PHYSICS 110A : MECHANICS 1 PROBLEM SET #2

[1] Using the method of partial fractions, solve the ODE

$$\frac{du}{dt} = (u-1)(u-2)(u-3)$$

for t(u). Sketch the phase flow along the real u line, and the integral curves in the (t, u) plane. Show that for $u_0 < 1$ or $u_0 > 3$ that u(t) flows to $u = \pm \infty$ in a *finite* time t^* , but that for $u_0 \in (1,3)$ the flow is toward the stable fixed point $u^* = 2$, which takes infinite time to reach.

[2] Consider the n = 2 dynamical system given by

$$\frac{dx}{dt} = x - y - x^3 \qquad , \qquad \frac{dy}{dt} = rxy - y^2 \quad ,$$

where r > 0.

(a) Assuming r > 1, how many fixed points are there? Find them. Hint: Start with the second equation.

(b) Show that for r < 1 there are two more fixed points. Find them.

(c) Expanding about a fixed point (x^*, y^*) , with $u_x \equiv x - x^*$ and $u_y = y - y^*$, the linearized dynamics takes the form $\dot{\boldsymbol{u}} = M\boldsymbol{u}$, where M is a 2 × 2 matrix. Find an expression for M at the fixed point (x^*, y^*) .

(d) What are the eigenvalues of the linearized system $\dot{u} = Mu$ at $(x^*, y^*) = (0, 0)$?

[3] Consider the n = 2 dynamical system

$$\frac{d}{dt} \begin{pmatrix} \phi \\ \omega \end{pmatrix} = \begin{pmatrix} \omega \\ -U'(\phi) \end{pmatrix}$$

where $U(\phi) = -\cos \phi + 2r \sin^2 \phi$ with $r \ge 0$. Phase space is thus a cylinder: $(\phi, \omega) \in S^1 \times \mathbb{R}$.

(a) Show that the energy $E = \frac{1}{2}\omega^2 + U(\phi)$ is conserved.

(b) Show that there is a critical value r_c such that for $r < r_c$ the potential $U(\phi)$ has a single minimum at $\phi = 0$ and a single maximum at $\phi = \pm \pi$, but for $r > r_c$, there is a global minimum at $\phi = 0$, a local minimum at $\phi = \pm \pi$, and two local maxima at $\phi = \pm \phi^*(r)$. Find the value of r_c and the function $\phi^*(r)$.

(c) Sketch the potential $U(\phi)$ for r = 0.15. Plot the phase curves at energies $E_1 = 0$ and $E_2 = 1.5$.

(d) Sketch the potential $U(\phi)$ for r = 0.80. Find the separatrix energy corresponding to the energy $E^* = U_{\text{max}}$. Plot the phase curves at energies $E_1 = 0$, $E_2 = 1.2$, $E_3 = E^*$, and $E_4 = 2.2$.