
. Nernst effect J -- ayT -- O

JT = Text I and B- =Bz I ⇒ Ey = A QT Bz with A-
- c

. Righi - Leduc effect j -- Ey = O

FT = AT I and I = Bz I ⇒ 2yT=Ld×T Bz with L = 4Q

• Lecture 7 ( Jan . 261

Interacting electrons
"# k

T t

Thus far we have mainly discussed noninteracting electrons .
Other than a brief introduction to screening , we've
accounted for many- body effect mainly via Pauli exclusion .
This is what requires that we fill single particle levels
at F- 0 up to the Fermi level EE ,

with all States la >
with Eas Ep unoccupied . The many - body wavefunction
for such a state is a Slater determinant

,

ai = (ki , 3it
Eta

,
. . .ant , o, ,

. . .

,
in on ) - detHail oil ) ( nslot = Sos

which satisfies the total antisymmetry conduit.onac.sn
#
a .

. . .an
Hanoun , . - i , Taint Orin, ) = Sgh kit #a . . .info, ,

. . . iron )

Thus if tri
, oil = Kj , Oj ) for some itj , then ¥ = O .

But Slater determinants are only a subset of fermionic



many
-body Wfs which exhibit total antisymmetry . Clearly

an arbitrary linear combination of Slater determinants
also is totally antisymmetric . FFS

ja

• Second quantization
titis = MM + ftp.t . . .

-03

Second quantization is a convenient notational scheme for

labeling basis States of quantum many - body systems. Suppose
we have an orthonormal single particle basis 4,151 , where
we include in the position I any internal labels, such as spin

polarization .
Thus 4×151 = si la > and Cala 's = San .

We define the N - body state ←
BE

#
a
.
. . . ..dk . . . . . Int -- Eeg!sgi % ,

Hani . - - Gal wi
←
FD

The upper sign is for bosons and the lower sign for fermions .

na is the number of times the label x appears in la . .
. . .

, an} .

Only na E 10,1 ) are allowed for fermions , else talk l -- O .

Note that

,¥gn%! In ill -
- - Hankin Intl = per HailYj ) ) permanent

⇐gnsgnkillla ,
limit - - - Kalinin ) = diet lllilxjl ) determinant

The permanent and determinant wavefunctions constitute



bases for N - particle many body wave functions for bosons
and' fermions

, respectively . An arbitrary linear combination

¥15
. . .

. .

. Int = f. Ca , . . . .nl?IeI/l4ailxjl )
satisfies the condition

Ethan , . . . . , Innit = sgn kit II . . . . . . In )

where Tt Sw .
We may write

Eta . . .anti . . . . . . In ) = ix.
. .
. .

.
In la ,

. - - an >

I ttic , ) , - - i

, ANN )
)

where
-

14 - - - an > = ftp.feg/sgnlHlKnui > ④ - - - ④ HTYNP

Thus I am , ,
- . - arm ) = It. I la ,

- - - an 7 where Iti )
"
I fsg ! ,*, )

and furthermore

(x
,
-

. - an l Bi - - par 7 = ft H
"

Sp , , am , ,

- " Spn , H1N1
for some TIE Sw .

Fock space operators :

For bosons , we write

la ,
. . . an > = tyfbta Ya

f
Fock space vacuum lo particles ,

a

107 = tha al ) i g na
-

- N



where 107 is the boson vacuum .

The total particle
t

number is N -- g na .
The creation operators b, and the

annihilation operators b, satisfy the following commutation
relations :

Iba
, bpd -- O ,

HI
, bid -- O ,

Iba
, btp ) -- Sap

where LA ,
B) = AB - BA

.
We call is = batby the

number operator. Exercise : show is
,
la

,
- -

- an > = nala ,
. . . an > .

For fermions
,

la
,
. . . an > = LTKatt

"
to > = Cta

,

. - - Ctn to > = I { na } > ; Ena
-

- N

where na t foil ) ta .
Thus na -- l for a c- Hi , . . . ,an } and

Aa
-

- O otherwise
. /We implicitly assume a canonical ordering

of the labels a such that a. car . . . can . ) the fermionic

creation and annihilation operators satisfy anticommutation relations :

{ Ca , Cpl -- O ,
ICI

, Ctp } -- O ,
Ica

, Ctp } = Sap

where IA
,B) = AB t BA .

Note Cta
, , , ;

- - damn , 107 = sgnhtlllna } )
we also define the field operators ,

b txt -- § 4,151 ba , Caha = §9151 Ca
which satisfy

tbh )
,
btx 'D -

- 815- I 't
, {calm , CIII 'll = Six - I

' )



We may define ft
= btlxl or ctx,

II
,
. . - In > = 4th

,
) - - - 4th1107

-

all distinct
= ¥

.

¥.sn/sgihfTxnusi - - - TXT IN ' )

which differs from the state

II.
,
. . .

,
In ) = tx , >

← - - ④ I In >

See Eqns . 8.19 and 8.20 in the lecture notes .

Second quantized Hamiltonian :

we assume it = It to
,
where

I = - Ia Iii , V -

- E
,

next kit , D= §
,

.tl/xi-xjl
kinetic energy external potential two -

'

body interactions

we call I = - IIT .
We may represent I , i , and I

in second quantized notation as :

I -
-E
,
cattle > 4th iv. Ett ta

i -- fecal 've# Ip > tabs in
,
't] -- fi

,
is .fi , it -- o

'

U -

- tzapggsxptulrs > YI 454g ly
total particle number
is

"

good quantum number
"



where

cat 't Ips
-

- foldx #txt this 4pm = tab

exit
<a lie# If > = fddx PITH Uexthhlplxl = Vap
captains > = fddxfddx ' ptlxhetplxlulx -x' '14g 1578151 = '

Uaprg

This may be generalized to n - body operators .
For a Hamiltonian consisting solely of one -body operators ,
we have

it = E.p leapt u f) 454ps
We may then make a unitary transformation 4

,
= Uaa Xa

with Utaa (tap treat ) Vpb = Ea Sab
,
in which case

it -- Ea e. Xtaxa

Example : It = - ten J ' + VIKI with VITTI) = 'VE I .
Then

←
creates Bloch.
State Into >

It = En. fg{ Edm Xtnaioxnho

Hartree-Fock Theory :

consider the interacting Hamiltonian ,

it =
;

f - Ia Titu"thill t &; ul Ii - I,- I



We seek to construct the best possible Slater
determinant- state

,

¥ II. o
. .

. . .

.
In owl = ftp.E.gnsgnltlt#4ailxaiiiionisl

In our second - quantized notation ,

it = fddxttohlf-I-msoi.tt Vitthal taxi
+

'zfddxfddx ' 4th ) toth 't uoio.elx-xytt.LI 'Hotel
Here

,
lo, I , o

'

,
t
' ) are spin polarizations . When we have

spin isotropy , we may separate

Uotoiti 1¥ -I 't = no CE - I
'

) Soe Soir , t U, 15-I 't Eoe . Go
scalar Heisenberg

we want the energy E
-

- c It HE >
, so we need

• city 4th ) til lot > = IEetII ,ol 4. H'It
a iittlutolxlttoitx 't teh 't that I = !§e¥,

one;ix. o 's

x (415, thlplx
'

,
t 't - 415,4815

'

,
t 't)

Thus
,

T -- C 'T > = fddx 4¥15 ,ol
'

tooth 4. II. t I



V -

- cis -

- & fold* Hale,ol JeffHigh.tl

u -

- ius -

-

''

z :{pfddxfddx ' 9th , ol 4th '

,
o 't noooo . hi - I

' )

x tealI. thlplx
'

,
t 't - 4ptx.tl WE

'

,
t 't)

Now we extensile by functionally differentiating Elka , UID
with respect to 4¥15, ol :

ST

¥¥o,
= too 1819. hi , it

SV

get ,
= it theater ,

g¥¥×i, -- fold uoeoieh-xiqicetlxiotkalxthlptxiil-4plx.tl 4×15 '

,
t 't)

To maintain
. orthonormality of the single -particle basis ,

though , we need Lagrange multipliers .

Thus
,
what we

really must extremite is

Elka
,
#D= Elka HEH -§

,
AaplMakes - Sap )

we can work in a basis where the Hermitian matrix Aap
is diagonal , with eigenvalues Ea . This results in



the Hartree-Fock equations ,

f- Ifn Soto 't uefetlxl tutti txt) leak , it
+ foldx ' U'Ith, I ' l Ya. Tx

'

,
It = Ea Ktx, o )

where

VI. hit-fddxiuo.co#lx-iiiEieEixiolceblx;iyuEilx.xl=-uoeoielx-x'ie e! ix.onesie . it
are the Hartree amid Fock potentials , respectively .

Note that the Fock potential is non local . The single
particle Hartree-Fock energies are given by
Ea -- fold x path ,ol f- Em soit 't u tht tutteEl ) Yale, ol

+ fddxfddx ' U'felt , I 't 4¥15,ol Ya l I ', it
If we sum. these single particle energies over all the

occupied states , we get

a
= Tt V t 20 t E = city it HE >

thus
, the sum is not the total energy ! Rather,

Sgt = EIN) - EIN - l l -- Ea



where the electron in state la > is removed to form

the IN - H - particle system .
When Uffftx ) = VIII Sot and Koto#K - I 't = UH -I

'

l Soo , Soo , ,
the spin DOE is just a spectator, and the HF single
particle states are cljlx I ④ yo ,

where yo is a spinor

corresponding to It > or It > .
We then have

{- IIF t ve# txt t v 'ttxt ) lljlxltfddx '

UME -I 't tf- II 't = Ejlljlx)

where

u
'ttxt = 2foldx' ult -I ' I heels 'll

'

UFII.
'

x' I = - ulE - I 't 4*15 '14kt

Self - consistency : Note that the HF Wfs Yale, o) determine

the potentials Ufo txt and UI, hi , I
' l
.

One numerical approach
is to start with some educated guess for the leak , ol} and

then iterate :

i. 1 . Given Hale ,ol ) , compute Ufo txt and UI, hi , I
' l
.

2 . Given Ufo txt and UI, hi , I
' )
,
solve the HF eqns

( t
Marxist .for the WFS

3
. Iterate to self - consistency .



HF theory for atoms ,

In atomic physics , we have

next txt = - 7¥ , ult -I
' I = ,E

It is then a good approximation to assume that the HF
wavefunctions are of the form

% txt = Rue Irl Yen ( O , lol yo.

Thus a = ( n , l , m ,
o ) is a composite index , with n E { 1,2 , . . . } ,

l E {0,1 , . . .

,
n - t )

,
m E f -l , . . . , th ) , and o E f - I, t t ) . The

essential physics introduced by the HF method is thatof

screening : close to r = o, a given electron feels a nuclear

potential - ZeYr which is unscreened . But farther away,
the attractive nucleus is partially screened toy the other
electrons

,
and the potential decays faster than yr in the

✓→ a limit
. (within. Thomas - Fermi theory , UsaIrl = - Ce 'aptr

't

with C ' 100 independent of Z . ) For hydrogenic atoms,
the energy only depends on the principal quantum number n

,

and not on l . But within HF theory , smaller l means lower

energy , since these States are localized nearer the nucleus, where

the ionic potential is less screened . Thus
,
for a given n

,

the smaller l States fill up first. For fixed n and l,



there are 12Sh ) x (Htt ) =4lt2 degenerate States labeled

by m and o; this group of
orbitals is called a shell .

Filling lower ntl states first in the periodic table is

Filled shell atoms :

Is 2
He 5g

38Sr

2. s 4Be 4d 48Cd

2 p
"Ne Ep

54Xe

35
"

Mg 6.s 5613a

3p
''
Ar 4f 70 Yb

4S
"Ca Sd 80

Hg
3d Both Gp

86 Rn

4p
36
Kr Fs

88
Ra

5ftbd '"No

known as the Aufbau principle (Aufbau (Ger. ) = ' 'construction ")
.

HF theory of the electron gas
The jellium model of the electron gas describes N electrons

moving in a uniform neutralizing smeared ionic background .

Since the system is translationally invariant, the HF

single particle States must be plane waves : 4*1×7 -- V
- 'Keith

.

The HF energies are tiklzm

an =hII¥¥÷iII ①he -iii. doin
'

't'E'iii's
"

Hartree term cancelled by neutralizing background



The electron self - energy is computed to be

an s¥÷fiz÷Hkth÷l - 4
Expanding about k -- ke ,

we write te = 1k¥ t of) ri , whence

Elhetgl = Eet time of tea g.
In 129¥ It 0194

where er. = tzhm - date is the Fermi energy within
HF theory . The velocity in the vicinity of ke is

Hal =
'

a 044792 = the + (In 12¥ I - i )

which is logarithmically divergent as g-so .
The reason for

this is that the HF many-body WF does not incorporate
electron screening .

More on this latter ! The total kinetic

energy per particle is

I = tnx2.EU?oH=nH9I#shIhIolhr.-H--3IohmE
The total potential energy comes from four contributions :
lil self - interaction of the neutralizing background, Cii) the
interaction energy of the neutralizing background with the
electron gas, liiil the Hartree energy of the electron gas,



and liv ) the exchange (Fock) energy of the electron gas .
The first three terms sum to zero

, leaving

EI = In × 2

, if tht
= In f¥¥z ElkI ①her. -H = - 3411

It's convenient to define the dimensionless length r, by

Iz 'T (r, aB) 3h It

where a
B
-

- tilme ' = 0.529 Ao is the Bohr radius . Note

rs -- I#
'

Baiz ' n - 'b , he :( IT)
"'

ai
'

ri
'

Then we have

In = I IIF)
"'

II
.

. Is. = 2¥ Rgd

Eg = - I. YI, I
"

Ia
.

. Is = - off 12yd

We see that interaction contributions to the total energy
dominate when Rs is small , where the density n is large .

This is because the kinetic energy term involves two gradients ,
scaling as ti

'

,
while the Coulomb interaction scales as L

- !

Short- ranged interactions dominate at large densities .


