
PHYSICS 110A : MECHANICS 1
PROBLEM SET #5 SOLUTIONS

[1] Extremize the functional

F
[

y(x)
]

=

ln 2
∫

0

dx
(

1

2
y′

2
+ ayy′ + 1

2
y2 + y

)

subject to the boundary conditions y(0) = y
0
and y(ln 2) = y

1
.

Solution:

The variation of F is

δF =
(

y′ + ay
)

δy

∣

∣

∣

∣

ln 2

0

+

ln 2
∫

0

dx
(

− y′′ + y + 1
)

δy .

Note that a is the coefficient of a total derivative, hence it does not appear in the kernel
δF/δy(x) for 0 < x < ln 2. We now set

y′′ = y + 1 =⇒ y(x) = Aex +B e−x
− 1 ,

with A and B as yet unknown constants. The boundary conditions yield

y(0) = A+B − 1 = y0

y(ln 2) = 2A+ 1

2
B − 1 = y1 ,

the solution of which is

A = 1

3
−

1

3
y0 +

2

3
y1 , B = 2

3
+ 4

3
y0 −

2

3
y1 .

Working out the integral, we obtain the extremal value of F as

F ∗ = 3

2
(1 + a)A2 + 3

8
(1− a)B2

− aA+ 1

2
aB −

1

2
ln 2 ,

with A and B given above.

[2] Extremize the functional

F
[

y(x), z(x)
]

=

π
2

∫

0

dx
(

y′
2
+ z′

2
+ 2yz

)

subject to the boundary conditions

y(0) = z(0) = 0 , y(π
2
) = z(π

2
) = 1 .
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Solution:

We have

δF =
(

2y′ δy + 2z′ δz
)

∣

∣

∣

∣

π/2

0

+

π
2

∫

0

dx
(

2
(

z − y′′
)

δy + 2
(

y − z′′
)

δz
)

Since the values of y(x) and z(x) are fixed at the endpoints, the first term above vanishes.
Setting δF = 0 then yields the coupled ODEs

y′′ = z , z′′ = y .

Taking two derivatives of the first equation, we arrive at

y′′′′ = y ,

which has four solutions. Thus, we find

y(x) = A cosh(x) +B sinh(x) + C cos(x) +D sin(x)

z(x) = A cosh(x) +B sinh(x)− C cos(x)−D sin(x) .

We now invoke the boundary conditions, which yield

A+ C = 0

A− C = 0

A cosh
(

π
2

)

+B sinh
(

π
2

)

+D = 1

A cosh
(

π
2

)

+B sinh
(

π
2

)

−D = 1 ,

the solution to which is A = C = D = 0 and B = csch
(

π
2

)

. Thus,

y(x) = z(x) =
sinhx

sinh
(

π
2

) .

The integrand of F is then

y′
2
+ z′

2
+ 2yz =

2cosh(2x)

sinh2
(

π
2

) ,

and the extremal value of F is

F =

π/2
∫

0

dx
2 cosh(2x)

sinh2
(

π
2

) = 2ctnh
(

π
2

)

.

[3] Derive the equations of motion for the Lagrangian

L = eγt
[

1

2
mq̇2 − 1

2
kq2

]

,
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where γ > 0. Compare with known systems. Rewrite the Lagrangian in terms of the new
variable Q ≡ q exp(γt/2), and from this obtain a constant of the motion.

Solution:

We have

p =
∂L

∂q̇
= mq̇ eγt , F =

∂L

∂q
= −kq eγt .

Newton then says
ṗ = F ⇒ mq̈ + γmq̇ = −kq ,

which is the equation of a damped harmonic oscillator. The phase curves all collapse to the
origin, which is a stable spiral if γ < 2

√

k/m and a stable node if γ > 2
√

k/m.

In general, there is no reason for there to be a conserved quantity in a dissipative system
like this, but consider the coordinate transformation Q ≡ q exp(γt/2), which is inverted
trivially to yield q = Q exp(−γt/2). We have

q̇ =
(

Q̇−
1

2
γ Q

)

e−γt/2

and therefore

L = 1

2
m

(

Q̇−
1

2
γ Q

)2
−

1

2
kQ2

= 1

2
mQ̇2

−
1

2
γ mQQ̇−

1

2

(

k −
1

4
mγ2

)

Q2 .

Since L(Q, Q̇, t) is independent of t, we have that H is conserved:

H = Q̇
∂L

∂Q̇
− L

= 1

2
mQ̇2 + 1

2

(

k −
1

4
mγ2

)

Q2 .

=

[

1

2
mq̇2 + 1

2
γmqq̇ + 1

2
kq2

]

eγt .
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