
Lecture 16 ( Feb . 241

BCS Theory of Superconductivity
• Bound States : consider a ballistic particle in an attractive

potential Vfx ) . The Schrodinger equation is

- tan 4151 tvlxltlxl = E 4151

Fourier transform to obtain
.

Ethel Illit tfdad.io, ith - I 'II Ite 't = E IN
with Ethel = titty'2m . Since Ifi# = Vtk - til is a
Hermitian matrix

, we may express
it as a sum over

its eigenspace projectors , viz .

✓It - te 't = { In an III at th 't

Let 's approximate the above sum by the contribution from

the lowest eigenvalue , which we call X .
Thus

, we take

✓He , te
'

) = Talk ) atth 't

Such a potential is called separable .
We then have

[Helium t tallit 1917,4, ath 't IH 't = E Ita 's

which entails

in -

- ten, f¥÷a aniline 't



Now multiply by a 'The) and integrate to obtain

- ÷ .- fi!÷. KidEth) - E
If Iqa , is isotropic , i.e . it fth - t

'

) = I(Rt - Rt
'

)

where RE sold )
,
then the lowest eigenvector a th) is

generally isotropic , i - e . we may
write a141 -- a fecal ) ,

which is a function only of the magnitude of K .
Then

with gkl -- fd÷ha 8k. - Eth ) ) = Dos
, we have

c. I ÷,
= ! Ie Tefft latest

where we assume 120 and E c O . If aK ) and

glee ) are finite as E -so
,
then we have

, as
E → O

-

,

÷, = glo ) 1410112 In (FET ) t finite

where B is the bandwidth lice . g.let = 0 for E> B ) .

This equation has a solution for arbiter ily small values
of ill

,
since the RHS diverges logarithmically as

E → O
-

. Thus
,
as X. → O

-

we have

EIN = - c B exp l- gift )
where c) O is a constant

. If gk ) a EP with p > o,
then the RHS of l. ) is finite as E -so

-

.
In this



case
,
a bound state solution with E s o exists only

for His Xc , where we. Ike
DOS

d=3

Xc -

- i/fade 9¥ latest bit:*

(d - 2)12
For a ballistic dispersion , got a E ,

so

glo ) vanishes for d > 2 and is finite for D= 2 .

For da 2
, g IE →

Ot) diverges as g le la E
- P with

p
-

- I - Id , i. e . p
-

-

'

z in
d -

- I
.
The RHS of l. ) then

diverges as I Et
- P
as E → o

-

and so Elxl = - c HMP
as X → o :

• Cooper 's problem ( 1956 ) : Cooper considered Hae

problem of two electrons with a weak attraction in

the presence of a quiescent Fermi sea , described

by a variational wavefunction
i kef te

titis = Fa,µ§q.A.hkttectht-cthtct.hr ) IF > •

- te

where IF > is the filled Fermi sphere . Note that

fits ) has total momentum I -- O and total spin 5=0

line . a singlet) .
The electrons in the Fermi sea only

enter the problem through Pauli blocking . In real

space , the wavefunction for Cooper 's pair is



'

Elk
,
Id = ftp.qq.fheiti

""""
Hi , das - It ,til

where Aq -- A -z .
The Hamiltonian is

it = ↳Ez Cthochot
'

-2¥;
- -

faith is. That u this , kyoy >
× Cte

,
o
,
ctqzo.cz#oyCTez03

We treat HE s as a variational state
,
so we set

s =ss¥¥it¥ - .

-
o

-

E

we take the variation Wrt AI . We have

Eti HII = §. AIA.*
it't it titis = Eo tf, 2 Ee IAul 't 1¥ ,

the# AE Aa '

where to = CF t it IF 7 and

VK.hu = tht
,

-hit l U Ite 'T
,

- te 't > = f- fd3× Weil
k -te't 'I

Thus
, we obtain the eigenvalue equation

,←
prime means Ite 't > he

( tot 2W Ate t ¥. Vu
,
ti Ati = E A#

How define Eq = Ept Sz and E = Eo t 2Ee t W, so that

25# At t §,

th
,
ti Aa ' = WAt



Assuming UCI ) = 011511 , we may write

Hii =E; E!even, h 't Ye, m like: lie 't
We further assume separability , i.e .

Velu , h't = I Xeael Hateth 'l

and we seek a solution Ate = An Ye
,
m
(I ) in the angular

momentum l channel . This results in

25nAht t.ee/kl.fEwiitelklAki=WeAh
This may

be recast as

An =
te delk ) .

Ee
- I E. 44k 't Aa

te
'

Now multiply by tech ) and
"

sum over Hel > ke to obtain

ii. IE
' 'with:-#we '

we can solve this graphically . Since Hel > Kf , 3h20
The denominator passes through zero as We passes through
each value of 3h . As we see from the plot below , when

X.e so there is a bound state solution with Wes O .

This is true for arbitrarily weak attractive he .



We saw previously how in d =3 dimensions bound states

require a critical attraction strength . The difference

here is that we are not interested in states near

K -
- o ,

where the Dos vanishes as IT
,
but rather

in States near Hel -- ke , where gleet = mHealth
is constant

,
as it is for a d -- 2 system near E -- o .

To solve further
,
assume he (k ) = ④ (Be

- 5k ) so

bi:c:::: skin n.ms?:is.sw:i#s.
Now assume gleet3) = glee ) , integrate, and find

2 Be weak
IWel =-

c-xp(4/1Xelgk,
coupling

In the weak coupling limit , where Hel gleet K 1
,



We = - 2 Be e
- 4/1 del gleet

As we shall see when we study BCS theory , the factor
of 4 in the exponent is twice too large . For strong
coupling , Hel gleets ) I

,
and

strong
we = - filet BegKFI coupling

The energy scale Be will be shown to be the Debye
energy of the phonons for conventional phonon - mediated

superconductivity . The effective attractive interaction
exists only over a very thin energy shell about the
Fermi surface

.

Two additional features of the Cooper
problem :

- One can construct a finite momentum Cooper pair, viz .

I#get = II fi Atlantis titlist - cthttiqtlthttiat ) IF >
The total momentum is D= that . This results in the

eigenvalue equation hit
'Ia

-hit ta n
t.

Hit 'z It Shi- til Attf:
"

Vz# i Aa = With y

'Hoa te

-te

Now

Hit 'zIt Shi- til = 25kt I, 311k¥ 9-a fist . . .



and thus the binding energy is red'veed by Olaf) .
The 4=0 Cooper pair has thegreatest binding energy .

- The mean square radius of the Cooper pair is

< if , =
Idk HE th

'
f
? Soph tote A# 12
- -

1dL tutti) )
'

=

fd3k IAN

=
915-1544=121%5 HA12512
-

gleet!83 IAB ) 12

We have Ats ) = - Cha (31111W It 23 ) , and 3
'

that -- toe .

For weak binding , W → o
-

,
and we have

< rt > = I' Huff Iwl
-2

Thus
,
for weak attractive interactions

,
W → o

-

and the radius of the Cooper pair diverges .
This is why BCS turns out to be such a successful
mean field theory . The Ginzburg criterion ( § 11.4.54
says that mean field theory is qualitatively accurate
down to a reduced temperature

ta -.tt#I=fazfd
"" - d '

where a is a microscopic length (e.g. , the lattice constant)



and R
*
the mean Cooper pair size . Typically we

have 12*1 a = 102 - 103 , so in d =3 , to, = 10-6-10-9.

. Phonon - mediated attraction

Please read § 12.3 for details . The electron - phonon

Hamiltonian for small momentum transfer and longitudinal
phonons is

ite , .ph = IT¥; ! gqlatqt a - oil cthochtoio

with got = Xd -phtnchqlg left . We compute an effective
indirect electron - electron interaction t.by working to
second order in

'

Hel -ph . Starting with a pair of electrons
in States tho

,
- te - o >

,
we transition to either of

the two intermediate states ← longitudinal phonon

II
, I = I te lo

,
- Te - o > ④ I - I >

I Iz ) = I Teo
,
- te

'
- o > ④ It I >

where I = I ' - hi . Another application of
'

Hel-ph takes

us to Ite ' o
,

- ti - o ) .
The intermediate state energies

are given by
E
,
=3
-hit 3h th w-I

Ea -- th t 5 -hi thug



The second order matrix element is then

th
'

o
,
-K

'
-ol it indirect tho , - te - o > = Ester , - K

'

- ol
'

Hei
.µ In

>

x int Hel
- put Teo , -te - o > x (÷eI t ÷EI )

z
l

-

- Iggy (¥Ehigt¥hwI )
Adding in the direct Coulomb interaction Eloi =4If÷ ,

we obtain the effective interaction

(Ho
,
- ti -ol itetf tho , -to ) = It tlggl

'

x

BE 3h12 - thwait
Thus for By - 3h Is -hug the second term is negative
and can dominate the first

, yielding an effective attraction .

• Reduced BCS Hamiltonian : The operator that creates
a Cooper pair with total momentum II is big t biz

,
§

brig
.

= cttatzoit.tk that
since I -- o pairs have the greatest binding energy , we
consider the reduced BCS Hamiltonian ,

It
red

= §; Eq cthochotf.f.Vh.kibth.obti.co
We may assume Vy

, y
' = Vu

,
-hi = V- hi

,
hi ,

which is required



↳
y spin rotational invariance .

Since

2 cthpct.ua C -his car 147 = kin, Capt tht C-tea ) 147
--

btw btw

provided all the pair States (hit , - hit ) in 147 are
either empty or doubly occupied . This

, we consider

tired = §
,

2 Ez btw
,

obhi
,
o t.fh.vn, a btw

,

obie :O

This has the alluring appearance of a noninteracting
bosonic Hamiltonian

,
which would render it exactly

solvable
. However

, by, o is a composite operator that
is not a true boson in that it doesn't satisfy bosonic
commutation relations .

If pth is a bosonic creation
operator , then Ipoh , Phil -- Ipta , pta ) -- O , Ipoh , ptg ) -- 8th .

But while tbh
,
o , bow

,
o
) = ( btw

, o
, btw

,
o ) = O,

[by
,
o , betti

,
o
) = ( I- Cfp chip - tht C-hit ) Suzi

Furthermore
, tbh

,

of = tbh
,

of = O
.
So we need another

approach , as tired can't be diagonalized by any known
methods .

Mean field theory : while by
,
doesn't satisfy

bosonic commutation relations
,
it is still a



composite boson and can take on an expectation
value

.
So let's do the mean field thing and write

'

by
,
o
= tbh.pt/bh.o-s-bio)

Sbk
,
o

We now have c- number

tired = foahcttoc-uot.fi#Vt.k'fTbosbk.o >
+ tbh

,
o
> but

,
o tbh

,
ol be, o >

t 8btw 8 bye
,
o )
-

(floats 12 drop !

Thus our mean field Hamiltonian is

it Yea = fg.cecttocteotf.lbecth.net#utEac-usCur )
- I VK.hu letter Ctf > ( C-ti 'd Chip )
Tat

'

where

b.E- £, VK.ie ' c C- titch 't ) , DF -§,¥,ti CC tht C-till

One highly noteworthy aspect of tired : it does not

conserve particle number ! Therefore we need to work

in the grand canonical ensemble , with

Koos -- itFeed -pin ,
N -

- f.octuocho


