
PHYSICS 110A : MECHANICS 1
MIDTERM EXAMINATION SOLUTIONS

[1] A point particle of mass m moves in one space dimension with potential energy

U(x) = U0

(

x3

3a3
−

x

a

)

.

Here U0 and a are both positive.

(a) What are the dimensions of a and of U0?
[5 points]

(b) Sketch U(x), identifying the behavior at x → ±∞, the value at x = 0, and the location
and values of any local minima and maxima.
[15 points]

(c) Sketch the phase curves for E = −2
3 U0, E = 0, E = 2

3 U0, and E = 1.35U0 . Identify
which of the curves is a separatrix. Note that a given phase curve may have more than one
disconnected component.
[15 points]

(d) Find an expression for the period of the bound orbit at E = 0, i.e. find T (E = 0).
Express T (E = 0) fas a dimensionful quantity multiplied by a dimensionless integral.
[15 points]

Solution :

(a) [a] = L and [U0] = E = ML2/T 2

(b) See the top panel of fig. 1. There is a local maximum at x = −a and a local minimum
at x = +a, since U ′(±a) = 0.

(c) See the bottom panel of fig. 1. The phase curve for E = 2
3 U0, corresponding the local

maximum of U(x) at x = −a, is a separatrix (shown in red). All phase curves for energies
E < 2

3 U0 are disjoint sets, i.e. they consist of a union of a bound periodic orbit and an
unbound orbit. At energy E = −2

3 U0, corresponding to the local minimum of U(x) at
x = +a, the bound orbit has shrunken to a single fixed point. Below E = −2

3 U0 there are
only unbound orbits.

(d) The turning points for the bound orbit at E = 0 are x−(0) = 0 and x+(0) =
√
3 a,

which are solutions to E = U(x) = 0. Thus, from E = 1
2mv2 + U(x) we have dt = ±dx/v

and

T (E) =
√
2m

x+(E)
∫

x
−
(E)

dx′
√

E − U(x′)
=

√

2m

U0

√
3 a

∫

0

dx′
√

x′

a − x′3

3a3
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Figure 1: Top: U(x) versus x/a. Bottom: phase curves for E = −2
3 U0 (green), E = 0

(blue), E = 2
3 U0 (red), and E = 1.35U0 (magenta). The velocity scale v0 is given by

v0 =
√

2U0/m.

With s ≡ x/a we have

T (0) =

√

2ma2

E0

√
3

∫

0

ds
√

s− 1
3s

2
≃ 3.45082

√

2ma2

E0

,

where the last result is from numerical integration.

[2] A forced, damped oscillator obeys the equation

ẍ+ 2βẋ+ ω2
0x = f0 cos(ω0t) .

You may assume the oscillator is underdamped. Note that the forcing frequency ω0 is
identical to the natural frequency of the unforced, undamped oscillator.

(a) Write down the most general solution of this differential equation.
[20 points]
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(b) Your solution should involve two constants. Derive two equations relating these con-
stants to the initial position x(0) and the initial velocity ẋ(0). You do not have to solve

these equations.

[15 points]

(c) Suppose ω0 = 5.0 s−1, β = 4.0 s−1, and f0 = 8cm s−2. Suppose further you are told that
x(0) = 0 and x(T ) = 0, where T = π

6 s. Derive an expression for the initial velocity ẋ(0).
[15 points]

Solution :

(a) The general solution with forcing f(t) = f0 cos(Ωt) is

x(t) = xh(t) +A(Ω) f0 cos
(

Ωt− δ(Ω)
)

,

with

A(Ω) =
[

(ω2
0 −Ω2)2 + 4β2Ω2

]−1/2
, δ(Ω) = tan−1

(

2βΩ

ω2
0 −Ω2

)

and
xh(t) = C e−βt cos(νt) +D e−βt sin(νt) ,

with ν =
√

ω2
0 − β2.

In our case, Ω = ω0, in which case A = (2βω0)
−1 and δ = 1

2π. Thus, the most general
solution is

x(t) = C e−βt cos(νt) +D e−βt sin(νt) +
f0

2βω0
sin(ω0t) .

(b) We determine the constants C and D by the boundary conditions on x(0) and ẋ(0):

x(0) = C , ẋ(0) = −βC + νD +
f0
2β

.

Thus,

C = x(0) , D =
β

ν
x(0) +

1

ν
ẋ(0) −

f0
2βν

.

(c) From x(0) = 0 we obtain C = 0. The constant D is then determined by the condition
at time t = T = 1

6π.

Note that ν =
√

ω2
0 − β2 = 3.0 s−1. Thus, with T = 1

6π, we have νT = 1
2π, and

x(T ) = D e−βT +
f0

2βω0
sin(ω0T ) .

This determines D:

D = −
f0

2βω0
eβT sin(ω0T ) .
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We now can write

ẋ(0) = νD +
f0
2β

=
f0
2β

(

1−
ν

ω0
eβT sin(ω0T )

)

=
(

1− 3
10 e

2π/3
)

cm/s .

Numerically, the value is ẋ(0) ≈ 0.145 cm/s .
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