PHYSICS 110A : MECHANICS 1 PROBLEM SET #8

[1] Starting with the Hamiltonian for a charged particle in an electromagnetic field,

$$H = \frac{1}{2m} \left(\boldsymbol{p} - \frac{q}{c} \boldsymbol{A}(\boldsymbol{x}, t) \right)^2 + q \phi(\boldsymbol{x}, t) \quad ,$$

use Hamilton's equations of motion to derive the Lorentz force law.

[2] A particle moves in an elliptical orbit in an inverse square force field. If the ratio of its maximum angular velocity to its minimum angular velocity is λ , show that the orbit has eccentricity

$$\varepsilon = \frac{\sqrt{\lambda} - 1}{\sqrt{\lambda} + 1}$$

[3] Two point particles of masses m_1 and m_2 interact via the central potential

$$U(r) = U_0 \, \ln \left(\frac{r^2}{r^2 + b^2} \right) \,, \label{eq:U}$$

where b is a constant with dimensions of length.

(a) For what values of the relative angular momentum ℓ does a circular orbit exist? Find the radius r_0 of the circular orbit. Is it stable or unstable?

(b) For the case where a circular orbit exists, sketch the phase curves for the radial motion in the (r, \dot{r}) half-plane. Identify the energy ranges for bound and unbound orbits.

(c) Suppose the orbit is nearly circular, with $r = r_0 + \eta$, where $|\eta| \ll r_0$. Find the equation for the shape $\eta(\phi)$ of the perturbation.

(d) What is the angle $\Delta \phi$ through which periapsis changes each cycle? For which value(s) of ℓ does the perturbed orbit not precess?

[4] Two objects of masses m_1 and m_2 move under the influence of a central potential $U = k |\mathbf{r}_1 - \mathbf{r}_2|^{1/4}$.

(a) Sketch the effective potential $U_{\rm eff}(r)$ and the phase curves for the radial motion. Identify for which energies the motion is bounded.

(b) What is the radius r_0 of the circular orbit? Is it stable or unstable? Why?

(c) For small perturbations about a circular orbit, the radial coordinate oscillates between two values. Suppose we compare two systems, with $\ell'/\ell = 2$, but $\mu' = \mu$ and k' = k. What is the ratio ω'/ω of their frequencies of small radial oscillations?

Figure 1: Closed precession in a central potential $U(r) = kr^n$.

(d) Find the equation of the shape of the slightly perturbed circular orbit: $r(\phi) = r_0 + \eta(\phi)$. That is, find $\eta(\phi)$. Sketch the shape of the orbit.

(e) What value of n would result in a perturbed orbit shaped like that in fig. 1?