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Quantum matters: Physics beyond Landau’s paradigms*
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Central to our understanding of quantum many particle physics are two ideas due
to Landau. The first is the notion of the electron as a well-defined quasiparticle excita-
tion in the many body state. The second is that of the order parameter to distinguish
different states of matter. Experiments in a number of correlated materials raise serious
suspicions about the general validity of either notion. A growing body of theoretical work
has confirmed these suspicions, and explored physics beyond Landau’s paradigms. This
article provides an overview of some of these theoretical developments.
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1. Introduction

Much of our understanding of quantum many electron physics rests on two central
ideas which may be traced to Landau. The first is the notion that the electron
retains its integrity as a quasiparticle excitation above the quantum ground state
of the many particle system. This notion underlies Landau’s celebrated Fermi Liq-
uid theory of metals but is also shared by many familiar phases of matter (band
insulators, BCS superconductors, spin density waves, ..... ). This is true even if mi-
croscopically the electrons interact reasonably strongly with each other. The other
important idea of Landau is that of the order parameter to classify and distinguish
phases of matter. Closely related is the notion of spontaneously broken symmetry
- indeed the Landau order parameter quantifies the amount of symmetry breaking
in any ordered phase. The concept of the order parameter plays an important role
in phase transition theory. The universal critical singularities at second order phase
transitions are usually attributed to the long wavelength fluctuations of the order
parameter degrees of freedom. When combined with general renormalization group
ideas this gives a sophisticated theoretical framework - often known as the Landau-
Ginzburg-Wilson(LGW) paradigm - for describing phase transition phenomena.
Both of these two notions - the integrity of the electron and the Landau order
parameter - are so fundamental that they are routinely taught at the early stages
of a solid state physics education. Remarkably in the last several years, a number
of experimental developments have challenged the general applicability of either
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of these two basic notions to quantum condensed matter. The best known is the
phenomenon of the quantum Hall effect that occurs in a two dimensional electron gas
in high magnetic field*. The quantum Hall systems are striking and well-established
examples of the violation of both of Landau’s paradigms. Indeed the electron does
not in general survive as a quasiparticle? in fractional quantum Hall states nor is
the order in such a state captured by a local Landau order parameter>.

Since the discovery and explanation of the quantum Hall effect, a number of
other remarkable phenomena have been found in other correlated electron systems
which are poorly understood. Perhaps the most notorious is the problem of high
temperature superconductivity but there are many others as well. Examples include
a host of “non-fermi liquid” phenomena in the rare-earth intermetallics known as the

4, various kinds of materials near Mott metal-insulator transitions,

heavy fermions
etc. Many of these long standing problems in condensed matter theory seem not
to yield to any conventional thinking. They presumably require new methods of
attack, new languages, and perhaps even new conceptual advances. At any rate these
experimental discoveries certainly lead to the suspicion that Landau’s paradigms
may breakdown in serious ways in correlated many electron systems. In the last
few years, this suspicion has been strikingly confirmed by a variety of theoretical
advances that unquestionably demonstrate the inadequacies of Landau’s paradigms
for a general understanding of correlated matter.

This article provides an overview of these theoretical developments. We begin
by briefly discussing phases of quantum matter that do not fit in with Landau’s
ideas. We then discuss very recent work on the breakdown of the Landau paradigm
at zero temperature ‘quantum’ phase transitions.

2. Breakdown of Landau paradigms in correlated quantum phases

As mentioned above the fractional quantum Hall effect provides a well-established
(and by now old) example of a correlated phase that violates Landau’s paradigms.
An even older example is provided by one dimensional systems such as (half-integer)
quantum spin chains or polyacetylene®. A more modern realization of one dimen-
sional physics occurs in the Carbon nanotubes®. In these examples, the electron
does not retain its integrity as a quasiparticle excitation. Rather the excitations
have quantum numbers that are fractions of those of the electron.

One of the most interesting theoretical developments in the last several years
is the realization that such ‘broken electron’ phenomena are not restricted to such
extreme situations as one dimension or two dimensions in strong magnetic fields.
Indeed it has become clear that electrons can break apart in regular solids with
strong electron-electron interaction in any spatial dimension. The electron does not
survive as a quasiparticle in such phases of matter - instead there are excitations
with quantum numbers that are fractions of those of the electron.

A great deal has been learnt about these ‘fractionalized’ phases in d > 2 at
zero magnetic field theoretically. The structure of the excitation spectrum (or
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more generally the structure of the low energy effective field theory) has been
elucidated”-8910:11:12  These phases have a certain kind of ‘order’ that is not cap-
tured by a local Landau order parameter. Rather the ordering is a global property
of the many electron ground state wavefunction'3%:14 - often referred to as ‘topolog-
ical order’. This kind of order generalizes and is indeed distinct from the old notion
of spontaneously broken symmetry. Several concrete and simple microscopic mod-

els which display these phenomena exist in both two!?:16:17:18,19,20,21,22
20,23,24,25

and three
spatial dimensions . Prototypical ground state wavefunctions for a number
of such fractionalized states can be written and explicitly shown to possess prop-
erties (such as topological order) expected on general grounds'®2¢. Finally there
even exist some ideas on how to directly detect certain kinds of topological order in
experiments!®27:28,

All of this is spectacular theoretical progress - much of it happened in the last
five or so years and builds on important ideas and results??:'37-8 from the early
days of high-T,. theory. In particular many of the theoretical criticisms levelled
against these ideas have now been satisfactorily answered. However there still is
no unambiguous identification of such broken electron phenomena in experiments
other than the previously established instances (FQHE and d = 1).

Where else might it happen? The theoretical understanding provides some hints.
It has long been appreciated that frustrated quantum magnets may be a good place
to look for such physics. It has also become clear that other promising candidates
are not-so-strongly correlated materials. This may be seen explicitly in some of the
microscopic models showing fractionalization where it appears in intermediate corre-
lation regimes where neither kinetic nor potential energy overwhelmingly dominates
the other?. Further support is provided by the observation that in spin systems

30,10,18:}y terms

fractionalization is promoted by multi-particle ring exchange terms
become increasingly important for the spin physics of Mott insulators as one moves
away from the very strong interaction limit (decreasing U in a Hubbard model de-
scription). Thus Mott insulators that are not too deeply into the insulating phase
or quantum solids such as He-3 or He-4 near melting may be good places to look as

well.

3. Breakdown of Landau paradigms at quantum phase transitions

We now turn to the breakdown of Landau’s paradigms at zero temperature ‘quan-
tum’ phase transitions. That this might happen was originally hinted at by various
distinct kinds of observations in the literature. First as reviewed in the previous sec-
tion, Landau order parameters do not necessarily capture the true order in quantum
phases. Then it is quite natural that transitions out of such phases are not described
by Landau ideas either. For instance continuous transitions exist between distinct
quantum Hall states which clearly cannot be described in terms of simple order
parameter fluctuations a’la Landau. But what about transitions out of of phases in
which Landau order parameters do capture the order? Here at least one might have
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hoped for Landau ideas on phase transitions to work. We now review recent work
showing that even in this case the Landau paradigm breaks down.

The possibility of such a breakdown is suggested by two different observations.
The first is in numerical calculations on various quantum transitions that see a direct
second order quantum phase transition between two phases with different broken
symmetry characterized by two apparently independent order parameters3!-32. This
is in general forbidden within the Landau approach to phase transitions except at
special multicritical points. A similar phenomenon is also seen in experiments33 on
the heavy fermion compound U Pts. At low temperatures, this is a superconductor
(believed to be triplet paired). Upon doping Pd into the Pt site, the supercon-
ductivity very quickly disappears and is replaced instead by an antiferromagnetic
metal. Within the resolution of the existing experiments these two different kinds
of order (superconductivity and antiferromagnetism) seem to be separated by a di-
rect second order transition - within Landau order parameter theory this too would
be a special accident. However the surprising frequency with which such ‘Landau-
forbidden’ quantum transitions show up suggests a reexamination of the validity of
the Landau paradigm itself.

A second and perhaps more important reason to suspect the general validity of
the Landau paradigm comes from a number of fascinating experiments probing the
onset of magnetic long range order in the heavy fermion metals?. Remarkably the
behavior right at the quantum transition between the magnetic and non-magnetic
metallic phases is very strikingly different from that of a fermi liquid. The natural
assumption is to attribute the non-fermi liquid physics to the universal critical
singularities of the quantum critical point. Within the Landau paradigm these will
be due to long wavelength long time fluctuations of the natural magnetic order
parameter. In other words the hope is that Landau’s ideas on phase transitions
may perhaps be used to kill Landau’s theory of Fermi Liquids. However theories
associating the critical singularities with fluctuations of the natural magnetic order
parameter in a metallic environment®* seem to have a hard time explaining the
observed non-fermi liquid phenomena. This failure once again fuels the suspicion
that perhaps the Landau approach to phase transitions is incorrect. Specifically
other phenomena such as the possible loss of Kondo screening of local moments may
contribute®® to and perhaps even dominate the critical singularities®¢. This kind of
thinking - particularly the latter possibility - is clearly outside the LGW framework
for critical phenomena. In other words the Landau order parameter (even if present)
may distract from the fluctuations responsible for the true critical behavior.

These suspicions have been strikingly confirmed in recent theoretical work37:38
on quantum phase transitions in insulating magnets in two spatial dimension. As
usual insulating magnets provide a good theoretical laboratory to study phase tran-
sition phenomena. A number of results have been found which quite clearly demon-
strate the failure of LGW theory at certain (but not all) quantum phase transitions.
In all the examples studied so far the critical phenomenology is instead apparently
most conveniently described in terms of objects that carry fractional quantum num-
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Fig. 1. Schematic picture of a columnar VBS state showing the four degenerate ground states.
The encircled lines represent the bonds across which the spins are paired into a valence bond. The
four ground states are associated with four different orientations of a Z4 clock order parameter.

bers and which interact with each other through emergent gauge forces. These
fractional objects do not necessarily exist (as good excitations) in the two phases
but become useful degrees of freedom at the quantum critical point. This kind of
phenomenon has been dubbed ‘deconfined’” quantum criticality - with a sharp and
specific meaning of the term ‘deconfined’.

Consider a spin-1/2 antiferromagnet on a two dimensional square lattice de-
scribed by a Hamiltonian of the general form

H=J > 8.8+ ... (1)

The S, are spin-1/2 operators and J > 0 is the nearest neighbour exchange constant.
The ellipses represent other interactions such as a diagonal exchange or multiparticle
ring exchange that may be tuned to drive phase transitions. In the absence of
these extra terms the ground state is known to have long ranged Neel order. The
corresponding order parameter is a vector in spin space N ~ (71)@*9)5‘;. For
suitable choices of the extra terms it is expected that the ground state will not have
long range Neel order even at zero temperature. The simplest of such ‘quantum
paramagnets’ are states known as valence bond solids(VBS) - see Fig. 1 In a cartoon
of such states each spin forms a singlet valence bond with one of its neighbours. The
resulting dimers stack up in some particular pattern in the VBS ground state. The
resulting state clearly has spin rotation symmetry but the pattern of dimer ordering
breaks various lattice symmetries. Clearly the order parameter for the VBS state is
a spin singlet that transforms non-trivially under the lattice space group operations
- it is readily constructed out of the bond energy operators §,..§,.,_ The elementary
spin-carrying excitations in this phase are gapped spin triplet particles.
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In a naive Landau description of the two phases that focuses only on the low
energy order parameters, a direct second order transition is not expected except at
fine tuned multicritical points. However this naive expectation has been argued to
be incorrect. A generic second order transition is possible between these two phases
with different broken symmetries. The resulting critical theory is however unusual
and not naturally described in terms of the order parameter fields of either phase.

The key reason behind this violation of naive Landauesque expectation lies in
the observation®?40 that topological defects in either order parameter carry non-
trivial quantum numbers. In particular the defects in one order parameter transform
in the same way under the microscopic symmetries as the order parameter for the
other phase. Thus when the defects in, say the Neel vector configuration, proliferate
they destroy long range Neel order. However the non-trivial quantum numbers they
carry induces VBS order in the resulting paramagnet*!.

In the theory of Ref. 37, 38 the natural description of the transition is in terms
of spin-1/2 “spinon” fields z, (o = 1,2 is a spinor index). The Néel order parameter
is bilinear in the spinons:

N ~ 3z, (2)

Here & is the usual vector of Pauli matrices and multiplication of the spinor index
is implied. The fields z, create single spin-1/2 quanta, “half” that of the spin-1
quanta created by the Néel field N. The analysis of Ref. 3738 shows that the correct
critical field theory has the action S, = f d?rdr L, and

Lo =10y —ian) zal® + ]2 +u (12)°

a=1

+ K (euynauan)2 ; (3)

This is distinct from both the O(3) universality class in D = 3 (as might have
been expected based on the Neel order parameter) or the Z, universality class
(as expected from the Zy VBS order parameter). The distinction with the O(3)
universality class may be a bit puzzling to field theorists familiar with the C' P!
description of the O(3) non-linear sigma model - the crucial point is that the gauge
field in Eqn. 3 above is non-compact. As explained in Ref. 42 with a non-compact
gauge field this model does not describe the usual O(3) ordering transition in D = 3
- rather it describes the transition*® in O(3) models wehere ‘hedgehog’ defects have
been suppressed by hand**. Ref. 42 also contains detailed numerical calculations of
critical exponents for the transition in the model Eqn. 3. The non-compactness of
the gauge field leads to an extra emergent conservation law (conserved gauge flux)
that helps give precise meaning to the notion of deconfinement at the critical point.
This conservation law emerges only at the critical point and does not obtain away
from it in either phase.

The critical behavior at this transition is strikingly anamolous - indeed it may
be viewed as the moral equivalent of ‘non-fermi liquid’ behavior in this insulating
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context. For instance the magnon spectral function is extremely broad when com-
pared to other quantum transitions - the exponent 7 is estimated*? to be ~ 0.6,
bigger by an order of magnitude as compared to the conventional O(3) fixed point.
This may roughly be understood as being due to the decay of magnons into the
spinon degrees of freedom. A number of other interesting properties - such as the
presence of more than one diverging length/time scale - have also been found3”38.

The Neel-VBS transition is not the only example of this kind of quantum phase
transition. A number of other transitions in quantum antiferromagnetism have been
shown to have many similarities with the phenomena described above. These in-
clude the transition from the VBS state to a gapped ‘spin liquid’ paramagnet38
and quantum transitions between two different patterns of VBS ordering on certain
4546 (for instance in a bilayer honeycomb lattice). Further deconfined criti-
cal phases described by gapless Dirac-like fermionic spin-1/2 objects coupled to an
emergent non-compact U(1) gauge field have been shown to exist as stable quan-
tum phases?” in two space dimensions. Thus it appears that the phenomenon of

lattices

deconfined quantum criticality is reasonably common in two dimensional quantum
magnets.

Easy plane versions of quantum spin-1/2 models have also been examined and
shown to have Landau-forbidden transitions and asociated deconfined quantum crit-
ical points®”38. These may also be fruitfuly viewed as superfluid-insulator transi-
tions of bosons at half-filling on the square lattice. The case of bosons at a general
commensurate filling p/q has been examined recently® - again the topological de-
fects have been shown to carry non-trivial quantum numbers which in turn leads
to non-trivial order in the insulating phase. Direct second order Landau-forbidden
transitions seem possible for a number of special fillings.

4. Conclusions

The developments discussed above provide a theoretically important zeroth order
answer to the basic question posed by experiments in modern correlated electron
physics: Can Landau’s ideas breakdown in quantum matter more generally than in
one dimension or the quantum Hall effect? While the theoretical progress at this
basic level has been dramatic, we do not at present know what role, if any, it will
play in understanding existing experiments on materials such as the cuprates or the
heavy fermions. Nevertheless the intuition gleaned from these results will hopefully
suggest ways of thinking correctly about such experimental problems.

Acknowledgements

It is a pleasure to thank my many collaborators on these matters - a partial list is
P. Ghaemi, M. Levin, M. Hermele, O. Motrunich, A. Vishwanath, C. Lannert, D.
Ivanov, L. Balents, S. Sachdev, Matthew Fisher, P.A. Lee, N. Nagaosa, and X.-G.
Wen. This research is supported by the National Science Foundation grant DMR-
0308945, the NEC Corporation, the Alfred P. Sloan Foundation, and The Research



8

T. Senthil

Corporation.

References

1.

2.

15.
16.
17.
18.
19.
20.
21.
22.
23.

24.
25.
26.

27.
28.
29.

30.
31.
32.
33.
34.

See, for example, Perspectives in Quantum Hall Effects, edited by S. DasSarma and A.
Pinczuk (Wiley, New York, 1997).

R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983); V.J. Goldman and B. Su, Science 267,
1010 (1995); R. de-Picciotto et al., Nature (London) 389, 162 (1997) L. Saminadayar,
D. C. Glattli, Y. Jin, and B. Etienne Phys. Rev. Lett. 79, 2526-2529 (1997)

X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990) and references therein.

H. v. Lhneysen et al., Phys. Rev. Lett. 72, 3262 (1994); Mathur, N. D. et al. Mag-
netically mediated superconductivity in heavy fermion compounds. Nature 394, 39-43
(1998); J. Custers et al., Nature (London) 424, 524 (2003)

For reviews see A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer-
Verlag, New York, 1994); A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. -P. Su Rev.
Mod. Phys. 60, 781-850 (1988).

See for instance M. Bockrath et al., Nature (London) 397, 598 (1999)

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

X.G. Wen, Phys. Rev. B 44, 2664 (1991)

L. Balents, M. P. A. Fisher, and C. Nayak Phys. Rev. B 60, 1654 (1999)

. T. Senthil and M. P. A. Fisher, Phys. Rev. B 62, 7850-7881 (2000)
. M. Freedman, C. Nayak, K. Shtengel, K. Walker, and Z. Wang (2003), cond-

mat/0307511

. M.A. Levin and X.-G. Wen, cond-mat/0404617
. N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989)
. T. Senthil and M. P. A. Fisher, Phys. Rev. Lett. 86, 292 (2001); Phys. Rev. B 63,

134521 (2001)

A.Y. Kitaev, quant-ph/9707021; Ann. Phys. (N.Y.) 303, 2 (2003)

R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001)

G. Misguich et al., Phys. Rev. Lett. 89, 137202 (2002)

L. Balents, M. P. A. Fisher, and S. M. Girvin Phys. Rev. B 65, 224412 (2002)

T. Senthil and O. Motrunich Phys. Rev. B 66, 205104 (2002)

O. I. Motrunich and T. Senthil Phys. Rev. Lett. 89, 277004 (2002)

O. L. Motrunich, Phys. Rev. B 67, 115108 (2003)

Xiao-Gang Wen, Phys. Rev. Lett. 90, 016803 (2003)

Xiao-Gang Wen, Phys. Rev. B 68, 115413 (2003); Michael Levin et al., Phys. Rev. B
67, 245316 (2003)

M. Hermele, M.P.A. Fisher, L. Balents, Phys. Rev. B 69, 064404 (2004)

R. Moessner and S. Sondhi, Phys. Rev. B 68, 184512 (2003)

D. A. Ivanov and T. Senthil Phys. Rev. B 66, 115111 (2002); A. Paremekanti et al,
cond-mat/0405353

T. Senthil and M.P.A. Fisher, Phys. Rev. B 64, 214511 (2001)

L. B. Ioffe et al, Nature (London) 415, 503 (2002)

P. W. Anderson, Science 235, 1196 (1987); S. A. Kivelson, D. S. Rokhsar, and J. P.
Sethna, Phys. Rev. B 35, 8865 (1987).

G. Misguich et al., Phys. Rev. B 60, 1064 (1999)

F. F. Assaad, M. Imada, and D. J. Scalapino, Phys. Rev. Lett. 77, 4592 (1996)

A. W. Sandvik et al. , Phys. Rev. Lett. 89, 247201 (2002)

A. de Visser et al, Phys. Rev. Lett. 85, 3005-3008 (2000)

M. T. Beal-Monod and K. Maki, Phys. Rev. Lett. 34, 1461 (1975); J. A. Hertz, Phys.



Deconfined criticality 9

Rev. B 14, 1165 (1976); T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism,
Springer-Verlag, Berlin (1985); G. G. Lonzarich and L. Taillefer, J. Phys. C 18, 4339
(1985); A. J. Millis, Phys. Rev. B, 48, 7183 (1993).

35. P. Coleman et al, J. Phys:Condens. Matt. 13, 723 (20010; Q. Si et al, Nature 413, 804
(2001) and Phys. Rev. B 68, 115103 (2003).

36. T. Senthil, Matthias Vojta, and Subir Sachdev Phys. Rev. B 69, 035111 (2004), and
cond-mat,/0409033

37. T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A. Fisher, Science 303,
1490 (2004).

38. T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A. Fisher, Phys. Rev.
B 70, 144407 (2004)

39. F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988)

40. M.A. Levin and T. Senthil, cond-mat /0405702

41. N. Read and S. Sachdev, Phys. Rev. B 42, 4568 (1990)

42. O. 1. Motrunich and A. Vishwanath, Phys. Rev. B 70, 075104 (2004)

43. M. Kamal and G. Murthy, Phys. Rev. Lett. 71, 1911 (1993)

44. M.-h. Lau and C. Dasgupta, Phys. Rev. B 39, 7212 (1989)

45. A. Vishwanath, L. Balents, and T. Senthil, Phys. Rev. B 69, 224416 (2004).

46. E. Fradkin, D. A. Huse, R. Moessner, V. Oganesyan, and S. L. Sondhi, Phys. Rev.
B 69, 224415 (2004); E. Ardonne, P. Fendley, and E. Fradkin, Ann. Phys. (N.Y.) 310,
493 (2004).

47. M. Hermele, T. Senthil, Matthew P. A. Fisher, Patrick A. Lee, Naoto Nagaosa, Xiao-
Gang Wen, cond-mat//0404751

48. Leon Balents, Lorenz Bartosch, Anton Burkov, Subir Sachdev, K. Sengupta, cond-
mat/0408329



