lit-
erature that the true effect is likely 
to be small), the closer the posterior 
probability will be to 50 percent. 

For example, consider a bell-shaped 
distribution with center zero and with 
a shape such that the true difference in 
percentage of girls, comparing beauti-
ful and ugly parents, is most likely to 
be near zero, with a 50-percent chance 
of being in the range [−0.3 percent, 0.3 
percent], a 90-percent chance of being 
in the range [−1 percent, 1 percent], 
and a 94-percent chance of being less 
than 3 percentage points in absolute 
value. We center the prior distribution 
at zero because, ahead of time, we 
have no particular reason to believe 
that the true difference in the prob-
ability of girl births, comparing attrac-

tive and unattractive parents in the 
general population, will be positive 
or negative. 

The next step is to perform the cal-
culations of the probability of different 
effect sizes, given the prior distribu-
tion and the data. Briefly, the resulting 
posterior distribution gives a probabil-
ity that the difference is positive—that 
beautiful parents actually have more 
daughters—of only 58 percent—and 
even if the effect is positive, there is 
a 78-percent chance it is less than 1 
percentage point. This analysis de-
pends on the prior distribution but not 
to an extreme extent; for example, if 
we broaden the distribution curve, in-
creasing the range of inclusion for out-
liers, the posterior probability that the 
true difference is positive is still only 
65 percent. Switching between families 
of distribution curves has little effect 
on the results. The key is that effects 
are likely to be small, and in fact the 
data are consistent with small results. 

The ideal for scientific understand-
ing about a quantity (in this case, the 
correlation between beauty of parents 
and sex ratio of children) is to have 
a recognized uncertainty that can be 

summarized by a probability distribu-
tion. Individual researchers can col-
lect data or creatively analyze existing 
sources (as was done by Kanazawa) 
and publish their results, and then oc-
casional meta-analyses can be done 
to review the results. This procedure 
smooths some of the variation that is 
inherent in these small-sample stud-
ies, where the probability of a positive 
effect can jump from 50 percent to 58 
percent, then perhaps down to 38 per-
cent with the next study, and so forth. 

The 50 Most Beautiful People
One way to calibrate our thinking 
about Kanazawa’s results is to collect 
more data. Every year, People magazine 
publishes a list of the 50 most beautiful 
people, and, because they are celebri-
ties, it is not difficult to track down 
the sexes of their children, which we 
did for the years 1995–2000. Data were 
collected from Wikipedia, the Inter-
net Movie Database and celebrities’ 
personal Web pages, using a cutoff 
date of August 2007. Information was 
missing for two beautiful people in 
1995, two in 1996, three in 1997, six in 
1998, three in 1999, and two in 2000. 

Figure 3. “Statistical methods of analysis are intended to aid the interpretation of data that are 
subject to appreciable haphazard variability,” wrote D. R. Cox and D. V. Hinkley in their book 
Theoretical Statistics. Statistical findings are not in the eye of the beholder, but they require 
awareness of statistical reasoning. Uncertainty is inevitable and is summarized by a probabil-
ity distribution. Fifty-six is decidedly more than 44, but 56 girls and 44 boys could happen by 
chance in any nursery.
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The data are available for download 
at http://www.stat.columbia.edu/
~gelman/research/beautiful/

As of 2007, the 50 most beautiful 
people of 1995 had 32 girls and 24 
boys, or 57.1 percent girls, which is 
8.6 percentage points higher than 
the population frequency of 48.5 
percent. This sounds like good news 
for the hypothesis. But the standard 
error is 0.5/√(32 + 24) = 6.7 percent, 
so the discrepancy is not statistically 
significant. Let’s get more data. 

The 50 most beautiful people of 
1996 had 45 girls and 35 boys: 56.2 
percent girls, or 7.8 percent more 
than in the general population. 
Good news! Combining with 1995 
yields 56.6 percent girls—8.1 percent 
more than expected—with a stan-
dard error of 4.3 percent, tantaliz-
ingly close to statistical significance. 
Let’s continue to get some confirm-
ing evidence. 

The 50 most beautiful people of 
1997 had 24 girls and 35 boys—no, 
this goes in the wrong direction, let’s 
keep going…For 1998, we have 21 
girls and 25 boys, for 1999 we have 
23 girls and 30 boys, and the class 
of 2000 has had 29 girls and 25 boys. 
Putting all the years together and 

removing the duplicates, such as 
Brad Pitt, People’s most beautiful 
people from 1995 to 2000 have had 
157 girls out of 329 children, or 47.7 
percent girls (with a standard error 
of 2.8 percent), a statistically insig-
nificant 0.8 percentage points lower 
than the population frequency. So 
nothing much seems to be going on 
here. But if statistically insignificant 
effects were considered acceptable, 
we could publish a paper every two 
years with the data from the latest 
“most beautiful people.” 

Why Is This Important?
Why does this matter? Why are we 
wasting our time on a series of pa-
pers with statistical errors that hap-
pen not to have been noticed by a 
journal’s reviewers? We have two 
reasons: First, as discussed in the 
next section, the statistical difficul-
ties arise more generally with find-
ings that are suggestive but not sta-
tistically significant. Second, as we 
discuss presently, the structure of 
scientific publication and media at-
tention seem to have a biasing effect 
on social science research. 

Before reaching Psychology Today 
and book publication, Kanazawa’s 

findings received broad attention in 
the news media. For example, the 
popular Freakonomics blog reported,

A new study by Satoshi Kanaza-
wa, an evolutionary psychologist 
at the London School of Econom-
ics, suggests . . . there are more 
beautiful women in the world 
than there are handsome men. 
Why? Kanazawa argues it’s be-
cause good-looking parents are 
36 percent more likely to have a 
baby daughter as their first child 
than a baby son—which suggests, 
evolutionarily speaking, that 
beauty is a trait more valuable for 
women than for men. The study 
was conducted with data from 
3,000 Americans, derived from 
the National Longitudinal Study 
of Adolescent Health, and was 
published in the Journal of Theo-
retical Biology.

Publication in a peer-reviewed jour-
nal seemed to have removed all skepti-
cism, which is noteworthy given that 
the authors of Freakonomics are them-
selves well qualified to judge social 
science research. 

In addition, the estimated effect 
grew during the reporting. As noted 
above, the 4.7 percent (and not sta-
tistically significant) difference in the 
data became 8 percent in Kanazawa’s 
choice of the largest comparison (most 
attractive group versus the average of 
the four least attractive groups), which 
then became 26 percent when reported 
as a logistic regression coefficient, and 
then jumped to 36 percent for reasons 
unknown (possibly a typo in a news-
paper report). The funny thing is that 
the reported 36 percent signaled to us 
right away that something was wrong, 
since it was 10 to 100 times larger than 
reported sex-ratio effects in the bio-
logical literature. Our reaction when 
seeing such large estimates was not 
“Wow, they’ve found something big!” 
but, rather, “Wow, this study is under-
powered!” Statistical power refers to 
the probability that a study will find 
a statistically significant effect if one 
is actually present. For a given true ef-
fect size, studies with larger samples 
have more power. As we have dis-
cussed here, “underpowered” studies 
are unlikely to reach statistical signifi-
cance and, perhaps more importantly, 
they drastically overestimate effect 
size estimates. Simply put, the noise is 
stronger than the signal.

1995 1996 1997

1998 1999 2000

32 girls 24 boys

29 girls 25 boys

45 girls 35 boys

21 girls 25 boys

24 girls 35 boys

23 girls 30 boys

Figure 4. The authors performed a sex-ratio study of the offspring of the most beautiful people 
in the world as selected by People magazine between 1995 and 2000. The girls started strong in 
1995 with 32 girls to 24 boys. Girls continued strong in 1996. However, as the sample size grew, 
the ratio converged on the population frequency, concluding with 157 girls and 172 boys, or 
47.7 percent girls, approximately the same as the population frequency of 48.5 percent.
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This problem will occur again and 
again, and is worth thinking about now. 
To start with, most of the low-hang-
ing fruit in social science research has 
presumably been plucked, leaving re-
searchers to study small effects. Sex ra-
tios are of inherent interest to all of us 
who have or are considering having ba-
bies, as well as for their implications for 
the organization of society. Miller and 
Kanazawa’s billing of their result as a 
“politically incorrect truth” hints at the 
connection to live political issues such 
as abortion, parental leave policies and 
comparable-worth laws that turn upon 
judgments of the appropriate roles for 
men and women in society. 

As we discussed earlier in this ar-
ticle, studies with insufficient statisti-
cal power will spit out random results 
that will occasionally be statistically 
significant and, even more often, be 
suggestive, as in Kanazawa’s beauty-
and-births studies. It is tempting to 
interpret the directions of these essen-
tially random findings without recog-
nizing the fragility of the explanations 
we construct. Evolutionary psychology 
could be used to explain a result in the 
opposite direction, using the following 
sort of argument: Persons judged to be 
beautiful are, one could claim, more 
likely to be healthy, affluent and from 
dominant ethnic groups, more gener-
ally having traits that are valued in the 
society at large. (Consider, for exam-
ple, Miss Americas, who until recent 

decades were all white.) Such groups 
are more likely to exercise power, a 
trait that, in some sociobiological ar-
guments, is more beneficial for men 
than women—thus it would be natu-
ral for more attractive parents to be 
more likely to have boys. We are not 
claiming this is true; we are just noting 
that the argument could go in either 
direction, which puts a particular bur-
den on the data analysis. The ability of 
this theory to explain findings in any 
direction was pointed out in 2007 by 
Jeremy Freese in the American Journal 
of Sociology, who describes this sort of 
argument as “more ‘vampirical’ than 
‘empirical’—unable to be killed by 
mere evidence.” 

In statistics, you can’t prove a neg-
ative. “Beautiful parents have more 
daughters” is a compelling headline; 
the sounder statement is a less appeal-
ing headline: “There is no compelling 
evidence that beautiful parents are 
more or less likely to have daughters.” 
As a result, public discourse can get 
cluttered with unproven claims, which 
perhaps will lead to a general skepti-
cism that will, in boy-who-cried-wolf 
fashion, unfairly discredit more con-
vincing research. 

The result is a sort of asymmetrical 
warfare, with proponents of sex differ-
ences and other “politically incorrect” 
results producing a series of empirical 
papers that, for reasons of inadequate 
statistical power, give essentially ran-

dom clues about true population pat-
terns, and opponents of this line of 
research being reduced to statements 
such as “the data are insufficient.” The 
aforementioned Freakonomics article 
concluded, “It is good that Kanazawa 
is only a researcher and not, say, the 
president of Harvard. If he were, that 
last finding about scientists may have 
gotten him fired.” It should be pos-
sible to criticize large unproven claims 
in biology and social science without 
dismissing the entire enterprise. 

Why Is This Not Obvious?
The natural reaction of a competent 
quantitative researcher to the statistics 
in this article is probably, Duh. But if 
this is so obvious, why did the mistake 
result in not one, but several papers 
in the Journal of Theoretical Biology, a 
prominent publication with an impres-
sive name and a respectable impact fac-
tor of 2.3 (higher than any of the three 
top journals in statistics, Journal of the 
American Statistical Association, the An-
nals of Statistics and the Journal of the 
Royal Statistical Society)? One problem, 
of course, is that referees are busy, and 
statistical errors can be subtle and easily 
overlooked. But another problem is the 
confusing connection between statisti-
cal significance and sample size. It is 
well known that, with a large enough 
sample size, one can just about always 
find statistically significant, if small, ef-
fects. But it is not so well realized that, 

Figure 5. “A statistical analysis, properly conducted, is a delicate dissection of uncertainties,” wrote M. J. Moroney in Facts from Figures, pub-
lished in 1951. Moroney’s comment is especially true for small effects. Random findings can be misidentified as significant. Methodological 
problems can be overlooked by reviewers. And popular reporting can misrepresent or even exaggerate the original findings. The dangers are 
especially present if the finding is suggestive and the study is underpowered for the job of resolving the correlations in the data.
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when effects truly are small, there is 
little point in trying to find them with 
underpowered studies. 

These problems are not new, even in 
the field of sex ratios. For example, in 
a 1957 book with the unfortunate title 
of Probability, Statistics, and Truth, Rich-
ard von Mises studied the sex ratios of 
births in the 24 months of 1907–1908 in 
Vienna and found less variation than 
would be expected from chance alone. 
He attributed this to different sex ratios 
in different ethnic groups. In fact, how-
ever, the variance, though less than ex-
pected by chance, was not statistically 
significantly less. There seems to be a 
human desire to find more than pure 
randomness in sex ratios, despite there 
being no convincing evidence that sex 
ratios vary much at all except under 
extraordinary conditions. 

Realistically, a researcher on sex 
ratios has to make two arguments: a 
statistical case that observed patterns 
represent real population effects and 
cannot be explained simply by sam-
pling variability, and a biological ar-
gument that effects on the order of 1 
percent are substantively important. 
The claimed effect size of 26 percent 
should have aroused suspicion in 
comparison to the literature on human 
sex ratios; in addition, though, the pa-
pers managed to survive the review 
process because reviewers did not rec-
ognize that the power of the studies 
was such that only very large estimat-
ed effects could make it through the 
statistical-significance filter. The result 
is essentially a machine for producing 
exaggerated claims, which of course 
only become more exaggerated when 
they hit the credulous news media 
(with an estimate of 4.7 percent ± 4.3 
percent being ramped up to 26 percent 
and then reported as 36 percent). 

Statisticians should take some of 
the blame here. Statistics textbooks are 
clear enough on the concepts of statis-
tical significance and power, but they 
don’t provide much guidance on how 
to think about what to do when you get 
implausibly large estimates from small 
samples. Classical significance calcula-
tions do not make use of prior knowl-
edge of effect sizes, and Bayesian analy-
ses are often not much better. Textbook 
treatments of Bayesian inference almost 
entirely use noninformative prior dis-
tributions and essentially ignore issues 
of statistical power. Conversely, power 
calculations are commonly used in de-
signing studies (to indicate how large a 

study should be) but are rarely used to 
enlighten data analyses. And theoreti-
cal concepts such as Type S and Type 
M errors have not been integrated into 
statistical practice. 

The modern solution to difficulties 
of statistical communication is to have 
more open exchange of methods and 
ideas. More transparency is apparently 
needed, however: For example, Psy-
chology Today did not seem to notice the 
published critique of Kanazawa’s find-
ings in the Journal of Theoretical Biology 
or several other methodological criti-
cisms that have appeared in sociology 
journals. We hope that a more system-
atic way of understanding estimates 
of small effects will provide a clearer 
framework for open communication.
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