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1/ 41/ 4 1/ 4

02a km mA ω
π π π

    = = =    
     

 

 
where the final result uses 2

0 /k mω = . 
 

23. (a)  21 1
0 0 0 0 02 2 so /E kx x kω ω= = =   

 
 (b) 23 1

1 0 0 0 02 2 so 3 /E kx x kω ω= = =    
 

25 1
2 0 0 0 02 2 so 5 /E kx x kω ω= = =   

 

24.   
22 2 2

av | ( ) | 0axx x x dx A e x dxψ
∞ ∞ −

−∞ −∞
= = =∫ ∫  

 
because the integrand is an odd function of x (the integral from −∞ to 0 exactly cancels 
the integral from 0 to +∞). 
 

 
2 2 2

2
2 2 2 2 2 2 2 2 2 2

av 30 0

2( ) | ( ) | 2
8

ax ax uAx x x dx A e x dx A e x dx e u du
a

ψ
∞ ∞ ∞ ∞− − −

−∞ −∞
= = = =∫ ∫ ∫ ∫  

 
with the substitution 2u x a= .  The integral is a standard form found in tables and is 
equal to /4π .  Substituting 1/4

0( / )A mω π=   and 0/2 /2a km mω= =  , we find 
 

  
3/ 21/ 2

2 0
av

0 0

1 2( ) 2
4 22 2

mx
m m

ω π
π ω ω

  = =  
   

 



 

 
  2 2

av av 0( ) ( ) / 2x x x mω∆ = − =   
 

25. (a)  Because the oscillating particle moves with equal probability in the positive and 
negative x directions, av 0p = .   

 (b)   2 2
av av 0 02

0 0

1 1 1 1( )
2 2 2 2 2 4

U k x k m
m m

ω ω
ω ω

= = = =
 

  

 
  1 1 1

av av 0 0 02 4 4K E U ω ω ω= − = − =    
 

  2 0
av av 0

1( ) 2 2
4 2

mp mK m ωω = = = 
 



  
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 (c) 2 2
av av 0( ) ( ) /2p p p mω∆ = − =   

 
26. 1

0 0 021.24 eV so 2.48 eVE ω ω= = =   
 
  To n = 2 state:  5 1

2 0 0 0 02 2 2 2(2.48 eV) 4.96 eVE E E ω ω ω∆ = − = − = = =    
  To n = 4 state:  9 1

4 0 0 0 02 2 4 4(2.48 eV) 9.92 eVE E E ω ω ω∆ = − = − = = =    
 
27. 

22 2 2 2( ) | ( ) | so at 0 (0)axP x dx x dx A e dx x P dx A dxψ −= = = =  
 
  At the classical turning points 0x x= ± , K = 0 so 21 1

0 02 2orE U kxω= =  
 
  02( / 2 )( / )2 2 1 1

0( ) (0) 0.368 (0)km kP x dx A e dx A e dx e P dx P dxω− − −± = = = =   
 
28. (a) If E = 0, then p = 0 and we would know the momentum exactly. Thus ∆p = 0, which 

means ∆x = ∞. But that would be inconsistent with a particle that is bound to a finite 
region of space.  
(b)  

 
3 2

1 1 1
02 2 2 2 3

3.5 10 eV/nm0.5(197 eV nm) 0.19 eV
938 10 eV

k kE c
m mc

ω ×
= = = = ⋅ =

×
     

 
This is less than the binding energy, so this motion is not sufficient to dissociate the 
molecule. 
(c) At the turning point of the motion, 21

02E kx= , so 
 

 0 3 2

2 2(0.19 eV) 0.010 nm
3.5 10 eV/nm

Ex
k

= = =
×

  

  
This motion is not negligible at the atomic level.  

 
29.  

 
22 2 2 2( ) | ( ) | (2 1) axP x x A ax eψ −= = −   

 
2 2 22 2 2 2 2 2 2 22 (2 1)(4 ) (2 1) ( 2 ) 2 (2 1)(5 2 ) 0ax ax axdP A ax ax e A ax ax e aA xe ax ax

dx
− − −= − + − − = − − =

  
The locations of the extrema are 0, ±(1/2a)1/2, ±(5/2a)1/2, and ±∞. Clearly the values at 
±∞ are minima. Working inward from there, the next largest values, ±(5/2a)1/2, must 
locate maxima, then minima at ±(1/2a)1/2, and finally a maximum at 0. Compare these 
values with the plot of the n = 2 probability density in Figure 5.22. 
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30.  
1/ 2 1/ 21

2
2

0 0 0

( ) 1 2 2 0
2 2 ( )

d x d K K K
dK dK m U E K m U E K U E K

−   ∆
= = − =   − + − + − +  

   

   

     
1/ 2

1/ 2
0

0

1 or
2

KK K U E
U E K

− = = −
− +

 

 

  0
max

0 0

1 2( ) 1( )
2 2( ) 2 2 ( )

U Ex
m U E m U E
−

∆ = =
− −
   

 

31. 0 0 0 0 2

20 : sin cos with mEx A k x B k x kψ< = + =


 

 

1 1 0
1 1 2

2 ( )0 : ( ) withk x k x m U Ex x Ce De kψ − −
> = + =



 

 
We set C = 0 to keep 1ψ  finite as x → ∞.  We then apply the continuity conditions on ψ  
and /d dxψ  at x = 0: 
 

0 1(0) (0) : B Dψ ψ= =  
 

0 1
0 1

0 0

:
x x

d d k A k D
dx dx
ψ ψ

= =

   = = −   
   

 

 
Thus 0 1 0( / ) /( )D B A k k A E U E= = − = − − . 
 

32. 0 0
0 0 2

20 : withik x ik x mEx A e B e kψ −′ ′< = + =


 

1 1 0
1 1 2

2 ( )0 : ( ) withik x ik x m E Ux x C e D e kψ − −′ ′> = + =


 

 
If the particles are incident from them negative x direction, then D′ (which is the 
coefficient of the term that represents a wave in the region of positive x traveling toward 
the origin) must be set to 0.  We then apply the continuity conditions on ψ  and /d dxψ  at 
x = 0: 
 

0 1(0) (0) : A B Cψ ψ ′ ′ ′= + =  
 

0 1
0 1

0 0

: ( )
x x

d d k A B k C
dx dx
ψ ψ

= =

    ′ ′ ′= − =   
   
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2

2 2 2
av av 2 2 2 2

1 1 1 1( ) ( )
3 2 2 12 2

Lx x x L L
n nπ π

   ∆ = − = − − = −   
   

 

 
39. (a) The particle has no preferred direction of motion, so it is equally likely to be moving 

in the positive and negative x directions.  We therefore expect that av 0p = . 
 (b) Because the potential energy is zero inside the well, the kinetic energy is equal to the 

total energy: 

  
2 2 2 2 2

2
2 2or so

2 8 4n
p h n h nK E p
m mL L

= = =  

 
For a given level n, p2 is constant so 2

av( )p  has that same value. 
 

(c)   
2 2

2 2
av av 2( ) ( ) 0

4 2
h n hnp p p

L L
∆ = − = − =  

 

40.  
2 2 2 22 2( 2 ) (1 2 )ax ax ax axd dA xe A e ax e Ae ax

dx dx
ψ − − − −= = − = −  

 
2 2 2

2
2 2 3

2 [( 4 ) (1 2 )( 2 ) ] ( 6 4 )ax ax axd A ax e ax ax e Ae ax a x
dx
ψ − − −= − − − − = − +  

 
Substituting the second derivative into the Schrödinger equation, we have 

   

  
2 2 2

2
2 3 21( 6 4 )

2 2
ax ax axAe ax a x kx Axe EAxe

m
− − −− − + + =

  

 
After canceling common factors and combining terms, 
 

  
2 2 2

2 2 3 0
2
k a ax E

m m
   

− + − =   
   

   

 
In order for this to be valid for all possible values of x, both of the quantities in 
parentheses must be zero: 
 

  
2 2 2 2

0 0
0

2 3 3 3or AND
2 2 2 2
k a m a ma E

m m m
ω ω ω= = = = =

  



 

 

 
2 2 2

2 2
2 2 2 2 2 2 2 2

3 30 0

2| ( ) | 2
48 2

ax ax uA Ax dx A x e dx A x e dx u e du
a a

πψ
∞ ∞ ∞ ∞− − −

−∞ −∞
= = = =∫ ∫ ∫ ∫  

 
where we have made the substitution 2u x a=  to put the integral into a standard form 
that is found in integral tables.   Setting the result equal to 1 gives 
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3/ 2 3/ 43

2 0 0
1/ 4

4 2 2 24 or
2

a m mA Aω ω
π ππ
   = = =   
    

 

 
41.  

2

0 0 0 0

2 2 2 2 2| ( ) | | ( ) | 2 | ( ) | 2 ax

x x x x
P x dx x dx x dx A e dxψ ψ ψ

−∞ ∞ ∞ ∞ −

−
= + = =∫ ∫ ∫ ∫  

 
2 20

1 1

1 22 0.157
2

u um e du e du
a

ω
π π

∞ ∞− −= = =∫ ∫


 

 
42. (a) The x and y motions are independent, and each contributes an energy of 1

0 2( )nω + , 
but the integer n is not necessarily the same for the two independent motions.   Thus the 
total energy is 

  
   1 1

0 0 02 2( ) ( ) ( 1)x y x yE n n n nω ω ω= + + + = + +    
 
(b) 

 
(c) The level with energy 0N ω  has N different possible sets of quantum numbers ,x yn n .  
Both nx and ny range from 0 to N−1 but with their sum fixed to N.  The number of 
possible values of nx is then N (the values are 0, 1, 2, …, N-2, N-1), and for each value of 
nx the value of ny is fixed.  The total degeneracy of each level is thus 1x yN n n= + + . 

 
43. (a) With 2 2

av av( ) ( )x x x∆ = − , clearly xav = 0 for this wave function. Then 
 

 
2

2 2 2 1 2 2 / 1
av 30

2( ) | ( ) | 2 2
(2/ ) 2

x b bx x x dx b x e dx b
b

ψ
+∞ +∞− − −

−∞
= = = =∫ ∫   

 
So / 2 0.71x b b∆ = = . 
 

04 ω  

03 ω  

02 ω  

0ω  

Energy 

4 

3 

2 

1 

(0,3), (1,2), (2,1), (3,0) 

(0,2), (1,1), (2,0) 

(0,1), (1,0) 

(0,0) 

Degeneracy         (nx, ny) 
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(b) The maximum probability density occurs at x = 0, where 2 1( ) | ( ) |P x x bψ −= = . We 
now find the location where P(x) drops to half that value, that is, where 2| |/ 0.5x be− = , or 

2 | | / ln(0.5)x b− = : 
 
 | | ( /2) ln(0.5) or 0.347x b x b= − = ±   
 
Our estimate for ∆x is then the distance between the two points where the probability is 
half its maximum value, so ∆x = 0.69b, which agrees very well with the result of the 
more rigorous calculation from part (a).   

 
44.    (a) With 

2

( ) axx Axeψ −= , we have 
22 2 2 2( ) | ( ) | axP x x A x eψ −= = , and so 

 

 
2 2 22 2 2 2 2 2 2 2(2 ) ( 4 ) 2 (1 2 ) 0ax ax axdP A x e A x ax e xA e ax

dx
− − −= + − = − =   

 
The two maxima are located where 21 2 0ax− = , or 1/ 2x a= . 
(b) The probability density at the maximum is 2 1( /2 )P A a e−= . To find where the 
probability density drops to half this value, we set 
 
 

22 2 2 2 11
2 ( / 2 )axA x e A a e− −=   

 
and solve for x. A trial and error method converges quickly to the values x1 = 0.34a-1/2 
and x2 = 1.16a-1/2. 
(c) We can take the width of the distribution between the 2 half-height points as a 
measure of the most probably location of the particle, so ∆x = x2 − x1 = 0.82a-1/2. 

(d) Using 2 2
av av( ) ( )x x x∆ = −  with xav = 0 by symmetry, we then have 

 

 
22 2 2 2 4 2 2

av 20

3( ) | ( ) | 2 2
8(2 )

axx x x dx A x e dx A
a a

πψ
+∞ +∞ −

−∞
= = =∫ ∫   

 
With 2 3/2 1/24A a π −= from the normalization, this becomes (x2)av = 3/4a and thus ∆x = 
0.87a-1/2, in very good agreement with the estimate from the width of the distribution.     
  

 




