
PHYSICS 110A : MECHANICS 1
PROBLEM SET #8 SOLUTIONS

[1] Starting with the Hamiltonian for a charged particle in an electromagnetic field,

H =
1

2m

(

p− q

c
A(x, t)

)2
+ qφ(x, t) ,

use Hamilton’s equations of motion to derive the Lorentz force law.

Solution :

We have

ẋi = +
∂H

∂pi
=

1

m

(

pi −
q

c
Ai(x, t)

)

ṗi = −∂H

∂xi
= −q

∂φ(x, t)

∂xi
+

q

mc

∑

j

mẋi
︷ ︸︸ ︷
(

pj −
q

c
Aj(x, t)

) ∂Aj(x, t)

∂xi
.

Now take the time derivative of ẋi and multiply by m:

mẍi = ṗi −
q

c

dAi

dt
= ṗi −

q

c

(
∂Ai

∂t
+
∑

j

∂Ai

∂xj
ẋj

)

= −q
∂φ

∂xi
− q

c

∂Ai

∂t
+

q

c

∑

j

∑

k ǫijkBk
︷ ︸︸ ︷
(
∂Aj

∂xi
− ∂Ai

∂xj

)

ẋj

= −q
∂φ

∂xi
− q

c

∂Ai

∂t
+

q

c

∑

j,k

ǫijk ẋjBk ,

which is the Lorentz force law mẍ = qE + q
c ẋ×B in component notation.

[2] A particle moves in an elliptical orbit in an inverse square force field. If the ratio of its
maximum angular velocity to its minimum angular velocity is λ, show that the orbit has
eccentricity

ε =

√
λ− 1√
λ+ 1

.

Solution :

The shape of the orbit is given by

r(φ) =
r0

1 + ε cosφ
.
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Thus, rmax = r0/(1 − ε) and rmin = r0/(1 + ε). We also know that ℓ = mr2φ̇ is conserved,
hence φ̇ = ℓ/mr2. Accordingly,

λ =
φ̇max

φ̇min

=
ℓ/mr2min

ℓ/mr2max

=
r2max

r2min

=
(1 + ε)2

(1− ε)2
,

and thus
1 + ε

1− ε
=

√
λ ⇒ ε =

√
λ− 1√
λ+ 1

.

[3] Two point particles of masses m1 and m2 interact via the central potential

U(r) = U0 ln

(
r2

r2 + b2

)

,

where b is a constant with dimensions of length.

(a) For what values of the relative angular momentum ℓ does a circular orbit exist? Find

the radius r0 of the circular orbit. Is it stable or unstable?

(b) For the case where a circular orbit exists, sketch the phase curves for the radial motion
in the (r, ṙ) half-plane. Identify the energy ranges for bound and unbound orbits.

(c) Suppose the orbit is nearly circular, with r = r0 + η, where |η| ≪ r0. Find the equation
for the shape η(φ) of the perturbation.

(d) What is the angle ∆φ through which periapsis changes each cycle? For which value(s)
of ℓ does the perturbed orbit not precess?

Solution :

(a) The effective potential is

Ueff(r) =
ℓ2

2µr2
+ U(r) =

ℓ2

2µr2
+ U0 ln

(
r2

r2 + b2

)

.

where µ = m1m2/(m1 + m1) is the reduced mass. For a circular orbit, we must have
U ′

eff(r) = 0, or
l2

µr3
= U ′(r) =

2U0b
2

r (r2 + b2)
.

The solution is

r20 =
b2ℓ2

2µb2U0 − ℓ2
.

Since r20 > 0, the condition on ℓ is

ℓ < ℓc ≡
√

2µb2U0 .
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For large r, we have

Ueff(r) =

(
ℓ2

2µ
− U0 b

2

)

· 1

r2
+O(r−4) .

Thus, for ℓ < ℓc the effective potential is negative for sufficiently large values of r. Thus,
over the range ℓ < ℓc, we must have Ueff,min < 0, which must be a global minimum, since

Ueff(0
+) = ∞ and Ueff(∞) = 0. Therefore, the circular orbit is stable whenever it exists.

(b) Let α = ℓ2/ℓ2c . The effective potential is then

Ueff(r) = U0 f(r/b) ,

where the dimensionless effective potential is

f(s) =
α

s2
− ln(1 + s−2) .

The phase curves are plotted in Fig. 1.

(c) The energy is

E = 1
2µṙ

2 + Ueff(r)

=
ℓ2

2µr4

(
dr

dφ

)2

+ Ueff(r) ,

Figure 1: Phase curves for the scaled effective potential f(s) = α s−2 − ln(1 + s−2), with
α = ℓ2/ℓ2c = 2−1/2. The dimensionless time variable is τ = t ·

√

U0/mb2.
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where we’ve used ṙ = φ̇ r′ along with ℓ = µr2φ̇. Writing r = r0 + η and differentiating E
with respect to φ, we find

η′′ = −β2η , β2 =
µr40
ℓ2

U ′′

eff(r0) .

For our potential, we have Ueff(r) = U0 f(s) where s = r/b. Note that

f ′(s) = −2α

s3
+

2

s
− 2s

s2 + 1

f ′′(s) =
6α

s4
− 2

s2
− 2

s2 + 1
+

4s2

(s2 + 1)2
.

Setting f ′(s) = 0 yields

s20 =
α

1− α
and furthermore we have

f ′′(s0) =
4(1− α)3

α
.

We now have U ′′

eff(r0) = U0 b
−2 f ′′(s0) and thus

β2 =
µb4s40
ℓ2

× U0 b
−2 f ′′(s0) = 2(1− α) .

The solution is
η(φ) = A cos(βφ+ δ) .

where A and δ are constants.

(d) The change of periapsis per cycle is

∆φ = 2π
(
β−1 − 1

)
.

If β > 1 then ∆φ < 0 and periapsis advances each cycle (i.e.it comes sooner with every
cycle). If β < 1 then ∆φ > 0 and periapsis recedes. For β = 1, which means ℓ =

√

µb2U0,
there is no precession and ∆φ = 0.

[4] Two objects of masses m1 and m2 move under the influence of a central potential

U = k
∣
∣r1 − r2

∣
∣1/4.

(a) Sketch the effective potential Ueff(r) and the phase curves for the radial motion. Identify
for which energies the motion is bounded.

(b) What is the radius r0 of the circular orbit? Is it stable or unstable? Why?

(c) For small perturbations about a circular orbit, the radial coordinate oscillates between
two values. Suppose we compare two systems, with ℓ′/ℓ = 2, but µ′ = µ and k′ = k. What
is the ratio ω′/ω of their frequencies of small radial oscillations?

(d) Find the equation of the shape of the slightly perturbed circular orbit: r(φ) = r0+η(φ).
That is, find η(φ). Sketch the shape of the orbit.

(e) What value of n would result in a perturbed orbit shaped like that in fig. 4?
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Solution :

(a) The effective potential is

Ueff(r) =
ℓ2

2µr2
+ krn ,

with n = 1
4 . In sketching the effective potential, I have rendered it in dimensionless form,

Ueff(r) = E0 Ueff(r/r0) ,

where r0 = (ℓ2/nkµ)(n+2)−1

and E0 =
(
1
2 + 1

n

)
ℓ2/µr20, which are obtained from the results

Figure 2: The effective Ueff(r) = E0 Ueff(r/r0), where r0 and E0 are the radius and energy
of the circular orbit.
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of part (b). One then finds

Ueff(x) =
nx−2 + 2xn

n+ 2
.

Although it is not obvious from the detailed sketch in fig. 2, the effective potential does
diverge, albeit slowly, for r → ∞. Clearly it also diverges for r → 0. Thus, the relative
coordinate motion is bounded for all energies; the allowed energies are E ≥ E0 .

(b) For the general power law potential U(r) = krn, with nk > 0 (attractive force), setting

U ′

eff(r0) = 0 yields

− ℓ2

µr30
+ nkrn−1

0 = 0 .

Thus,

r0 =

(
ℓ2

nkµ

)1/(n+2)

=

(
4ℓ2

kµ

)4

9

.

The orbit r(t) = r0 is stable because the effective potential has a local minimum at r = r0,

i.e. U ′′

eff(r0) > 0. This is obvious from inspection of the graph of Ueff(r) but can also be
computed explicitly:

U ′′

eff(r0) =
3ℓ2

µr40
+ n(n− 1)krn0 = (n+ 2)

ℓ2

µr40
.

Thus, provided n > −2 we have U ′′

eff(r0) > 0.

(c) From the radial coordinate equation µr̈ = −U ′

eff(r), we expand r = r0 + η and find

µη̈ = −U ′′

eff(r0) η +O(η2) .

The radial oscillation frequency is then

ω = (n+ 2)1/2
ℓ

µr20
= (n+ 2)1/2 n2/(n+2) k2/(n+2) µ−n/(n+2) ℓ(n−2)/(n+2) .

Figure 3: Radial oscillations with β = 3
2

.

6



Figure 4: Closed precession in a central potential U(r) = krn.

The ℓ dependence is what is key here. Clearly ω′/ω = (ℓ′/ℓ)(n−2)/(n+2). In our case, with
n = 1

4 , we have ω ∝ ℓ−7/9 and thus ω′/ω = 2−7/9.

(d) We have that η(φ) = η0 cos(βφ+ δ0), with

β =
ω

φ̇
=

µr20
ℓ

· ω =
√
n+ 2 .

With n = 1
4 , we have β = 3

2 . Thus, the radial coordinate makes three oscillations for every
two rotations. The situation is depicted in fig. 3.

(e) Clearly β =
√
n+ 2 = 4, in order that η(φ) = η0 cos(βφ + δ0) executes four complete

periods over the interval φ ∈ [0, 2π]. This means n = 14.
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