
PHYSICS 221A : NONLINEAR DYNAMICS

HW ASSIGNMENT #2

(1) In an ODE, the functions and their derivatives are all evaluated at the same time t. In a
delay differential equation, this is no longer the case, and different terms may be evaluated
at different values of the time t. Consider the delay equation

y′(t) + a y(t − 1) = 0 ,

subject to the boundary conditions

y(t) = y0 when − 1 ≤ t ≤ 0 .

(a) Solve using the method of the Laplace transform:

Y (s) =

∞
∫

0

dt y(t) e−st

y(t) =

c+i∞
∫

c−i∞

ds

2πi
Y (s) est .

Recall that the contour for the inverse transform lies to the right of all singularities
of the integrand. Find an analytic expression for Y (s). Show that your result can be
Taylor expanded to yield

Y (s) =
y0

s
+ y0

∞
∑

n=1

(−a)n e−(n−1)s s−(n+1) .

Performing the inverse transform, show that

y(t) = y0

[t]+1
∑

n=0

(−a)n

n!
(t − n + 1)n ,

where [t] is the greatest integer less than or equal to t. Hint: You will close in the

LHP or RHP depending on the value of [t] in relation to n − 1.

(b) Solve by the following alternate method. For t ∈ [0, 1] we have

y′(t) + a y0 = 0 ,

with y(0) = y0. The solution is then

y(t) = y0 (1 − at) t ∈ [0, 1] .

On the interval t ∈ [1, 2], then, we have

y′(t) + ay0

[

1 − a(t − 1)
]

,

with y(1) = y0 (1 − a). The solution on this interval is then

y(t) = y0

[

1 − at + 1
2a2(t − 1)2

]

t ∈ [1, 2] .

Proceeding thusly, show that you obtain the same solution as in part (a).
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(c) Dispensing with the boundary condition, and assuming t ∈ R, find at least one periodic
solution. Show that periodicity requires that a be fine tuned to a specific value or set
of values.

(2) Numerically integrate the system

ṙ = r(1 − r2) + λr cos θ

θ̇ = 1

with 0 < λ < 1, and show that any initial condition lying between the concentric circles of
radii

√
1 ± λ approaches a closed limit cycle in the long time limit. Choose whatever value

of λ suits your taste.

(3) For the Lotka-Volterra system

ẋ = x (r − x − ky)

ẏ = y (1 − y − k′x) ,

discussed in §3.4.2 of the notes, sketch the phase diagram in the upper right quadrant of
the (k, k′) plane for fixed r. That is, label the regions of the plane by their fixed point
structure.

(4) In §4.1.2 of the notes, the Poincaré-Lindstedt method was applied to ODEs of the form

ẍ + Ω2
0 x = ǫ h(x) .

Consider the more general equation,

ẍ + Ω2
0 x = ǫ h(x, ẋ) .

Generalize the discussion in §4.1.2 for such equations, and exhibit explicitly the equations
of the resulting hierarchy through order ǫ3. Apply this method to lowest nontrivial order
to the van der Pol oscillator,

ẍ + ǫ(x2 − 1) ẋ + x = 0 ,

by taking h(x, ẋ) = (1 − x2) ẋ.
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