
PHYSICS 110A : MECHANICS 1
PROBLEM SET #3 SOLUTIONS

There are four problems in all. Problems 1 and 2 constitute a practice midterm exam.

[1] A particle of mass m moves in the one-dimensional potential

U(x) =
U0

a4
(

x2 − a2
)2

. (1)

(a) Sketch U(x). Identify the location(s) of any local minima and/or maxima, and be sure
that your sketch shows the proper behavior as x → ±∞.
[15 points]

(b) Sketch a representative set of phase curves. Be sure to sketch any separatrices which
exist, and identify their energies. Also sketch all the phase curves for motions with total
energy E = 1

2 U0. Do the same for E = 2U0.
[15 points]

(c) The phase space dynamics are written as ϕ̇ = V (ϕ), where ϕ =

(

x
ẋ

)

. Find the upper

and lower components of the vector field V .
[10 points]

(d) Derive an expression for the period T of the motion when the system exhibits small
oscillations about a potential minimum.
[10 points]

Solution :

(a) Clearly the minima lie at x = ±a and there is a local maximum at x = 0.

(b) See Fig. 1 for the phase curves. Clearly U(±a) = 0 is the minimum of the potential,

and U(0) = U0 is the local maximum and the energy of the separatrix. Thus, E = 1
2 U0 cuts

through the potential in both wells, and the phase curves at this energy form two disjoint
sets. For E < U0 there are four turning points, at

x1,− = −a

√

1 +

√

E

U0
, x1,+ = −a

√

1−
√

E

U0

and

x2,− = a

√

1−
√

E

U0
, x2,+ = a

√

1 +

√

E

U0

For E = 2U0, the energy is above that of the separatrix, and there are only two turning

points, x1,− and x2,+. The phase curve is then connected.

(c) From mẍ = −U ′(x) we have

d

dt

(

x
ẋ

)

=

(

ẋ
− 1

m U ′(x)

)

=

(

ẋ

− 4U0

ma4
x (x2 − a2)

)

. (2)
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Figure 1: Sketch of the double well potential U(x) = (U0/a
4)(x2−a2)2, here with distances

in units of a, and associated phase curves. The separatrix is the phase curve which runs
through the origin. Shown in red is the phase curve for U = 1

2 U0, consisting of two deformed
ellipses. For U = 2U0, the phase curve is connected, lying outside the separatrix.

(d) Set x = ±a+ η and Taylor expand:

U(±a+ η) =
4U0

a2
η2 +O(η3) . (3)

Equating this with 1
2k η

2, we have the effective spring constant k = 8U0/a
2, and the small

oscillation frequency

ω0 =

√

k

m
=

√

8U0

ma2
. (4)

The period is 2π/ω0.
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[2] An R-L-C circuit is shown in fig. 2. The resistive element is a light bulb. The inductance
is L = 400µH; the capacitance is C = 1µF; the resistance is R = 32Ω. The voltage V (t)

oscillates sinusoidally, with V (t) = V0 cos(ωt), where V0 = 4V. In this problem, you may
neglect all transients; we are interested in the late time, steady state operation of this
circuit. Recall the relevant MKS units:

1Ω = 1V · s /C , 1F = 1C /V , 1H = 1V · s2/C .

Figure 2: An R-L-C circuit in which the resistive element is a light bulb.

(a) Is this circuit underdamped or overdamped? Why?
[10 points]

(b) Suppose the bulb will only emit light when the average power dissipated by the bulb is

greater than a threshold P
th
= 2

9 W . For fixed V0 = 4V, find the frequency range for ω over
which the bulb emits light. Recall that the instantaneous power dissipated by a resistor is
PR(t) = I2(t)R. (Average this over a cycle to get the average power dissipated.)
[20 points]

(c) Neglecting transients, compare the expressions for the instantaneous power supplied

by the voltage source, PV (t), and the power dissipated by the resistor PR(t) = I2(t)R. If

PV (t) 6= PR(t), where does the power extra power go or come from? What can you say

about the averages of PV and PR(t) over a cycle? Explain your answer.
[20 points]

(d) What is the maximum charge Q
max

on the capacitor plate if ω = 3000 s−1?
[100 quatloos extra credit]
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Solution :

(a) We have

ω0 = (LC)−1/2 = 5× 104 s−1 , β =
R

2L
= 4× 104 s−1 .

Thus, ω2
0 > β2 and the circuit is underdamped .

(b) The charge on the capacitor plate obeys the ODE

L Q̈+R Q̇+
Q

C
= V (t) .

The solution is

Q(t) = Qhom(t) +A(ω)
V0

L
cos

(

ωt− δ(ω)
)

,

with

A(ω) =
[

(ω2
0 − ω2)2 + 4β2ω2

]−1/2
, δ(ω) = tan−1

(

2βω

ω2
0 − ω2

)

.

Thus, ignoring the transients, the power dissipated by the bulb is

PR(t) = Q̇2(t)R = ω2A2(ω)
V 2
0 R

L2
sin2

(

ωt− δ(ω)
)

.

Averaging over a period, we have 〈 sin2(ωt− δ) 〉 = 1
2 , so

〈PR 〉 = ω2A2(ω)
V 2
0 R

2L2
=

V 2
0

2R
· 4β2ω2

(ω2
0 − ω2)2 + 4β2ω2

.

Now V 2
0 /2R = 1

4 W. So Pth = αV 2
0 /2R, with α = 8

9 . We then set 〈PR〉 = Pth, whence

(1− α) · 4β2ω2 = α (ω2
0 − ω2)2 .

The solutions are

ω± = ±
√

1− α

α
β +

√

(

1− α

α

)

β2 + ω2
0 =

(

3
√
3±

√
2
)

× 1000 s−1 .

So light is emitted for ω ∈ (ω−, ω+).

(c) The instantaneous power supplied by the voltage source is

PV (t) = V (t) I(t) = −ωA
V 2
0

L
sin(ωt− δ) cos(ωt)

= ωA
V 2
0

2L

(

sin δ − sin(2ωt− δ)
)

.

As we have seen, the power dissipated by the bulb is

PR(t) = ω2A2 V
2
0 R

L2
sin2(ωt− δ) .
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These two quantities are not identical, but they do have identical time averages over one
cycle:

〈PV (t) 〉 = 〈PR(t) 〉 =
V 2
0

2R
· 4β2 ω2A2(ω) .

Energy conservation means
PV (t) = PR(t) + Ė(t) ,

where

E(t) =
LQ̇2

2
+

Q2

2C

is the energy in the inductor and capacitor. Since Q(t) is periodic, the average of Ė over a

cycle must vanish, which guarantees 〈PV (t) 〉 = 〈PR(t) 〉.

(d) Kirchoff’s law gives for this circuit the equation

Q̈+ 2β Q̇+ ω2
0 Q =

V0

L
cos(ωt) ,

with the solution

Q(t) = Qhom(t) +A(ω)
V0

L
cos

(

ωt− δ(ω)
)

,

where Qhom(t) is the homogeneous solution, i.e. the transient which we ignore, and

A(ω) =
[

(ω2
0 − ω2)2 + 4β2ω2

]−1/2
, δ(ω) = tan−1

(

2βω

ω2
0 − ω2

)

.

Then

Qmax = A(ω)
V0

L
.

Plugging in ω = 3000 s−1, we have

A(ω) =
[

(52 − 32)2 + 4 · 42 · 32
]−1/2 × 10−3 s2 =

1

8
√
13

× 10−3 s2 .

Since V0/L = 104 C/s2, we have

Qmax =
5

4
√
13

C = 0.347C .

[3] The potential energy of two atoms in a molecule can sometimes be approximated by the
Morse function,

U(r) = A

[

(

e(R−r)/λ − 1
)2

− 1

]

,

where r is the interatomic distance and A, R, and λ are positive constants.

(a) Sketch the function U(r) for 0 < r < ∞.

5



(b) Find the equilibrium separation r∗ at which U(r) is minimized.

(c) Assume the motion is one-dimensional. Writing r = r∗+x, so that x is the displacement
relative to equilibrium, show that U(r) takes the form U(r∗ + x) = U0 +

1
2kx

2 for small |x|,
so that Hooke’s law applies. What do we mean by ‘small’?

(d) What is the effective force constant k?

Solution :

Figure 3: Sketch of Morse potential for A = R = λ = 1.

(a) See fig. 3.

(b) The equilibrium separation r∗ is the solution to the equation U ′(r∗) = 0. From

U ′(r) = −2A

λ
e(R−r)/λ

(

e(R−r)/λ − 1
)

we obtain r∗ = R.

(c) now we expand U (r) as a Taylor series about r = r∗ = R:

U(R + x) = A
(

e−x/λ − 1
)2 −A

= A
(

− x

λ
+

x2

2λ2
+ . . .

)2
−A

= −A+A
x2

λ2
−A

x3

λ3
+O(x4) ,

from which we determine U0 = −A and k = U ′′(R) = 2A/λ2. By ’small’ we mean that
the third order term in the Taylor expansion is small in comparison with the second order
term, which evidently requires |x| ≪ λ.

(d) We have k = U ′′(R) = 2A/λ2.
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[4] An undamped oscillator has a period T = 1.000 s. Some damping is then introduced,
causing the period of the damped oscillations to increase to T ′ = 1.001 s.

(a) What is the damping coefficient β?

(b) By what factor will the oscillation amplitude be decreased after ten cycles?

(c) Which effect of the damping would be more noticeable: the change in the period, or the
change in the amplitude?

Solution :

(a) We have ω0 = 2π/T and T ′ = 2π/ν = 2π/
√

ω2
0 − β2. Thus,

β = ω0

√

1−
(

T

T ′

)2

= 0.281 s−1 .

(b) The amplitude reduction is

exp(−10βT ′) = 0.060 .

(c) The amplitude is exponentially attenuated and after ten cycles is affected much more
than the frequency.
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