1. w(x)=Axe™ gives diy/dx = Ae™ —bAxe™ and d’y/dx* = —2bAe™ +b*Axe ™. Then
substituting into Equation 7.2 we have

2 2
" (2 Abe™ +b? Axe ) ——

-— Axe™ = EAxe™
2m 4reyX

Canceling common factors gives

Wb h°b? e b e’ h°b?
- X— =Ex or |—-— +X| — -E |=0
m 2m Are, m 4re, 2m

For this expression to equal zero for all x, both terms in parentheses must be zero. Thus

b e’ me? 1 hb? me*
—= or b= - =— and E=- =
m  4zns, Areh” @, 2m 32r°gyh

2. The probability density is P(x) = |a//(x)|2 = A’x%e™® . To find the maximum, we set the
first derivative equal to zero:

3—'3 = 2A%xe ™™ —2bA’x%e ™ =0
X

This has solutions at x = 0, x = o0, and x = 1/b = &,. The first two give minima and the
third gives the maximum.

3. The probability to find the electron in a small interval is P(x)dx = A*x’e **dx.
Substituting the values of A and b, and evaluating the resulting expression for x = a,, and
dx = 0.02a,, (appropriate to the interval from x = 0.99a,, to x = 1.01a,), we obtain

P(x)dx = 13 x2e 2%y = i3a§e*2 (0.02a,) =0.0108
a 8

0

4. @) |L=10+Dn=J@)@nr=12n
(b) There are 21 + 1 =7 possible z components: L, = m# = +3k,+2h,+h,0,—h,—2h,-3%h .

©) cos@=m/JI(1+1) =m /\12



6 =cos3/1/12 = 30°

0 =cos ™ 2/4/12 =55°

0 =cos11/+/12 =73°

6 =cos™"0=90°

6 = cos*(-1//12) =107°
0 =cos}(-2/+/12) =125°
6 = cos*(~3/+/12) =150°



7. @lhx=n-1=5s01=0,1,2,3,4,5forn=6.
(b) m, =46, +5, +4, +3, +2, +1,0, -1, -2, -3, -4, -5, 6
(c) n>1+1=5for | = 4, so the smallest possible n is 5.

(d) For m; =4, | > 4 so the smallest possible I is 4.



2
10. With y,,(r,0,4) = — e, ‘le%(_ijenaﬂ and 2V _ L 3 (ine’
7a, r ra, or

Substituting into Equation 7.10, we have

1 hz :]-e—r/a0 _ie—r/aO _ e2 e—r/aO
3| 2m a,r Are,r

ma,
B P (N S S (r,0,0) = By, (1,0, 9)
Jrad Ame,\ 2a, r r) 2a,4nre %00 Vioo
2 2 2 4
with E =— 1L e 1e me 5= m2e2 > Which is E; from Equation 7.13.
2a, 4rs, 2 Are, Ars,h 32r°g5h



12.

Forn=1,1=0we have P(r)=r? |R110(r)|2 =4r’e ™% [a}. To find the maximum, we set
dP/dr to zero:

d_P — i3|:2re2r/a0 _ r.2 LEJ le/a0:| — 8_|;e—2r/a0 (1_L] =0
dr a, a, a, a,

There are three solutions to this equation: r =0, r = «, r = a,. The first two solutions
correspond to minima of P(r); only the solution at r = a, gives a maximum.



15.  P(r)dr =r? |R10(r)| dr = (1.00a,)* e’Z(O 0la,) = 0.0054



17.

The angular probability density is P(8,4) = &sin? @cos’ @. To find the locations of the
maxima and minima, we set the derivative equal to zero:

P _ E(Zsin 6 cos® @—2sin* @cosh) = E(sin 0)(cos 6)(cos* @ —sin®H) =0
do 8rx 4

The three angular terms in parentheses give three sets of solutions: =0, 7, = 7/2; and 8
= a4,374. By checking the second derivative, we find that the first two sets give
minima (the second derivative is positive) and the third gives maxima (negative second
derivative). The angular probability density thus starts at zero along the positive z
direction, rises to a maximum at &= 45°, falls again to zero in the xy plane (6= 90°),

rises again to a maximum at = 135°, and finally falls again to zero on the negative z
axis.



19.

() P(8,4)=(3cos* -1)°
(b) P(8,¢)=Lsin’ @ cos’ &
(c) P(8,¢4)=-2sin" 0

=

(@)

(b)

(©)




24. (a) The transitions that change | by one unit are

N=5 s p d f

n=4 —
n=3 //

n=2

n=1

(b) Starting instead with 5d, the permitted transitions are



S5 55
I

w ~o1

N




26.

(@)

OAE 0

s

€¢---—-——-=—=—=--|1
= == === == - = 4

<
<«

P I R I

I

<
<«

H-Fr---—-=—-=-=-—-==-—-}+ -4
dFr{---=-=-—=-"===---t4-F4

2p

(b) Transitions shown with dashed lines violate the Am, = £1 selection rule.

(c) The energy of the initial state is E; = E;, +m, AE and the energy of the final state
isE; = E,, +m, AE (where AE is the spacing between adjacent states). The transition
energies can be found from the energy difference:

E, ~ E; = (Esy — E,) + (M, ~M, )AE = (Ey — E,,) + Am,AE

There are only three permitted values of Am, (0, £1), so there are only three possible
values of the energy difference: E,, —E, ,E,, —E, +AE,E;, —E,, +AE.

2p!



217.

(@) In the absence of a magnetic field, the 3d to 2p energy difference is

1

E =(-13.6057 eV) (3% - Z—ZJ =1.88968 eV

and the wavelength is

,_he _1239.842eV-nm
E  1.88968eV

=656.112 nm

The magnetic field gives a change in wavelength of

_A e _(656.112 nm)’

=—AE = (5.79x107° eV/T)(3.50 T) = 0.0703 nm
hc 1239.842 eV -nm

AL

The wavelengths of the three normal Zeeman components are then 656.112 nm, 656.112
nm + 0.070 nm = 656.182 nm, and 656.112 nm — 0.070 nm = 656.042 nm.



Chapter 7

1. w(x)=Axe™ gives dy/dx = Ae ™™ —bAxe™ and d?y/dx* = —2bAe ™ +b*Axe™. Then
substituting into Equation 7.2 we have

2 2
—2"’—(—2 Abe™ + b2 Axe ) ——&
m

AreyX

Axe ™™ = EAxe™

Canceling common factors gives

b h%b? e? b e? 7i%b?
- X— =Ex or | —- +X| — —-E (=0
m 2m Are, m  4re, 2m

For this expression to equal zero for all x, both terms in parentheses must be zero. Thus

b e’ me? 1 h*b? me*
—= or b= > =— and E=- =———
m 4z, Are,h” @, 2m 32r gyh

2. The probability density is P(x) = |g//(x)|2 = A’x%e®* . To find the maximum, we set the
first derivative equal to zero:

9P _ 2A%xe 2™ _ 2hAZx%e 2™ =0
dx

This has solutions at x = 0, x = o0, and x = 1/b = a,. The first two give minima and the
third gives the maximum.

3. The probability to find the electron in a small interval is P(x)dx = A’x*e *™dx.
Substituting the values of A and b, and evaluating the resulting expression for x = a, and
dx = 0.02a, (appropriate to the interval from x = 0.99a, to x = 1.01a,), we obtain

P(x)dx = is x2e X%y = i3<a§e-2 (0.02a,) = 0.0108
a, a,

0

4. @) |L=10+Dn=J@)@n=12n
(b) There are 21 + 1 =7 possible z components: L, = m# = +3h,+2h,+h,0,—h,—2h,-3h .

(c) cos@=m/{I(1+1) =m, 112
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m, =+3 6 = cos™3/+/12 = 30°

m, = +2 0 =cos™ 2/+/12 =55°

m, =+1 0 =cos™1/\12 = 73°

m =0 0 =cos'0=90°

m =-1 6 = cos (~1/4/12) =107°
m, =-2 6 = cos ™ (—2//12) =125°
m =-3 6 = cos*(~3/+/12) =150°

5. Forl=2,m, =+2, +1,0,-1,-2. With cosd=m,/,1(1+1) =m,/\/6 , we have

m, = +2 6 =cos™2//6 =35°

m, =+1 6 = cos™1/1/6 = 66°

m =0 0 =cos*0=90°

m =-1 0 =cos(-1/\/6) =114°
m, =2 0 = cos*(~2/+/6) =145°

6. 1=0: (4,0,0)

I=1: (4,1,+1),(4,1,0),(4,1,-1)

1=2: (4,2,+2),(4,2,+1),(4,2,0),(4,2,-1), (4,2, -2)

1=3: (4,3, +3), (4, 3, +2), (4, 3, +1), (4, 3, 0), (4, 3,-1), (4, 3,-2), (4, 3, -3)
7. @Ilhx=n-1=5s01=0,1,2,3,4,5forn=6.

(b) m, = 46, +5, +4, +3, +2, +1,0, -1, -2, -3, -4, -5, 6

(¢) n>1+1=5for | =4, so the smallest possible n is 5.

(d) For m,; =4, | > 4 so the smallest possible [ is 4.

8. The normalization integral for the (1, 0, 0) wave function is
© T, 2z 2 o0 3 _or/a V2 . 2
[ redr[ sinG o] " dglu,oo(r.0,4) =] 4a;%e " ridr[ 4sin6d6[ Adg

4 21

3 (® -2rlag .24, .
:4a0 Ioe rdr—a—gm—
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The last integral is evaluated using the standard form j: x"e"¥dx =nl/a"*,
The normalization integral for the (2, 0, 0) wave function is

[[redr["sinodo] "y, (r.6, ¢)|2 =] 1a* @ riag) e ridr [ 4sino dof " £ dg

© 8ot 21 4 3l 1 4!
_1a3( e | arz 4 T ldr—1a| 4 -— +—
80 .[o ( a. a’° 5% (1/a0)3 a, (1/a0)4 a§ (1/8.0)5

0 0

. 1 1 r) oy oy
9. With r0,¢)=—————| 2—— |e"?* we then have — =0and —=0.
Wa00( ) m\/@[ a()] 50 26
6_{//= 1 _i -r/2a _L(Z_Ljer/zaﬂ _ 1 [_£+Ljer/2ao
o \327ay| & 28,\ & J32zai\ & 2ag
2
81/2/: 1 12 -r/2a, ize—r/Zao_i_iz Z_L e—r/Za0 — 1 32_ r3 e—r/ZaO
or \/327za§ 2a, 28, 4ay CN \/327za§’ 28, 4a,

Substituting into the left side of Equation 7.10, we have

L [3 _ rjer%z : [_3 Ljemo e 1 [2_
2m| [327a3\ 287 4a; rf32zail a, 2a) Arsyr \[327a]
2 2 2
S L e[ M3 v 4 1) & e
327a} 2m\ 2a; 4a;, ra, a; ) 2mer 4ngya,
2
L e €5 r2+g_g 1
327a} drg,\ 4a, 8a; r r g,
L e i T e [_L (r,0,0) = Ep,,(r,0,0)
J327ad 4re,\ da, 8a.) 4me,| 8a, Vaoollh Vaoollat

4

1

4

me

with E = ———
[ 32r’eh’

2 2 2
e [_L & | _me = |= , Which is the energy E, as
dre,\ 8a, ) 4me,\ 32rmegh
defined in Equation 7.13.

1

\327ad

Starting with v, ,(r,0,¢) = re”"'?* cos@,
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}:&(8—24+24)=

1

r
8,

_J e—r/Za0



10.

11.

8_V/: 1 e—r/Za0 _Le—rIZaO cos @
2a,

or  \|32za’

azlﬂ_ 1 [_ 1 e—r/Zao_
o' \[32za

ie—rIZaﬂ_i_Le—r/Zao COS@
2a, 2a, 4a;

v 1 re”""?% (—sin @)

00 3278

) ( . awj 1 o e
—|sing— |=— re "% (2sin @ cos )
00 00 /32;;,33

Equation 7.10 then gives

€SO | A| 1 1 2 r 2 e’
e —— | = t+——+=|1l-— |- = |-
/32,,33 2m| a, 4a, r 2a, ) r| 4rne,
o A L e L 0.6)= Epnn(r69)
471_ —Ws1p0 2r 8a,  2r 8a, Vi10\l 0, Wi\l U,

r) Are,

H 1 ~rla al// 1 1 -r/ azl// 1 1 -r/
With y,,,(r,0,4) = e "™, —z—[——je oand —=———| = e,
w0 na; o Jrall a o’ [rad

Substituting into Equation 7.10, we have

1 |: hz(l er/ao_ier/aoj_ e2 er/a(,}
ral| 2m a,r 4re,r

1 . € 1 1 1 1 e’

— e r aU —_ +__— = r 9 E r 9

o 47[8( 2a T I’] 28. Az Wloo( #) = Ewy,( $)
0 0 0

2 2 2 4
witt E= -~ & _ 1 €& me == m2e — Which is E; from Equation 7.13.
2a, 4rs, 2 4reg, Are,h 32re5h

(@ Forn=2,1=1, m, =0, the probability to find the electron in a volume element dV is
given by Equation 7.16:

2
W20 (, 49,¢|2 dv = %r—e”% (4:; cos’ HJ r’sin@drdodg

and for m, = 1,
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12.

13.

2
|‘//z,1,ﬂ(r, 6’,¢5|2 dv = 241a3 %e”aﬂ (%sin2 0) r’singddrdédg
0 0

For 8= 0, both probabilities are zero due to the sin &terms.
(b) For 8= 90°, the 2,1,0 probability is zero due to the cos #term. With dr = 0.02a,, d&

=0.11° =0.00192 rad, and d¢ = 0.25° = 0.00436 rad, the 2,1,+1 probability is

Vsra(r, 0,4 AV = (025;&50) 052/ (%sinz90°j(0.50a0)2(sin90°)

x (0.02a,)(0.00192 rad)(0.00436 rad) = 3.2x10 ™

(c) Because the probability density associated with any particular state in hydrogen is
always independent of ¢, the 2,1,0 probability is again zero and the 2,1,+1 probability is
again 3.2 x 107, (d) The only change in the 2,1,+1 probability is to replace sin 90° with

sin 45° in three locations, so the new probability is (3.2><1O_“)(%\/§)3 =1.1x10™". For

the 2,1,0 probability, the angular factors are the same because cos 45° = sin 45°. The
only change comes about because of the change from 3/8to 3/4in the ®(6) term, so
the 2,1,0 probability is 2.2 x 107,

Forn=1,1=0we have P(r) = r? |R1’0(r)|2 = 4r%e "™ [a%, To find the maximum, we set
dP/dr to zero:

dP 4 2re—2r/a0_r2 i e—2r/a0 =8r -2rla, 1-— (=0
dr a a, a a,

There are three solutions to this equation: r =0, r = o, r = &,. The first two solutions
correspond to minima of P(r); only the solution at r = ao gives a maximum.

2 4
Forn=2,1=0,P(r)= r2|R2'0(r)| = rZ%(Z——J S (4r _4_r r—Je”aO

2
0 a0 8a0 a0 a0

Setting dP/dr to zero, we have

2 3 2
13 — 8_16r+8r2 _r_3 _ 13re_r,a0 o T l4_8", r_2 _0
8a, a, a, a,) 8a a, a, a,

The five solutions are: r=0,r =oo,r =2a,,r = (3% «/g)ao . The first three solutions give
minima and the last two give maxima.
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14.

15.

16.

17.

18.

2
1 r e—r/a0
342

24a; ag

Forn=2,1=1, we have P(r) = r |R2,1(r)|2 =r? . The total probability

betweenr =a, and r = 2a, is

1
24a;

P(3,:23) = [ P(r)dr = [ “re"ar

We can use Equation 7.4 to evaluate this integral. The result is

P(a, : 2a,) = %[—aoe‘”% (r* +4a,r® +12a2r? + 24a’r + 24)]:“] =0.0490
0

P(r)dr =r? |R1'0(r)|2 dr = (1.00a,)? aiez(o.mao) =0.0054

3
0
The kinetic energy is zero where E = U. With the potential energy from Eq. 6.24, we

have

me* 1 e

" 327x%gln® n? Are,r

2

8re, h’
r=—=2—-n"=2an’
me

So the turning points are 2a, for n =1, 8a, for n = 2, and 18a, for n = 3. The probability

densities in Figure 7.10 do change from oscillatory to decreasing exponential at those
radial coordinates.

The angular probability density is P(9,¢) = £sin* #cos” 6. To find the locations of the
maxima and minima, we set the derivative equal to zero:

Ll E(23in @ cos® @—2sin* @cosh) = E(sin 0)(cos B)(cos* @ —sin* @) =0
do 8rx 4

The three angular terms in parentheses give three sets of solutions: 8=0,7;, 6= #/2; and 6
= m4,3714. By checking the second derivative, we find that the first two sets give
minima (the second derivative is positive) and the third gives maxima (negative second
derivative). The angular probability density thus starts at zero along the positive z
direction, rises to a maximum at €= 45°, falls again to zero in the xy plane (6= 90°),

rises again to a maximum at @ = 135°, and finally falls again to zero on the negative z
axis.

The angular probability density is P(8,4) ==~ (3cos* @ -1)>. To find the locations of the
maxima and minima, we set the derivative equal to zero:

Chapter 7 Page 6



19.

20.

21.

dP 5

d0 8r

_ > (3c08% —1)(—6sin 0cos ) = —i—S(sin 0)(cos 0)(3cos? 0—1)
T

The three angular terms in parentheses give three sets of solutions: #=0,7, &= 7/2; and
0 = cos(+1//3) = 0.955,2.186 . The first two give maxima and the third gives minima.
The angular probability density is a maximum on the positive z axis, falls to zero at =

55°, rises again to a maximum in the xy plane (€= 90°), falls to zero at 4= 125°, and
rises to a maximum on the negative z axis.

(@) P(0,¢) =1 (3cos’ 0 -1)°
(b) P(8,4)="L5sin*6Hcos’ 0

() P(0,4) =2sin* 0

(@)

(b)

(a) degeneracy = 2n* = 2(5)* = 50

aa
AN

(b) For each value of I, the degeneracy is 2(21+1).

I=0: 2(00+1)= 2
=1 2(2+1)= 6
=2 2(4+1)=10
=3 2(6+1)=14
I=4: 2(8+1)=18
total: 50

n-1 n-1 n-1 _

D 221+1)=4>1 +221=4M+ 2n =2n’

1=0 1=0 1=0 2
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22. (a) | exceeds the maximum permitted value (n — 1).
(b) m, exceeds the maximum permitted value (1)
(c) mg can be only +1/2 or -1/2
(d) negative values of | are not permitted

23. The selection rule is Al = +1, so the 4p state can make transitions to any lower s state (Al
=-1) or d state (Al = +1). The possible transitions are then:

4p — 3s,4p — 2s, 4p — 1s,and 4p — 3d

24. (a) The transitions that change | by one unit are

N=5 S p d f g
n;4 /
n=3 A/4‘_/

n=2

n=1

(b) Starting instead with 5d, the permitted transitions are
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25.

26.

n=5 S p d f g
n=4 .
n=3 —&—
n=2
n=1
(@) 7s, 7p, 7d, 7f, 79, 7h, 7i (b) 6p, 6f, 5p, 5f, 4p, 41, 3p, 2p
@
m,
T T +2
3d < : DA 0
- ? - -1
T | | T 2
Do i i D! m,
\ 4 : : \4 : \ 4 \4 # : +1
2p Y ; T ; T \4 ) \ 4 Y \ 4 —?.

(b) Transitions shown with dashed lines violate the Am, = £1 selection rule.

(c) The energy of the initial state is E; = E,; + m, AE and the energy of the final state
isE; = E,, +m, AE (where AE is the spacing between adjacent states). The transition
energies can be found from the energy difference:

E,~ E; = (Eyy — E,) + (M, ~M, )AE = (Ey, — E,,) + Am,AE

There are only three permitted values of Am, (0, £1), so there are only three possible
values of the energy difference: E;, - E, ,E,, —E,, +AE,Ey, —E, +AE.

2p?
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217.

(@) In the absence of a magnetic field, the 3d to 2p energy difference is

1

E =(-13.6057 eV) (3% - Z—ZJ =1.88968 eV

and the wavelength is

,_he _1239.842eV-nm
E  1.88968eV

=656.112 nm

The magnetic field gives a change in wavelength of

_A e _(656.112 nm)’

=—AE = (5.79x107° eV/T)(3.50 T) = 0.0703 nm
hc 1239.842 eV -nm

AL

The wavelengths of the three normal Zeeman components are then 656.112 nm, 656.112
nm + 0.070 nm = 656.182 nm, and 656.112 nm — 0.070 nm = 656.042 nm.



4 3! 3

_—': a
av ag (2/&0)4 2 0

r :I: rP(I’)dr :Ioao r3|R1,o(r)|2dr :%I: rge—Zr/aOdr _
0
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35, u,, =j0"°U(r)P(r)dr =j0°°(—

2 2 _ e2 4 *® —2r/a,
]r IRyo(1)| dr_—Fgoa—g.[o re 2"dr

e 4 1 @
dre, a5 (21a,)°  dneya,






