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Lecture 20 (March 91 )

The Stoner model : moment formation in itinerant systems
The non interacting electrongas (see § 5.4) exhibits either
paramagnetism (X > o) or diamagnetism (XO ) , but never

ferromagnetism ,
in which there is a spontaneous moment

formation in the absence of an external field .
To

account for spontaneous magnetism we must include the

effects of interactions
,
which in our case means the Coulomb

interaction . How can a spin - independent Coulomb interaction
yield magnetism ? Lets consider a specific model,
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known as the Hubbard model . Note that the interaction

term
,
written in red

,
is purely local and does not fall off

as it tri -I .gl as is the case for the actual Coulomb

potential . We can wave our hands and appeal to screening ,
but perhaps it is best not to insist that the Hubbard



model is realistic . The interaction term
,
for fixed total

electron number per site n = in
, .pt
n'
it ,

favors a magnetic
moment :
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This is minimized by making this - n'ill as large as

possible .
I.e . iritis it is minimized by a maximally

polarized situation where hip -

- n
, iii. = O .

Stoner mean field theory : ferromagnetism
The idea here is to write nio -

- Chio > tsnio
,
where

'

Nio > is the thermodynamic average , which we assume

to be site - independent in the case of ferromagnetism .

n
n n

we then have Snio = Nio - Chio > and
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The mean field grand canonical Hamiltonian is then
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we've taken It -- HI
,
without loss of generality .

Note :

• The chemical potential is shifted down to pi =µ -
'
z Un .

• The effective magnetic field is Hetf = Ht LFB .

We define D=MBHetf = MizH t
'
zum .

The grand potential per lattice site is then
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where glc ) is the DOS per site for both spin polarizations .
Thus (gu ) ) -- E

' '
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We compute the Gibbs free energy density
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.
) is not a function ofµ or m .

Thus we must set
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and we expand

① in powers of D :
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Inserting this into our expression for 4 , we obtain
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,
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Note a =
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zu ( I - ¥ ) so a (Usual > 0

while a IU > Uc ) s O . The magnetization density is M -ya, m
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when H -- O we may still get into provided
U > Uc , in
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This exhibits the usual f- 'la mean field order parameter
exponent. For U > Uc , the equ for Ta is : Dlto Te ) = F .

Stoner antiferromagnetism :

It's easy to see that near half filling In -- t ) , on a bipartite
lattice

,
the ground state should be antiferromagnetic . This

follows from second order perturbation theory in the hopping
matrix element t (setting It = o ) :
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Here IG ) is the t -- O ground state , which at n= I
is massively degenerate . Any state IG ) with hi IG ) = IG ),
i. e . one electron per site , is a ground state, with Eo --O.

Excited states contain some sites with ni = o or ni -- 2 , such

that in is = I on average .
Consider the ferromagnetic state IF I = IT TT . - - T >



for which bio IFS = So
,
+
IF 7

.
Note Sto+ =

'
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for this state

,
and it is a

"

highest weight
"

state with

Stef = t Sto . We can obtain the full set of 2Stott I -= Nst I

ferromagnetic States by successively applying 5+5. --E, Sj
to IF ) .

Now the kinetic energy operator is

F -
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which preserves spin polarization in the hopping process .
Thus

,
I IF > = 0 since Pauli blocking prevents any

two T spins from sharing any given site . Thus
, Eo -- O

to all orders in perturbation theory in t . In other
words

,
it IF I = O and IFS is an eigenstate of the

Hubbard Hamiltonian It (again , set it = o ) .
Next

,
consider the model on a bipartite lattice .

In this case we can form the two sublattice antiferromagnetic
State IAF > = It ti t . . . > where
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The first order contribution < AF IF I AF > = 0 still

vanishes
,
but the second order contribution is found

to be

Seoul = -2 × thinks



where thinks =L 2-Nsites , with z the lattice coordination

number ( ice .
# of nearest neighbors ) . The calculation

is easy . Focus on a given neighboring pair of sites
IT t ) with wot

og we take no -

o

-

- So
,
#
and njo = So, - .

The KE operator T can hop the T spin from i to

j or the t spin from j to i, creating an intermediate
state In > = It t i t . - - T ti o t t - - a 7

,
whose

potential energy is U
.
Thus

,
SE
" '
ft ) = - 2t4U per

link .
In fact

,
the effective AF Hamiltonian in the

ni -- A sector is then

IIe, = J ⑤ i. Sj - tqninj )

where J --4th is the super exchange constant.

Mean field theory of antiferromagnetism :

The MF Ansate is again bio = Cirio > t Ennio with
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where I is the AF ordering vector . On a hypercubic lattice ,
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The grand canonical Hamiltonian is
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where Ethel = - ttht = - 2T :&
,
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Thus E tht I ) = - Eth ) an 'd the eigenvalues are

X±Ht=±Ie4hItT -ji
with D= -'zum and pi -- gu - Lun as before .

The Gibbs

free energy per site
is then
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the ME eqns are then
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A paramagnetic so I ' with m -- O always exists , in which

case ② no longer applies .

Mean field phase diagrams at T -- o :

In fact , FM is quite difficult to obtain in reality
and seems to require UH 7 100 on the square lattice .


