PHYSICS 110A : MECHANICS 1
FINAL EXAMINATION SOLUTIONS

[1] Provide concise but accurate answers to the following questions. Include equations and
sketches where appropriate.

(a) What is a dynamical system?
[4 points]

A dynamical system is a set of n coupled autonomous first-order differential equations, of
the form ¢ = V (¢), where ' = (¢,...,¢,). n is the dimension of the dynamical system.

(b) For a weakly damped forced harmonic oscillator, sketch the amplitude response A({2)
and phase shift §(£2) as a function of the ratio £2/w,, where {2 is the forcing frequency and
wy is the natural frequency.

[4 points]

8(0)/m

Figure 1: Amplitude and phase shift versus oscillator frequency (units of wy) for 5/wp
values of 0.1 (red), 0.25 (magenta), 1.0 (green), and 2.0 (blue).

(c) What is Noether’s theorem?
[4 points]

Noether’s theorem says that to every independent continuous one-parameter family of trans-
formations which leaves the Lagrangian invariant, there corresponds an associated conserved
quantity. Specifically, if ¢o — G»(q,() is the transformation parameterized by (¢, with

do(q,¢ =0) = q,, then

is conserved under the dynamics.



(d) For the geometric orbit shape r(¢) = ry/(1 — ecos(B¢)), what are the values of r and
¢ at periapsis (r,,) and apoapsis (r,). What is the condition on 3 that the orbit be closed?
[4 points]

Periapsis is the distance of closest approach. This occurs for cos(8¢) = —1, hence ¢y =
(2n+ 1)m/B and r, = 79/(1 + €). Apoapsis occurs for cos(3¢) = +1, hence ¢, = 2n7/j
and r, = ry/(1 — ). The geometric orbit is closed provided 8 € Q is a rational number.

(e) What do we mean by ‘normal modes’ of small coupled oscillations? Why are they useful
to study?
[4 points]

The normal modes of a coupled system of small oscillations are linear combinations ¢, of the
generalized displacements 7, which oscillate with a pure frequency w, , with n, =3 A &;;
A is the modal matriz. They are useful because they permit us to write the general solution
to the coupled small oscillations problem as an expansion in terms of the normal modes.

[2] Consider one-dimensional motion with the potential energy U(x) = Uy, a? f(z), where

ex/a

€Tr) = —]————
/(@) 222 + a?

(a) Sketch U(x) as a function of . Note that x € R may take both positive and negative
values. Identify the location of all minima and maxima. (It may be useful to consider the
potential as a function of the dimensionless position s = z/a.)

[4 points]

The function U(z)/U, is plotted in the top panel of fig. 2. Note that

o= (2 )

a 222 +a2) 222+ a2

and thus the condition f/(z) = 0 yields 222 — 4az + a? = 0, with roots at z, = (1 + %)a.

v
We also have f(—oc0) = 0 due to the exponential. Thus there is a global minimum U(z) = 0
at © = —o0, a local maximum U, f(z_) at © = z_, and a local minimum U, f(z,) at
rT=x,.

(b) Sketch the phase curves in the (z,#) plane. There are several different types of orbits,
depending on their energy in relation to the values at the local minimum and maximum of
U(z). Sketch what happens at four different representative energy values, including that
for the separatrix.

[12 points]

Conservation of energy says that £ = %mfu2 + U(x) is a constant, thus
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Figure 2: U(x) versus x (top) and phase curves (bottom) for problem 2.
where v, = /2U,/m . Representative phase curves at four different energies are depicted
in fig. 2.

(c) What is the energy E* corresponding to the separatrix?
[4 points]

The energy of the separatrix is

pexp(z_/a) exp(1 - %)
202 +a2 " 3-2V2

E* =Ua = 1.144017 U,

(You were not expected to obtain the numerical coefficient.)

[3] A point mass m rolls under the influence of gravity along a semicircular surface of radius
R, as depicted in fig. 3.

(a) Find the Lagrangian.
[5 points]

The coordinates of the mass are

r = Rsin ¢ , y = Rcos ¢



Figure 3: A mass point m rolls inside along a semicircular surface of radius R.

Thus .
L= %m(mz +92) — mgy = %mRngSZ — mgR cos ¢

(b) Find the equations of motion.
[5 points]

The momentum is p, = 8L/8<;5 — mR2¢p, and the force is F, = OL/0¢ = mgRsin ¢. Thus,
the equation of motion is py = F, , i.e.

525 = wg sing
where wy = y/g/R . This is the equation of an inverted pendulum.

(c) What quantities are conserved?
[5 points]

The only conserved quantity is the energy £ = %mRZQ.SQ + mgR cos ¢. Assuming the mass
starts from rest at an initial angle ¢,, we have EZ = mgR cos ¢, .

(d) Assume the mass starts at ¢(0) = @, with $(0) = 0. At some value ¢ = ¢*, the
centrifugal force mv?/R starts to exceed the component of the gravitational force normal
to the surface and the mass flies off. Find ¢*.

[5 points]

The component of gravity —gy normal to the surface is —g9y - n = —g cos ¢, where the
surface normal is 7 = 7 = sin ¢ & + cos ¢ §. The centrifugal force is mv? /R where

2
tmv? = mgR(cos ¢y — cos ) = % = 2mg(cos ¢y — cos @)

Thus, we set
mg(cos ¢y — cos ¢) —mgcosp =0 = cosp* = % cos ¢

Thus, ¢* = cos™ (% cos gzbo).



Aside: This is a classic problem which can be solved using the formulation of constraints,
which, alas, we did not cover. However, it is even easier to solve without the constraint
formalism.

[4] Two particles of identical masses m interact via the central potential

where o is a length scale.

(a) Sketch U(r) as a function of the dimensionless variable r/o. Find all extrema. Identify
the behavior as r — 0 and as r — 0.
[5 points]

It is convenient to define s = r/o, in which case U(r) = U, (s™* — s7%). Thus we find
U'(r) = Uyo~ ' (—4s7> + 2s73). Setting U'(r) = 0 yields s = v/2, i.e. r* = \/20. The
minimum value of U(r) is then U, = —1 U .

(b) Show that a stable circular orbit exists for the relative coordinate problem provided
the angular momentum ¢ is sufficiently small. Find the critical value ¢, above which no
bound orbits exist. Define the quantity ¢ = 1 — (£/£.)?, in which case bound orbits exist
for 0 < e < 1. Sketch the effective potential U g(r) for the cases (i) £ < ¢, and (ii) £ > £,..
[5 points]

The effective potential is

vt = o v =0 (2 + () (2
= U, (3_4 — 53_2> )

where = $m and (. = \/mo?U,. When ¢ < 0 we have that U, (r) is monotonically
decreasing and therefore there are no bound orbits. Bound orbits require 0 < € < 1 which
means 0 < ¢ < /.. See the sketches in fig. 4.

(c) For 0 < ¢ < ¢, (i.e. 0 < e < 1), find the radius ry(¢) of the stable circular orbit.
[5 points]

Extrema of U (r) are obtained by differentiating with respect to r, or, equivalently with
respect to s, and then setting the result to zero. This yields

2
—450 4253 =0 = 3225 (e >0)

Thus, € > 0 in order to have a local minimum at r, = \/2/e o, which is the location of the
circular orbit. This requires ¢ < ¢, = y/mo2Uj,.
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Figure 4: U.g(x) versus x/o for e =0, 0.5, and —1.

(d) Find the frequency w of small oscillations of the radial motion r(t) about the circular
orbit.
[5 points]

Writing r = r + 7, the equations of motion are
pii = ~Ugiz(ro) n + O(n?)

where

ar(r) =Ugo™? (20 570 —6e 3_4) = ot () = Upe®o™?

after substituting s = r,/o = \/2/e. Thus, the frequency of small radial oscillations is
Ul (7o) 2830,

w = = 3 N
W mo

with0 <e< 1.

(e) The shape of the perturbed orbit is r7(¢) = ry, + 1y cos(B¢), where 7, is a constant
determined by initial conditions and ( is calculable in terms of the parameters of the
problem. Find an expression for 5 in terms of €.

[50 quatloos extra credit]

From conservation of angular momentum, we have qﬁ =/ ,urg for the circular orbit. Thus,
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[5] Three identical masses m are connected by four identical springs k as depicted in the
figure below. In equilibrium, the springs are all unstretched.
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Figure 5: Three identical masses connected by four identical springs.

(a) Choose as generalized coordinates the displacements 7, , 75 , and 75 with respect to the
equilibrium positions of the masses. Write the Lagrangian.

[5 points]
We have
T = gmif + gmijg + mi;
U = gkai + 5k (ny —m)* + 5k (ng —m2)? + 5kn3
and L=T-U.
(b) Find the T and V matrices (each of which is 3 x 3).
[5 points]
We have
2 m 0 0 2 2k —k 0
TM,:((?'&TT' =10 m O , lezaa% =|—-k 2t —k
770- 770—/ 77:0 O 0 m 770' 770'/ 77:0 O —k 2k

(c) Find the eigenfrequencies. You might worry that you have to solve a cubic equation,
but it turns out that P(w) = det(w?T — V) nicely factorizes. The following identity,

det

QO SO

0
c|=alab-27)
a

S o Q

should prove useful.
[5 points]

We have



where u = w? /wi, wo = \/k/m, and
u=2-v2 ., uy=2 ., uz3=2+4+V2

Thus the eigenfrequencies are

W =V2-V2wy , w=V2w, , wy3=1\2+V2uw,

(d) Find the modal matrix A.

[5 points]
We write ,
wu—-2 -1 0 v
-1 -2 -1 ||gP]=0
and solve. We obtain the column vectors
1 1 -1
pW=0 (V2| . w®P =0l 0] 9P =0y v2
1 —1 —1

Note that the three eigenvectors are mutually orthogonal in the conventional sense, i.e.
Y@ . pl) = 0if i # j. This is because T is a multiple of the identity matrix, and thus
@ . T .9l =0 is equivalent to 9@ - () = 0. For i = j we have

P . TopM =amc? =1 |, @ .Typ@ =o2mci=1 , O .T-® =amci=1 |,

and thus
1 V2 -1

) IV NG

A=——
2vm \\ s

Note that in the low frequency normal mode ¢ = 1 all the masses move in phase. In the
1 = 2 normal mode, the central mass is stationary. In the ¢ = 3 normal mode, the restoring
force is greatest because the second and third springs have greatest compression/extension
for a given mode amplitude.



