PHYSICS 110A : MECHANICS 1 PROBLEM SET #4 SOLUTIONS

[1] An electrical circuit consists of a resistor R and a capacitor C connected in series to an emf $V(t)$.

(a) Write down the differential equation for the charge $Q(t)$ on one of the capacitor plates.

(b) Solve the homogeneous equation for $Q(t)$, *i.e.* find $Q(t)$ when $V(t) = 0$ subject to arbitrary initial value of $Q(0)$.

(c) Solve for the current $I(t)$ flowing in the circuit when $V(t) = V_0 \Theta(t)$. Assume $Q(0) = 0$.

(d) Solve for $I(t)$ when $V(t) = V_0 \sin(\Omega t) \Theta(t)$ and $Q(0)=0$.

For parts (c) and (d), you should use the Green's function formalism in the time domain. The following integral may prove useful:

$$
\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{e^{-i\omega s}}{1 - i\omega \tau} = \frac{1}{\tau} e^{-s/\tau} \Theta(s) .
$$

Solution :

(a) Kirchoff's law applied to the circuit yields $RI + C^{-1}Q = V(t)$, *i.e.*

$$
\dot{Q} + \frac{Q}{RC} = \frac{V(t)}{R} .
$$

We identify $RC \equiv RC$ as the time constant.

(b) Solving when $V(t) = 0$, we obtain

$$
Q(t) = Q(0) e^{-t/RC} .
$$

(c) Taking the Fourier transform of the equation in part (a), we have

$$
\hat{Q}(\omega) = \frac{C\hat{V}(\omega)}{1 - i\omega RC} .
$$

Thus, using the integral given in the problem statement, we have

$$
Q(t) = Q(0) e^{-t/RC} + \frac{1}{R} \int_{0}^{t} dt' V(t') e^{-(t-t')/RC} .
$$

For $V(t') = V_0 \Theta(t')$ and $Q(0) = 0$, we have

$$
Q(t) = CV_0 \left(1 - e^{-t/RC} \right) \Theta(t) .
$$

The current is then

$$
I(t) = \dot{Q}(t) = \frac{V_0}{R} e^{-t/RC} \Theta(t) .
$$

Another approach is to use an integrating factor:

$$
e^{-t/RC} \frac{d}{dt} \left[Q(t) e^{t/RC} \right] = \frac{V(t)}{R} \quad \Rightarrow \quad \frac{d}{dt} \left[Q(t) e^{t/RC} \right] = \frac{V(t)}{R} e^{t/RC} \quad .
$$

Now integrate:

$$
\int_{0}^{t} dt' \frac{d}{dt'} \left[Q(t') e^{t'/RC} \right] = \frac{1}{R} \int_{0}^{t} dt' V(t') e^{t/RC} = \frac{V_0}{R} \int_{0}^{t} dt' e^{t/RC}
$$

$$
Q(t) e^{t/RC} - Q(0) = CV_0 \left(e^{t/RC} - 1 \right) \Theta(t) ,
$$

which yields

$$
Q(t) = Q(0) e^{-t/RC} + CV_0 \left(1 - e^{-t/RC} \right) \Theta(t) .
$$

(d) We have

$$
Q(t) = \frac{V_0}{R} \int_0^t dt' \sin(\Omega t') e^{-(t-t')/\tau}
$$

= $\frac{V_0}{R} e^{-t/\tau} \operatorname{Im} \int_0^t dt' e^{(\tau^{-1} + i\Omega) t'}$
= $CV_0 \operatorname{Im} \left\{ \frac{1}{1 + i\Omega \tau} \left[e^{i\Omega t} - e^{-t/\tau} \right] \right\}$
= $CV_0 \left\{ \frac{\sin(\Omega t) - \Omega t \cos(\Omega t)}{1 + \Omega^2 \tau^2} + \frac{\Omega \tau}{1 + \Omega^2 \tau^2} e^{-t/\tau} \right\}$.

[2] Do either of the following:

(a) A forced, damped harmonic oscillator obeys the equation of motion

$$
\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f_0 e^{-\gamma t} \Theta(t) .
$$

Compute $x(t)$ assuming $x(0) = \dot{x}(0) = 0$.

(b) A forced, damped harmonic oscillator obeys the equation of motion

$$
\left(\frac{d}{dt} + \alpha\right) \left(\frac{d}{dt} + \beta\right) x = f_0 e^{-\gamma t} \Theta(t) .
$$

Compute $x(t)$ assuming $x(0) = \dot{x}(0) = 0$.

Solution :

(a) The Green's function is

$$
G(s) = \nu^{-1} e^{-\beta s} \sin(\nu s) \Theta(s) .
$$

Thus,

$$
x(t) = \frac{f_0}{\nu} \int_0^t dt' e^{-\beta(t-t')} \sin(\nu(t-t')) e^{-\gamma t'}
$$

= $\frac{f_0}{\nu} e^{-\beta t} \text{Im} \left\{ e^{i\nu t} \int_0^t dt' e^{\beta t'} e^{-i\nu t'} e^{-\gamma t'} \right\}$
= $\frac{f_0}{\nu} \text{Im} \left\{ \frac{e^{i\nu t}}{\beta - \gamma - i\nu} \left[e^{(\beta - \gamma - i\nu)t} - 1 \right] \right\}$
= $\frac{f_0}{\nu} \left\{ \frac{\nu e^{-\gamma t} - \left[\nu \cos(\nu t) + (\beta - \gamma) \sin(\nu t) \right] e^{-\beta t}}{(\beta - \gamma)^2 + \nu^2} \right\}$

(b) In fact the two equations are equivalent provided we identify $2\beta = \alpha + \tilde{\beta}$ and $\omega_0^2 = \alpha \tilde{\beta}$, where $\tilde{\beta}$ is our temporarily renamed β from part (b). But let's try a different solution. At the level of differential operators, we have

.

.

.

$$
\frac{d}{dt} + \alpha = e^{-\alpha t} \frac{d}{dt} e^{\alpha t} \quad ,
$$

which means

$$
\left(\frac{d}{dt} + \alpha\right)\left(\frac{d}{dt} + \beta\right)x = e^{-\alpha t} \frac{d}{dt} \left[e^{\alpha t} \left(\dot{x} + \beta x\right)\right]
$$

Thus, our second order ODE may be recast as

$$
\frac{d}{dt}\bigg[e^{\alpha t}(\dot{x}+\beta x)\bigg] = f_0 e^{(\alpha-\gamma)t} \Theta(t) .
$$

Now replace t in the above equation by t' and integrate over the interval $t' \in [0, t]$, resulting in

$$
e^{\alpha t} \Big(\dot{x}(t) + \beta x(t)\Big) - \Big(\dot{x}(0) + \beta x(0)\Big) = f_0 \int_0^t dt' e^{(\alpha - \gamma)t'} = \frac{f_0}{\alpha - \gamma} \Big(e^{(\alpha - \gamma)t} - 1\Big) .
$$

This is equivalent to

$$
e^{-\beta t} \frac{d}{dx} \left[e^{\beta t} x(t) \right] = \dot{x}(t) + \beta x(t)
$$

= $\left(\beta x(0) + \dot{x}(0) \right) e^{-\alpha t} + \frac{f_0}{\alpha - \gamma} \left(e^{-\gamma t} - e^{-\alpha t} \right)$

Now multiply both sides by $e^{\beta t}$, send $t \to t'$, and then integrate over $t' \in [0, t]$, yielding

$$
e^{\beta t} x(t) - x(0) = \left(\beta x(0) + \dot{x}(0)\right) \frac{e^{(\beta - \alpha)t} - 1}{\beta - \alpha} + \frac{f_0}{\alpha - \gamma} \left[\frac{e^{(\beta - \gamma)t} - 1}{\beta - \gamma}\right] - \frac{f_0}{\alpha - \gamma} \left[\frac{e^{(\beta - \alpha)t} - 1}{\beta - \alpha}\right],
$$

which says

$$
x(t) = \left(\frac{\beta e^{-\alpha t} - \alpha e^{\beta t}}{\beta - \alpha}\right) x(0) + \frac{e^{-\alpha t} - e^{-\beta t}}{\beta - \alpha} \dot{x}(0)
$$

$$
- \frac{f_0}{(\beta - \alpha)(\gamma - \beta)(\alpha - \gamma)} \left[(\gamma - \beta) e^{-\alpha t} + (\alpha - \gamma) e^{-\beta t} + (\beta - \alpha) e^{-\gamma t} \right]
$$

.

Using L'Hospital's rule, one can check that the RHS remains finite in the limits $\alpha \to \beta$, $\beta \to \gamma$, and $\gamma \to \alpha$. With the initial conditions $x(0) = \dot{x}(0) = 0$ we have

$$
x(t) = -\frac{f_0}{(\beta - \alpha)(\gamma - \beta)(\alpha - \gamma)} \left[(\gamma - \beta) e^{-\alpha t} + (\alpha - \gamma) e^{-\beta t} + (\beta - \alpha) e^{-\gamma t} \right] .
$$