
there are ran Hove singularities at E = it .
Note

that for the honeycomb lattice

E± IT ) = I 3T , t.lk ) -- O , E±fM) = It

In the vicinity of either of the two in equivalent
2-one corners K and K

'

,
if we write E- Itg or

K -- I
'

tot , we have E = ±
-hurt -41 with. up = Ez talk .

This is a 3D Dirac spectrum , and K and K
'

are the

locations of Dirac points .

'

Lecture 2 (Jan . 7 ) : How to go flux yourself
Simple model : spin less s- orbitals in a 2B crystal
The Hamiltonian is

H = -¥, .lt
ctrcritttreictrcr )

= - §÷ .

Item Ii > si 't t ta tr 's art )

The notation Fair
'
means that each pair It , t 't is included

only once in the sum .
We may write

try ,
-

- trip = ftp.rileiA-rr ' (A i defined mod 2h )

where Airi is a gauge field living on the link hi, I ') .
Note trip = -Air . . The tight- b. inding Hamiltonian
exhibits a gauge invariance ,



Cf → either (or try → e
- idr
tr > I

try , → eilat
- dirt

tree
,
i. e . Airi → Airi tar - tr '

The UN flux top through any plagueHe p isgiven by

top -- I Ain
air 'sEdp

I. e . it is a directed sum of Arri along all links air 's
in the boundary Op of the plaqueHep . Consequently ,
each plaqueHe flux top is invariant under a gauge
transformation .

On a Brava is lattice £
,
the tightbinding

model with uniform flux of in every elementary plaqueHe
is known as the Hofstadter model .

It is clear that any configuration with ¢ ¥0 must be described

by a gauge field configuration IAtri ) which breaks the
lattice translational invariance , because opposite sides of any
Maquette are traversed in opposite directions , and their

respective phase factors cancel . Consider next the following :

O
...

ate
"

Eiht
@mac



For ¢ -- IT ,
we have a magnetic unit cell which contains

two lattice sites ( A1 blue and B1red) , while for ¢ =
'

Is the

magnetic unit cell contains three sites Atblue , Blred, Clgreen) .

Consider the lo = IT model . The magnetic Brains lattice is
rectangular , with I , = tax and a-rag . We then have

taATR ) = t Sri
,
att SE

,
- q ⇒ Iaa Hel = It cos Ik - Iz )

t
BB III = - t Saia, - TSE , -% ⇒ tooth) = -2Tcos th -oil

tablet = TSE
,
ot t Spi

,
- ai

,

⇒ Ia, th ) = th teika )
#

- - Tila

Thus , A B I
,

non - this:* its:S.at#!jB IT120

-
O-7• M

E
±
If I = ± 2T I coil's. O , ) t cos202

-

The two bands touch at Et 1=0 for (Oi , Oh = It, ± It ) ,
and writing 101,021 = (Tt 8, , ± Iz t 82 ) , we find

E
±
IG) = I2think
= I2taI¥

'

t Otta Pl

where I -- K - tip is measured from either of the touching
points . These are Dirac points !

(NB : 4=0 ⇒ single band with El E) = - 2thoso , t cos Oz ) )



When 4=213 ,
we haave B C
'
2 cosOz I e

A

HIEI = - t ( et.io , 2040ft I
, !%+a±, , ) Bc

For flux ¢ = 2Tplot Ip , of relatively prime) , I Ext muc )
e
ie

i i
+. .. - it

""

:
'

""i":* :
"

i
..
!"I a

o
ii. -

'

The energy bands versus flux to have a fractal structure
,

known as Hofstadter 's butterfly :

1/2

1/3

44



When the denominator of is large , we expect to recover

the continuum Landau level spectrum En -- lnttzlhwc . For 13=0,

Ethel = - It cos that - It cos 1kg a )
= - 4ft that . . .

whence we identify ta
'
= 442 m ⇒ m -- 442ta '

.
The

magnetic field is B = do -holea
'
and so

-hwc=tmB = the x 4¥. x Itf = 2ft
which describes the corners of the Hofstadter butterfly ,
where continuum Landau levels radiate out from the energies
E = I 4T

,
with

Enl41 = ± Ht - 12h thot 't )

Enl41=1/4t - kn thka- Iott)

and ¢ cc IT .

• Topological band structures

This subject has received an enormous amount of attention

during the past decade . Usually in physics when a

parameter , such as pressure or unit cell size , is varied

continuously , the system responds continuously . However
,

in some cases there are robust features
,
such as the



presence of bound States or edge States , and sometimes
an observable response , such as the Hall conductivity oxy
in D= 2

,
is quantized

'

throughout an entire phase of
matter

.
In mathematics

,
there are deep connections between

geometry , which is a local property , and topology , which
leads to global characterizations .

An example is the famous
Gauss - Bonnet theorem

,

which says

§DS K = 2TIX (M ) = 2h E ind ( J)
i Ii

where M is an orientable two - dimensional manifold

(such as a sphere S
'

or a torus T2 )
,
K is the local

Gaussian curvature
, given by K -

- IR
, 1225

'

,
where Ri

, 2

are the local principal radii of curvature, XIMI C- It is
M 's Euler characteristic

, given by X(M ) = 2 - 2gn
where

gm
is the genus of M , which is the number

of holes for handles) , it is any smooth vector field

on M
,
and in! IV) is the index of J at the

position ki of its ith singularity , where this = O :

ing! hit -- Idiot tan
- '(fit, )

I.e . the index is a winding number . As an example ,
consider the case of the sphere , s

'
:



The sphere has genus g
-

- o
,
so X = 2

,
which

must be the sum of indices of any smooth rector field
VIII on S' at its singularities .

Other examples, with g > o :
ind = - I

÷
IC ) O

v
KCO

T
" M

If
you

take any 2-manifold M , you can continuously



deform it
, changing its local geometry and thus its

local Gaussian curvature Nil
,
but the integral

It
, fyds KIM = 2 - Lgm

remains constant land quantized ) , so long as one does
not violate M .

Gilbert 's Two Commandments of Topology :

I
.

Thou shalt not cut .

I
.

Thou shalt not glue .

• Su - Schrieffer - Heeger (SSH ) model

This is a model for the long chain polymer (CH)× , known

as poly acetylene (x- 104 is not difficult to achieve ) .
The

electronic structure of carbon is Is ' 252215 . In ICH )x ,
the Is electrons are tightly bound . The 25

, 2p× , and 2py
orbitals engage in planar sp

' hybridization , resulting in
the backbone structure

H H H & Sp
'

l l l

-

c
-
c
- c -

C
-c-

c
-

l l l sp
'

H H H

Each single bond represents a shared electron pair .



We now have one more e- per carbon
to assign , from

the pz (or ti ) orbital . Where do these electrons want

to go ? If we model the backbone as a d-- I chain

along which the T- electrons hop, then N
T T

o-H.H = - tnolctno Cut, o t Enno Chol 1 Pc I
.

= - 2 tug cos (ka ) Ctu , Cho graphene

and thus Elk ) = - It costka) . We populate this band with
T and t ti- electrons so that it is half - filled

'

, corresponding
to one electron per site : it

"

an
:i::::*'s :c:::::÷:e¥

.

"" °

The ground state energy is then

÷: E÷n
-

-
-*Na!!!¥. costal = - 47¥

But we can do even better if we consider the effect of phonons.
Let the displacement ( along the backbone ) of the nth C atom
be given by un with respect to the uniform spacing configuration .
This means that the distance between C atoms n and htt is

given by anti - un .
The hopping integral t should depend

exponentially on this difference
,
i.e .



N - I n htt

- - - If ¥"
t
n ,n+,

= te
- Hunt' - un '

✓
= t (l - a tuna - Un ) t

. .
.
)t

We thus consider the following model ,

H = - t { ( l - alum, -Unl ) (ctnocntiotctntio Cnr )SH
r

+ q (Ita t '

zklunti -Uni )modulation of /
hopping amplitude

carbon mass
I t

phonon Hamiltonian

This is the SSH model
. It describes interacting electrons

and acoustic photons in a d -- I chain . We now entertain

the possibility of spontaneous dimerization , writing
•→ ← so •→ ← so

Un
.

= I - t )
"

} t Sun . . o o
- -
I 2 3 4

We will determine the dimerization amplitude 5 by energy
minimization . The phonon Hamiltonian then becomes

Hph -- E. I +
'
zklsunt , - Suni) + 2Nk5t4k3 f. I- "

"

Sun

-

Hoph
We can express Hgh in terms of ladder operators , viz .

Hoph = IE k whtAtu Ant
'

z )



where

An -- gain But IMIT sun
with

Ismael = E. e-iknafpg.nl

Let 's now make the variational Ansatt III-rap = IIE
"
s ④ lit Ph )

O o
l

where HER! 7 is the ground state of Hoph , whose energy eigenvalue is

Eo
"
= If -hw. = 4NKIKI

Note that it?
"

l sunt# Poh 7=0 , and thus

Heft = c Pohl Hsstil It! > an
= EP! t 2NK52 - Eg f±, It , atjobjottzbtjrajn.o.g.at

,H.ci/--4N-hlEIt2Nk5tgfolatgobtgolffeiaIa'ttio//f;:)
where ago = Cg - i,o , bjo = Czj , o , I =2a , GE f- II , tf ) is
the "reduced Brillouin zone

"

,
and t

, , z
-

- l l F2x 5It
.
We now

diagonalize Heft , obtaining
Heft = 4Nk III t 2Nk5 tgfgttittie-i9-allttqokqo-ttgokg.cl

with V± go
= fz (ago ± bqo) . The ground state energy of Heft is



-

Einar 131=4 Nts III t2Nk3 ' -4¥ do Itfttit It, tacos 0

where the subscript "
var

" reminds us this is a variational

energy ,
i.e . Eora, = cttrarlttss.tl#rar7 .

In the limit

where a' tick
,
we have

EY.ru#=4hffIyt2k5 - 4¥ - 8¥25 In ¥5) t .
. .

and minimizing wrt 3 gives Ef
gt = jeff e

-Tikka't
~ , y
w

Thus
,
the system prefers to spontaneously dimerize !

Lecture 3 (Jan . 12 ) : Edge States in the SSH model
The effective Hamiltonian for the fermionic sector of

the SSH model is

H = -¥
,

It , atnbnttztb.name , t Hic . )

where Nc -- th is the number of unit cells
,
each of

which contains one A site and one B site :

A B A B A B A B A B A B
"

÷÷÷i÷÷÷÷÷÷
. - -

hopping amplitudes : .-• ,
•-so

t , tz


