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Chapter 2

Linear Oscillations

2.1 Harmonic Motion

Harmonic motion is ubiquitous in physics. The reason is that any potential energy function, when
expanded in a Taylor series in the vicinity of a local minimum, is a harmonic function:

U(q) = U(q∗) +

N∑

j=1

∇U(q∗)=0
︷ ︸︸ ︷

∂U

∂qj

∣
∣
∣
∣
q=q∗

(qj − q∗j ) +
1

2

N∑

j,k=1

∂2U

∂qj ∂qk

∣
∣
∣
∣
q=q∗

(qj − q∗j ) (qk − q∗k) + . . . , (2.1)

where q = {q1, . . . , qN} are the generalized coordinates of a system of point particles – more on this when
we discuss Lagrangians. In one dimension, we have one coordinate, which we shall call x, and we
expand the potential U(x) about an extremum using Taylor’s theorem, viz.

U(x) = U(x∗) + 1
2 U

′′(x∗) (x − x∗)2 + . . . . (2.2)

Provided the deviation η = x − x∗ is small enough in magnitude, the remaining terms in the Taylor
expansion may be ignored. Newton’s Second Law then gives

mη̈ = −U ′′(x∗) η +O(η2) . (2.3)

This, to lowest order, is the equation of motion for a harmonic oscillator. If U ′′(x∗) > 0, the equilibrium
point x = x∗ is stable, since for small deviations from equilibrium the restoring force pushes the system
back toward the equilibrium point. When U ′′(x∗) < 0, the equilibrium is unstable, and the forces push
one further away from equilibrium.

2.2 Damped Harmonic Oscillator

In the real world, there are frictional forces, which we here will approximate by F = −γv. We begin
with the homogeneous equation for a damped harmonic oscillator,

d2x

dt2
+ 2β

dx

dt
+ ω2

0 x = 0 , (2.4)

1



2 CHAPTER 2. LINEAR OSCILLATIONS

where γ = 2βm. To solve, write x(t) =
∑

nCn e−iωnt. This renders the differential equation 2.4 an

algebraic equation for the two eigenfrequencies ωi, each of which must satisfy

ω2 + 2iβω − ω2
0 = 0 , (2.5)

hence
ω
±
= −iβ ± (ω2

0 − β2)1/2 . (2.6)

The most general solution to eqn. 2.4 is then

x(t) = C+ e−iω+t + C− e−iω
−
t (2.7)

where C
±

are arbitrary constants. Notice that the eigenfrequencies are in general complex, with a neg-

ative imaginary part (so long as the damping coefficient β is positive). Thus e−iω
±
t decays to zero as

t → ∞.

2.2.1 Classes of damped harmonic motion

We identify three classes of motion:

Underdamped motion (ω2
0 > β2)

The solution for underdamped motion is

x(t) = A cos(νt) e−βt +B sin(νt) e−βt

ẋ(t) = (−βA+ νB) cos(νt) e−βt − (νA+ βB) sin(νt) e−βt ,
(2.8)

where ν =
√

ω2
0 − β2, and where A and B are constants determined by initial conditions,

x0 = A , ẋ0 = −βA+ νB .

Simultaneously solving these two equations in the two unknowns yields

A = x0 , B =
β

ν
x0 +

1

ν
ẋ0 . (2.9)

Overdamped motion (ω2
0 < β2)

The solution in the case of overdamped motion is

x(t) = C cosh(λt) e−βt +D sinh(λt) e−βt

ẋ(t) = (−βC + λD) cosh(λt) e−βt + (λC − βD) sinh(λt) e−βt ,
(2.10)

where λ =
√

β2 − ω2
0 and where C and D are constants determined by the initial conditions

x0 = C , ẋ0 = −βC + λD . (2.11)

Solving for the two unknowns, we have

C = x0 , D =
β

λ
x0 +

1

λ
ẋ0 . (2.12)
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Figure 2.1: Three classifications of damped harmonic motion. The initial conditions are x(0) = 1,
ẋ(0) = 0.

Critically damped motion (ω2
0 = β2)

The solution in the case of critically damped motion is

x(t) = E e−βt + Ft e−βt

ẋ(t) = (−βE + F ) e−βt − βF eβt .
(2.13)

Thus, x0 = E and ẋ0 = −βE + F , and

E = x0 , F = ẋ0 + βx0 . (2.14)

The screen door analogy

The three types of behavior are depicted in fig. 2.1. To concretize these cases in one’s mind, it is helpful
to think of the case of a screen door or a shock absorber. If the hinges on the door are underdamped,
the door will swing back and forth (assuming it doesn’t have a rim which smacks into the door frame)
several times before coming to a stop. If the hinges are overdamped, the door may take a very long time



4 CHAPTER 2. LINEAR OSCILLATIONS

to close. To see this, note that for β ≫ ω0 we have

√

β2 − ω2
0 = β

(

1− ω2
0

β2

)1/2

= β − ω2
0

2β
− ω4

0

8β3
+ . . . , (2.15)

which leads to

iω+ = β −
√

β2 − ω2
0 =

ω2
0

2β
+

ω4
0

8β3
+ . . .

iω− = β +
√

β2 − ω2
0 = 2β − ω2

0

2β
−+ . . . .

(2.16)

Thus, we can write

x(t) = C e−t/τ1 +D e−t/τ2 , (2.17)

with

τ1 =
1

β −
√

β2 − ω2
0

≈ 2β

ω2
0

, τ2 =
1

β +
√

β2 − ω2
0

≈ 1

2β
. (2.18)

Thus x(t) is a sum of exponentials, with decay times τ1,2. For β ≫ ω0, we have that τ1 is much larger

than τ2 – the ratio is τ1/τ2 ≈ 4β2/ω2
0 ≫ 1. Thus, on time scales on the order of τ1, the second term

has completely damped away. The decay time τ1, though, is very long, since β is so large. So a highly
overdamped oscillator will take a very long time to come to equilbrium.

2.2.2 Remarks on the case of critical damping

Define the first order differential operator

Dt =
d

dt
+ β . (2.19)

The solution to Dt x(t) = 0 is x̃(t) = Ae−βt, where A is a constant. Note that the commutator of Dt and t
is unity:

[
Dt , t

]
= 1 , (2.20)

where [A,B] ≡ AB−BA. The simplest way to verify eqn. 2.20 is to compute its action upon an arbitrary
function f(t):

[
Dt , t

]
f(t) =

(
d

dt
+ β

)

t f(t)− t

(
d

dt
+ β

)

f(t)

=
d

dt

(
t f(t)

)
− t

d

dt
f(t) = f(t) .

(2.21)

We know that x(t) = x̃(t) = Ae−βt satisfies Dt x(t) = 0. Therefore

0 = Dt

[
Dt , t

]
x̃(t)

= D2
t

(

t x̃(t)
)

−Dt t

0
︷ ︸︸ ︷

Dt x̃(t)= D2
t

(

t x̃(t)
)

.

(2.22)
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Figure 2.2: Phase curves for the damped harmonic oscillator. Left panel: underdamped motion. Right
panel: overdamped motion. Note the nullclines along v = 0 and v = −(ω2

0/2β)x, which are shown as
dashed lines.

We already know that D2
t x̃(t) = DtDt x̃(t) = 0. The above equation establishes that the second inde-

pendent solution to the second order ODE D2
t x(t) = 0 is x(t) = t x̃(t). Indeed, we can keep going, and

show that
Dn

t

(

tn−1 x̃(t)
)

= 0 . (2.23)

Thus, the n independent solutions to the nth order ODE
(

d

dt
+ β

)n

x(t) = 0 (2.24)

are
xk(t) = Atk e−βt , k = 0, 1, . . . , n− 1 . (2.25)

2.2.3 Phase portraits for the damped harmonic oscillator

Expressed as a dynamical system, the equation of motion ẍ+ 2βẋ + ω2
0x = 0 is written as two coupled

first order ODEs, viz.

ẋ = v

v̇ = −ω2
0 x− 2βv .

(2.26)

In the theory of dynamical systems, a nullcline is a curve along which one component of the phase
space velocity ϕ̇ vanishes. In our case, there are two nullclines: ẋ = 0 and v̇ = 0. The equation of the
first nullcline, ẋ = 0, is simply v = 0, i.e. the first nullcline is the x-axis. The equation of the second
nullcline, v̇ = 0, is v = −(ω2

0/2β)x. This is a line which runs through the origin and has negative
slope. Everywhere along the first nullcline ẋ = 0, we have that ϕ̇ lies parallel to the v-axis. Similarly,
everywhere along the second nullcline v̇ = 0, we have that ϕ̇ lies parallel to the x-axis. The situation is
depicted in fig. 2.2.
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2.3 Damped Harmonic Oscillator with Forcing

When forced, the equation for the damped oscillator becomes

d2x

dt2
+ 2β

dx

dt
+ ω2

0 x = f(t) , (2.27)

where f(t) = F (t)/m. Since this equation is linear in x(t), we can, without loss of generality, restrict out
attention to harmonic forcing terms of the form

f(t) = f0 cos(Ωt+ ϕ0) = Re

[

f0 e
−iϕ0 e−iΩt

]

(2.28)

where Re stands for “real part”. Here, Ω is the forcing frequency.

Consider first the complex equation

d2z

dt2
+ 2β

dz

dt
+ ω2

0 z = f0 e
−iϕ0 e−iΩt . (2.29)

We try a solution z(t) = z0 e
−iΩt. Plugging in, we obtain the algebraic equation

z0 =
f0 e

−iϕ0

ω2
0 − 2iβΩ −Ω2

≡ A(Ω) eiδ(Ω) f0e
−iϕ0 . (2.30)

The amplitude A(Ω) and phase shift δ(Ω) are given by the equation

A(Ω) eiδ(Ω) =
1

ω2
0 − 2iβΩ −Ω2

. (2.31)

A basic fact of complex numbers:

1

a− ib
=

a+ ib

a2 + b2
=

ei tan
−1(b/a)

√
a2 + b2

. (2.32)

Thus,

A(Ω) =
(

(ω2
0 −Ω2)2 + 4β2Ω2

)−1/2
, δ(Ω) = tan−1

(
2βΩ

ω2
0 −Ω2

)

. (2.33)

Now since the coefficients β and ω2
0 are real, we can take the complex conjugate of eqn. 2.29, and write

z̈ + 2β ż + ω2
0 z = f0 e

−iϕ0 e−iΩt

z̈∗ + 2βż∗ + ω2
0 z

∗ = f0 e
+iϕ0 e+iΩt ,

(2.34)

where z∗ is the complex conjugate of z. We now add these two equations and divide by two to arrive at

ẍ+ 2β ẋ+ ω2
0 x = f0 cos(Ωt+ ϕ0) . (2.35)
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Figure 2.3: Amplitude and phase shift versus oscillator frequency (units of ω0) for β/ω0 values of 0.1
(red), 0.25 (magenta), 1.0 (green), and 2.0 (blue).

Therefore, the real, physical solution we seek is

xinh(t) = Re

[

A(Ω) eiδ(Ω) · f0 e−iϕ0 e−iΩt
]

= A(Ω) f0 cos
(
Ωt+ ϕ0 − δ(Ω)

)
.

(2.36)

The quantity A(Ω) is the amplitude of the response (in units of f0), while δ(Ω) is the (dimensionless)
phase lag (typically expressed in radians).

The maximum of the amplitude A(Ω) occurs when A′(Ω) = 0. From

dA

dΩ
= − 2Ω

[
A(Ω)

]3

(
Ω2 − ω2

0 + 2β2
)

, (2.37)

we conclude that A′(Ω) = 0 for Ω = 0 and for Ω = ΩR, where

ΩR =
√

ω2
0 − 2β2 . (2.38)

The solution at Ω = ΩR pertains only if ω2
0 > 2β2, of course, in which case Ω = 0 is a local minimum

and Ω = ΩR a local maximum. If ω2
0 < 2β2 there is only a local maximum, at Ω = 0. See fig. 2.3.

Since equation 2.27 is linear, we can add a solution to the homogeneous equation to xinh(t) and we will
still have a solution. Thus, the most general solution to eqn. 2.27 is Therefore, the real, physical solution
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we seek is

x(t) = xinh(t) + xhom(t)

= Re

[

A(Ω) eiδ(Ω) · f0 e−iϕ0 e−iΩt
]

+ C+ e−iω+t + C− e−iω
−
t

=

xinh(t)
︷ ︸︸ ︷

A(Ω) f0 cos
(
Ωt+ ϕ0 − δ(Ω)

)
+

xhom(t)
︷ ︸︸ ︷
{

C e−βt cos(νt) +De−βt sin(νt)

C e−βt cosh(λt) +D e−βt sinh(λt)
.

(2.39)

When ω2
0 > β2, we choose the top expression for xhom(t), with ν =

√

ω2
0 − β2 . When ω2 < β2, we

choose the bottom expression for xhom(t), with λ =
√

β2 − ω2
0 .

The quantity xhom(t) in eqn. 2.39 is the solution to the homogeneous equation, i.e. with f(t) = 0. This
involves two constants of integration, C and D, which are then determined by imposing initial con-
ditions on x(0) and ẋ(0) – two constants of integration always arise in the solution of a second order

ODE, whether or not it is homogeneous. That is, C and D are adjusted so as to satisfy x(0) = x0 and

ẋ0 = v0. However, due to their e−βt prefactor, these terms decay to zero once t reaches a relatively low
multiple of β−1. They are called transients, and may be set to zero if we are only interested in the long
time behavior of the system. This means, incidentally, that the initial conditions are effectively forgotten
over a time scale on the order of β−1.

For ΩR > 0, one defines the quality factor, Q, of the oscillator by Q = ΩR/2β. Q is a rough measure
of how many periods the unforced oscillator executes before its initial amplitude is damped down to a
small value. For a forced oscillator driven near resonance, and for weak damping, Q is also related to
the ratio of average energy in the oscillator to the energy lost per cycle by the external source. To see
this, let us compute the energy lost per cycle,

∆E = m

2π/Ω∫

0

dt ẋ f(t)

= −m

2π/Ω∫

0

dtΩ Af2
0 sin(Ωt+ ϕ0 − δ) cos(Ωt+ ϕ0)

= πAf2
0 m sin δ = 2πβmΩA2(Ω) f2

0 ,

(2.40)

since sin δ(Ω) = 2βΩ A(Ω). The oscillator energy, averaged over the cycle, is

〈
E
〉
=

Ω

2π

2π/Ω∫

0

dt 1
2m

(
ẋ2 + ω2

0 x
2
)
= 1

4m (Ω2 + ω2
0)A

2(Ω) f2
0 . (2.41)

Thus, we have
2π〈E〉
∆E

=
Ω2 + ω2

0

4βΩ
. (2.42)

Thus, for Ω ≈ ΩR and β2 ≪ ω2
0, we have

Q ≈ 2π〈E〉
∆E

≈ ω0

2β
. (2.43)
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2.3.1 Resonant forcing

When the damping β vanishes, the response diverges at resonance. The solution to the resonantly forced
oscillator

ẍ+ ω2
0 x = f0 cos(ω0 t+ ϕ0) (2.44)

is given by

x(t) =
f0
2ω0

t sin(ω0 t+ ϕ0)+

xhom(t)
︷ ︸︸ ︷

A cos(ω0 t) +B sin(ω0 t) . (2.45)

The amplitude of this solution grows linearly due to the energy pumped into the oscillator by the res-
onant external forcing. In the real world, nonlinearities can mitigate this unphysical, unbounded re-
sponse.

2.3.2 R-L-C circuits

Consider the R-L-C circuit of fig. 2.4. When the switch is to the left, the capacitor is charged, eventually
to a steady state value Q = CV . At t = 0 the switch is thrown to the right, completing the R-L-C circuit.
Recall that the sum of the voltage drops across the three elements must be zero:

L
dI

dt
+ IR+

Q

C
= 0 . (2.46)

We also have Q̇ = I , hence

d2Q

dt2
+

R

L

dQ

dt
+

1

LC
Q = 0 , (2.47)

which is the equation for a damped harmonic oscillator, with ω0 = (LC)−1/2 and β = R/2L.

The boundary conditions at t = 0 are Q(0) = CV and Q̇(0) = 0. Under these conditions, the full solution
at all times is

Q(t) = CV e−βt
(

cos νt+
β

ν
sin νt

)

I(t) = −CV
ω2
0

ν
e−βt sin νt ,

(2.48)

again with ν =
√

ω2
0 − β2.

If we put a time-dependent voltage source in series with the resistor, capacitor, and inductor, we would
have

L
dI

dt
+ IR+

Q

C
= V (t) , (2.49)

which is the equation of a forced damped harmonic oscillator.
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Figure 2.4: An R-L-C circuit which behaves as a damped harmonic oscillator.

2.3.3 Examples

Third order linear ODE with forcing

The problem is to solve the equation

Lt x ≡ ˙̇ẋ+ (a+ b+ c) ẍ+ (ab+ ac+ bc) ẋ+ abc x = f0 cos(Ωt) . (2.50)

The key to solving this is to note that the differential operator Lt factorizes:

Lt =
d3

dt3
+ (a+ b+ c)

d2

dt2
+ (ab+ ac+ bc)

d

dt
+ abc

=
( d

dt
+ a

)( d

dt
+ b

)( d

dt
+ c

)

,

(2.51)

which says that the third order differential operator appearing in the ODE is in fact a product of first
order differential operators. Since

dx

dt
+ αx = 0 =⇒ x(t) = Ae−αx , (2.52)

we see that the homogeneous solution takes the form

xh(t) = Ae−at +B e−bt + C e−ct , (2.53)

where A, B, and C are constants.

To find the inhomogeneous solution, we solve Lt x = f0 e
−iΩt and take the real part. As before, we

assume the inhomogeneous solution x(t) oscillates with the driving frequency Ω, and we write x(t) =

x0 e
−iΩt, which entails

Lt x0 e
−iΩt = (a− iΩ) (b− iΩ) (c − iΩ)x0 e

−iΩt (2.54)

and thus

x0 =
f0 e

−iΩt

(a− iΩ)(b− iΩ)(c− iΩ)
≡ A(Ω) eiδ(Ω) f0 e

−iΩt ,



2.3. DAMPED HARMONIC OSCILLATOR WITH FORCING 11

where

A(Ω) =
[

(a2 +Ω2) (b2 +Ω2) (c2 +Ω2)
]−1/2

δ(Ω) = tan−1
(Ω

a

)

+ tan−1
(Ω

b

)

+ tan−1
(Ω

c

)

.

(2.55)

Thus, the most general solution to Lt x(t) = f0 cos(Ωt) is

x(t) = A(Ω) f0 cos
(
Ωt− δ(Ω)

)
+Ae−at +B e−bt + C e−ct . (2.56)

Note that the phase shift increases monotonically from δ(0) = 0 to δ(∞) = 3
2π.

Mechanical analog of RLC circuit

Consider the electrical circuit in fig. 2.5. Our task is to construct its mechanical analog. To do so, we
invoke Kirchoff’s laws around the left and right loops:

L1 İ1 +
Q1

C1
+R1 (I1 − I2) = 0

L2 İ2 +R2 I2 +R1 (I2 − I1) = V (t) .

(2.57)

Let Q1(t) be the charge on the left plate of capacitor C1, and define

Q2(t) =

t∫

0

dt′ I2(t
′) . (2.58)

Then Kirchoff’s laws may be written

Q̈1 +
R1

L1
(Q̇1 − Q̇2) +

1

L1C1
Q1 = 0

Q̈2 +
R2

L2
Q̇2 +

R1

L2
(Q̇2 − Q̇1) =

V (t)

L2
.

(2.59)

Now consider the mechanical system in fig. 2.6. The blocks have masses M1 and M2. The friction
coefficient between blocks 1 and 2 is b1, and the friction coefficient between block 2 and the floor is
b2. Here we assume a velocity-dependent frictional force Ff = −bẋ, rather than the more conventional

constant Ff = −µW , where W is the weight of an object. Velocity-dependent friction is applicable when
the relative velocity of an object and a surface is sufficiently large. There is a spring of spring constant

k1 which connects block 1 to the wall. Finally, block 2 is driven by a periodic acceleration f0 cos(ωt). We
now identify

X1 ↔ Q1 , X2 ↔ Q2 , b1 ↔
R1

L1
, b2 ↔

R2

L2
, k1 ↔

1

L1C1
, (2.60)
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Figure 2.5: A driven L-C-R circuit, with V (t) = V0 cos(ωt).

Figure 2.6: The equivalent mechanical circuit for fig. 2.5.

as well as f(t) ↔ V (t)/L2.

The solution again proceeds by Fourier transform. We write

V (t) =

∞∫

−∞

dω

2π
V̂ (ω) e−iωt (2.61)

and
{
Q1(t)

Î2(t)

}

=

∞∫

−∞

dω

2π

{
Q̂1(ω)

Î2(ω)

}

e−iωt (2.62)

The frequency space version of Kirchoff’s laws for this problem is

Ĝ(ω)
︷ ︸︸ ︷




−ω2 − iω R1/L1 + 1/L1 C1 R1/L1

iω R1/L2 −iω + (R1 +R2)/L2









Q̂1(ω)

Î2(ω)



 =





0

V̂ (ω)/L2



 (2.63)
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The homogeneous equation has eigenfrequencies given by the solution to det Ĝ(ω) = 0, which is a cubic

equation. Correspondingly, there are three initial conditions to account for: Q1(0), I1(0), and I2(0). As
in the case of the single damped harmonic oscillator, these transients are damped, and for large times
may be ignored. The solution then is





Q̂1(ω)

Î2(ω)



 =





−ω2 − iω R1/L1 + 1/L1 C1 R1/L1

iω R1/L2 −iω + (R1 +R2)/L2





−1



0

V̂ (ω)/L2



 . (2.64)

To obtain the time-dependent Q1(t) and I2(t), we must compute the Fourier transform back to the time
domain.

2.4 Green’s Functions

2.4.1 General solution of forced damped harmonic oscillator

For a general forcing function f(t), we solve by Fourier transform. Recall that a function F (t) in the time
domain has a Fourier transform F̂ (ω) in the frequency domain. The relation between the two is:1

F (t) =

∞∫

−∞

dω

2π
e−iωt F̂ (ω) ⇐⇒ F̂ (ω) =

∞∫

−∞

dt e+iωt F (t) . (2.65)

We can convert the differential equation 2.27 to an algebraic equation in the frequency domain for the
Fourier transform x̂(ω), viz.

ẍ(t) + 2βẋ(t) + ω2
0x(t) = f(t) ⇔ x̂(ω) = Ĝ(ω) f̂(ω) , (2.66)

where

Ĝ(ω) =
1

ω2
0 − 2iβω − ω2

(2.67)

is the Green’s function in the frequency domain. The general solution is written

x(t) =

∞∫

−∞

dω

2π
e−iωt Ĝ(ω) f̂(ω) + xh(t) , (2.68)

1Different texts often use different conventions for Fourier and inverse Fourier transforms. Sometimes the factor of (2π)−1 is
associated with the time integral, and sometimes a factor of (2π)−1/2 is assigned to both frequency and time integrals. The
convention I use is obviously the best.
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where xh(t) =
∑

iCi e
−iωit is a solution to the homogeneous equation. We may also write the above

integral over the time domain:

x(t) =

∞∫

−∞

dt′ G(t− t′) f(t′) + xh(t) (2.69)

G(s) =

∞∫

−∞

dω

2π
e−iωs Ĝ(ω) (2.70)

= ν−1 exp(−βs) sin(νs)Θ(s)

where Θ(s) is the step function,

Θ(s) =

{
1 if s ≥ 0
0 if s < 0

(2.71)

where once again ν ≡
√

ω2
0 − β2. In the overdamped case, we write ν = iλ with λ =

√

β2 − ω2
0, and we

then have
G(s) = λ−1 exp(−βs) sinh(λs)Θ(s) . (2.72)

Example: force pulse

Consider a pulse force

f(t) = f0Θ(t)Θ(T − t) =

{

f0 if 0 ≤ t ≤ T
0 otherwise.

(2.73)

In the underdamped regime, for example, and ignoring the transients, we find the solution

x(t) =
f0
ω2
0

{

1− e−βt cos νt− β

ν
e−βt sin νt

}

(2.74)

if 0 ≤ t ≤ T and

x(t) =
f0
ω2
0

{
(

e−β(t−T ) cos ν(t− T )− e−βt cos νt
)

+
β

ν

(

e−β(t−T ) sin ν(t− T )− e−βt sin νt
)
}

(2.75)

if t > T .

2.4.2 General linear autonomous inhomogeneous ODEs

This method immediately generalizes to the case of general autonomous linear inhomogeneous ODEs
of the form

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . .+ a1

dx

dt
+ a0 x = f(t) . (2.76)

We can write this as
Lt x(t) = f(t) , (2.77)
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Figure 2.7: Response of an underdamped oscillator to a pulse force.

where Lt is the nth order differential operator

Lt =
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0 . (2.78)

The general solution to the inhomogeneous equation is given by

x(t) = xh(t) +

∞∫

−∞

dt′ G(t, t′) f(t′) , (2.79)

where G(t, t′) is the Green’s function. Note that Lt xh(t) = 0. Thus, in order for eqns. 2.77 and 2.79 to be
true, we must have

Lt x(t) =

this vanishes
︷ ︸︸ ︷

Lt xh(t) +

∞∫

−∞

dt′ LtG(t, t′) f(t′) = f(t) , (2.80)

which means that
LtG(t, t′) = δ(t− t′) , (2.81)

where δ(t− t′) is the Dirac δ-function. Some properties of δ(x):

b∫

a

dx f(x) δ(x− y) =

{

f(y) if a < y < b

0 if y < a or y > b .
(2.82)

δ
(
g(x)

)
=

∑

x
i
with

g(x
i
)=0

δ(x − xi)
∣
∣g′(xi)

∣
∣

, (2.83)
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valid for any functions f(x) and g(x). The sum in the second equation is over the zeros xi of g(x).

Incidentally, the Dirac δ-function enters into the relation between a function and its Fourier transform,
in the following sense. We have

f(t) =

∞∫

−∞

dω

2π
e−iωt f̂(ω) , f̂(ω) =

∞∫

−∞

dt e+iωt f(t) . (2.84)

Substituting the second equation into the first, we have

f(t) =

∞∫

−∞

dω

2π
e−iωt

∞∫

−∞

dt′ eiωt
′

f(t′) =

∞∫

−∞

dt′







∞∫

−∞

dω

2π
eiω(t

′
−t)






f(t′) , (2.85)

which is indeed correct because the term in brackets is a representation of δ(t− t′):

∞∫

−∞

dω

2π
eiωs = δ(s) . (2.86)

If the differential equation Lt x(t) = f(t) is defined over some finite t interval with prescribed boundary
conditions on x(t) at the endpoints, then G(t, t′) will depend on t and t′ separately. For the case we are
considering, the interval is the entire real line t ∈ (−∞,∞), and G(t, t′) = G(t − t′) is a function of the
single variable t− t′.

Note that Lt = L
(
d
dt

)
may be considered a function of the differential operator d

dt . If we now Fourier

transform the equation Lt x(t) = f(t), we obtain

∞∫

−∞

dt eiωt f(t) =

∞∫

−∞

dt eiωt
{

dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0

}

x(t)

=

∞∫

−∞

dt eiωt

{

(−iω)n + an−1 (−iω)n−1 + . . .+ a1 (−iω) + a0

}

x(t) ,

(2.87)

where we integrate by parts on t, assuming the boundary terms at t = ±∞ vanish, i.e. x(±∞) = 0, so
that, inside the t integral,

eiωt
(

d

dt

)k

x(t) →
[(

− d

dt

)k

eiωt

]

x(t) = (−iω)k eiωt x(t) . (2.88)

Thus, if we define

L̂(ω) =
n∑

k=0

ak (−iω)k , (2.89)

then we have
L̂(ω) x̂(ω) = f̂(ω) , (2.90)
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where an ≡ 1. According to the Fundamental Theorem of Algebra, the nth degree polynomial L̂(ω) may
be uniquely factored over the complex ω plane into a product over n roots:

L̂(ω) = (−i)n (ω − ω1)(ω − ω2) · · · (ω − ωn) . (2.91)

If the {ak} are all real, then
[
L̂(ω)

]∗
= L̂(−ω∗), hence if Ω is a root then so is −Ω∗. Thus, the roots

appear in pairs which are symmetric about the imaginary axis. I.e. if Ω = a + ib is a root, then so is
−Ω∗ = −a+ ib.

The general solution to the homogeneous equation is

xh(t) =

n∑

i=1

Ai e
−iωit , (2.92)

which involves n arbitrary complex constants Ai. The susceptibility, or Green’s function in Fourier
space, Ĝ(ω) is then

Ĝ(ω) =
1

L̂(ω)
=

in

(ω − ω1)(ω − ω2) · · · (ω − ωn)
, (2.93)

and the general solution to the inhomogeneous equation is again given by

x(t) = xh(t) +

∞∫

−∞

dt′ G(t− t′) f(t′) , (2.94)

where xh(t) is the solution to the homogeneous equation, i.e. with zero forcing, and where

G(s) =

∞∫

−∞

dω

2π
e−iωs Ĝ(ω)

= in
∞∫

−∞

dω

2π

e−iωs

(ω − ω1)(ω − ω2) · · · (ω − ωn)
=

n∑

j=1

e−iωjs

iL′(ωj)
Θ(s) ,

(2.95)

where we assume that Im (ωj) < 0 for all j. The integral above was done using Cauchy’s theorem and
the calculus of residues – a beautiful result from the theory of complex functions.

As an example, consider the familiar case

L̂(ω) = ω2
0 − 2iβω − ω2 = −(ω − ω+) (ω − ω−) , (2.96)

with ω
±
= −iβ ± ν, and ν = (ω2

0 − β2)1/2. This yields

L′(ω
±
) = ∓(ω+ − ω−) = ∓2ν . (2.97)

Then according to equation 2.95,

G(s) =

{

e−iω+s

iL′(ω+)
+

e−iω
−
s

iL′(ω−)

}

Θ(s)

=

{
e−βs e−iνs

−2iν
+

e−βs eiνs

2iν

}

Θ(s) = ν−1 e−βs sin(νs)Θ(s) ,

(2.98)

exactly as before.
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2.4.3 Kramers-Krönig relations

Suppose χ̂(ω) ≡ Ĝ(ω) is analytic in the UHP2. Then for all ν, we must have

∞∫

−∞

dν

2π

χ̂(ν)

ν − ω + iǫ
= 0 , (2.99)

where ǫ is a positive infinitesimal. The reason is simple: just close the contour in the UHP, assuming
χ̂(ω) vanishes sufficiently rapidly that Jordan’s lemma can be applied. Clearly this is an extremely weak
restriction on χ̂(ω), given the fact that the denominator already causes the integrand to vanish as |ω|−1.

Let us examine the function

1

ν − ω + iǫ
=

ν − ω

(ν − ω)2 + ǫ2
− iǫ

(ν − ω)2 + ǫ2
. (2.100)

which we have separated into real and imaginary parts. Under an integral sign, the first term, in the
limit ǫ → 0, is equivalent to taking a principal part of the integral. That is, for any function F (ν) which is
regular at ν = ω,

lim
ǫ→0

∞∫

−∞

dν

2π

ν − ω

(ν − ω)2 + ǫ2
F (ν) ≡ P

∞∫

−∞

dν

2π

F (ν)

ν − ω
. (2.101)

The principal part symbol P means that the singularity at ν = ω is elided, either by smoothing out the
function 1/(ν − ǫ) as above, or by simply cutting out a region of integration of width ǫ on either side of
ν = ω.

The imaginary part is more interesting. Let us write

h(u) ≡ ǫ

u2 + ǫ2
. (2.102)

For |u| ≫ ǫ, h(u) ≃ ǫ/u2, which vanishes as ǫ → 0. For u = 0, h(0) = 1/ǫ which diverges as ǫ → 0. Thus,
h(u) has a huge peak at u = 0 and rapidly decays to 0 as one moves off the peak in either direction a
distance greater that ǫ. Finally, note that

∞∫

−∞

duh(u) = π , (2.103)

a result which itself is easy to show using contour integration. Putting it all together, this tells us that

lim
ǫ→0

ǫ

u2 + ǫ2
= πδ(u) . (2.104)

Thus, for positive infinitesimal ǫ,
1

u± iǫ
= P 1

u
∓ iπδ(u) , (2.105)

2In this section, we use the notation χ̂(ω) for the susceptibility, rather than Ĝ(ω)
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a most useful result.

We now return to our initial result 2.99, and we separate χ̂(ω) into real and imaginary parts:

χ̂(ω) = χ̂′(ω) + iχ̂′′(ω) . (2.106)

(In this equation, the primes do not indicate differentiation with respect to argument.) We therefore
have, for every real value of ω,

0 =

∞∫

−∞

dν

2π

[

χ′(ν) + iχ′′(ν)
] [

P 1

ν − ω
− iπδ(ν − ω)

]

. (2.107)

Taking the real and imaginary parts of this equation, we derive the Kramers-Krönig relations:

χ′(ω) = +P
∞∫

−∞

dν

π

χ̂′′(ν)

ν − ω
, χ′′(ω) = −P

∞∫

−∞

dν

π

χ̂′(ν)

ν − ω
. (2.108)

2.4.4 Laplace transforms

Consider a function F (t) defined on nonnegative real numbers t ≥ 0. The Laplace transform of F (t) is
defined to be

F̌ (z) =

∞∫

0

dt F (t) e−zt , (2.109)

where in general z is complex. The inverse transform is given by

F (t) =

c+i∞∫

c−i∞

dz

2πi
F̌ (z) ezt , (2.110)

where c is such that the integration lies to the right of any singularities of F̌ (z) in the complex z-plane.
The Laplace transform is particularly useful in cases where we specify initial conditions, and where the
inhomogeneous term vanishes for sufficiently small values of t; here we have taken F (t) = 0 for t < 0.

Note that the Laplace transform of Ḟ (t) is given by

∞∫

0

dt
dF (t)

dt
e−zt = z F̌ (z)− F (0) , (2.111)

which is easily confirmed via integration by parts. Thus, if F (k)(t) ≡ dkF (t)/dtn, we have

F̌ (k)(z) = z F̌ (k−1)(z)− F (k−1)(0)

= zkF̌ (z)− zk−1F (0)− · · · − z F (k−2)(0)− F (k−1)(0)

= zkF̌ (z)−
n−1∑

p=0

zp F (k−1−p)(0) .

(2.112)
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Thus, the Laplace transform of the nth order linear, autonomous, inhomogeneous ODE in eqn. 2.76,

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . .+ a1

dx

dt
+ a0 x = f(t) , (2.113)

is given by

Q(z) x̌(z) = f̌(z) +
n−1∑

p=0

Cp z
p , (2.114)

with

Q(z) =
n∑

k=0

ak z
k (2.115)

and an ≡ 1, and

Cp =

n∑

k=p+1

ak x
(k−1−p)(0) , (2.116)

which encodes the n initial conditions on x(l)(0) for l ∈ {0, . . . , n− 1}. Explicitly,

Cn−1 = x(0)

Cn−2 = x(1)(0) + an−1 x(0)

Cn−3 = x(2)(0) + an−1 x
(1)(0) + an−2 x(0)

...

C1 = x(n−2)(0) + an−1 x
(n−3)(0) + . . .+ a2 x(0)

C0 = x(n−1)(0) + an−1 x
(n−2)(0) + . . .+ a2 x

(1)(0) + a1 x(0) .

(2.117)

Thus, the solution for x(t) is

x(t) =

c+i∞∫

c−i∞

dz

2πi

f̌(z) +R(z)

Q(z)
ezt , (2.118)

where

R(z) =

n−1∑

p=0

Cp z
p (2.119)

and where the contour lies to the right of all singularities of the integrand. By the Fundamental Theorem
of Algebra, Q(z) may be factorized uniquely as

Q(z) =

n∏

j=1

(z − zj) . (2.120)
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Examples

Consider the equation
u̇+ γu = f(t) . (2.121)

Thus n = 1 and a0 = γ. Let f(t) = b sin(ωt)Θ(t). Then

f̌(z) = b

∞∫

0

dt sin(ωt) e−γt =
b ω

z2 + ω2
. (2.122)

From the previous analysis we have

Q(z) = z + γ , R(z) = x(0) . (2.123)

Thus,

x(t) =

c+i∞∫

c−i∞

dz

2πi

1

z + γ

(
b ω

z2 + ω2
+ x(0)

)

ezt

=

(

x(0) +
bω

γ2 + ω2

)

e−γt +
b

ω2 + γ2

(

γ sin(ωt)− ω cos(ωt)
)

.

(2.124)

The poles of the integrand are at z = −γ and z = ±iω, so we chose c > 0 and closed the integration
contour in the left half plane. Note how the solution satisfies the initial conditions at t = 0.

As a second example, consider the equation

ẍ+ (α+ β)ẋ+ αβx = f(t) , (2.125)

whence n = 2, a1 = α+ β and a2 = αβ. We next identify

Q(z) = (z + α)(z + β) (2.126)

and C0 = ẋ(0) + (α + β)x(0), C1 = z x(0). Thus

R(z) = ẋ(0) + (α+ β + z)x(0) . (2.127)

We choose f(t) = r e−γtΘ(t), with α, β, and γ all real and positive. The Laplace transform of f(t) is
easily obtained as

f̌(z) = r

∞∫

0

dt e−γt e−zt =
r

z + γ
. (2.128)

We then have

x(t) =

c+i∞∫

c−i∞

dz

2πi

(
r

z + γ
+ ẋ(0) + (α + β + z)x(0)

)
ezt

(z + α)(z + β)

= − r

(α− β)(β − γ)(γ − α)

(

(β − γ) e−αt + (γ − α) e−βt + (α− β) e−γt
)

+

(
β e−αt − α e−βt

β − α

)

x(0)−
(
e−βt − e−αt

β − α

)

ẋ(0) .

(2.129)
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Note again that the initial conditions for x(0) and ẋ(0) are satisfied in the t → 0 limit.
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