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Chapter 6

Front Propagation

6.1 Reaction-Diffusion Systems

We’ve studied simple N = 1 dynamical systems of the form

du

— =R . 6.1

L = R() ©1)

Recall that the dynamics evolves u(t) monotonically toward the first stable fixed point encountered.

Now let’s extend the function u(¢) to the spatial domain as well, i.e. u(x, t), and add a diffusion term:
ou 9

— =DV u+ R(u) , (6.2)

ot

where D is the diffusion constant. This is an example of a reaction-diffusion system. If we extend u(x, t)

to a multicomponent field u(x, t), we obtain the general reaction-diffusion equation (RDE)

oy,
ot

Here, w is interpreted as a vector of reactants, R(u) describes the nonlinear local reaction kinetics, and D,
is the diffusivity matrix. If diffusion is negligible, this PDE reduces to decoupled local ODEs of the form
u = R(u), which is to say a dynamical system at each point in space. Thus, any fixed point u* of the local
reaction dynamics also describes a spatially homogeneous, time-independent solution to the RDE. These
solutions may be characterized as dynamically stable or unstable, depending on the eigenspectrum of
the Jacobian matrix M;; = 9,R;(u"). At a stable fixed point, Re()\;) < 0 for all eigenvalues.

= D;;V?u; + Ri(uy,...,uy) . (6.3)

6.1.1 Single component systems

We first consider the single component system,

88;‘ = DV2u+ R(u) . (6.4)
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Note that the right hand side can be expressed as the functional derivative of a Lyapunov functional,

Lmy:/ﬁ%[ngmf—lum} : (6.5)
where .
w@:[wa). 6.6)
0
(The lower limit in the above equation is arbitrary.) Thus, eqn. 6.4 is equivalent to
ou oL
ot bu(x,t) (6.7)

Thus, the Lya_punov functional runs strictly downhill, i.e. L <0, except where u(x, t) solves the RDE, at
which point L = 0.

6.1.2 Propagating front solutions

Suppose the dynamical system & = R(u) has two or more fixed points. Each such fixed point represents
a static, homogeneous solution to the RDE. We now seek a dynamical, inhomogeneous solution to the
RDE in the form of a propagating front, described by

u(z,t) =u(zx —-Vt) , (6.8)

where V' is the (as yet unknown) front propagation speed. With this Ansatz, the PDE of eqn. 6.4 is

converted to an ODE, ,

D%+V§—Z+R(u)zo , (6.9)
where { = x — Vt. With R(u) = U’(u) as in eqn. 6.6, we have the following convenient interpretation. If
we substitute u — ¢, £ — s, D — m, and v — 7, this equation describes the damped motion of a massive
particle under friction: mg + v¢ = —U’(q), where ¢ = dg/ds. The fixed points ¢* satisfy U'(¢*) = 0 and
are hence local extrema of U(q). The propagating front solution we seek therefore resembles the motion
of a massive particle rolling between extrema of the potential U(g). Note that the stable fixed points
of the local reaction kinetics have R'(q) = U"(q) < 0, corresponding to unstable mechanical equilibria.
Conversely, unstable fixed points of the local reaction kinetics have R'(q) = U"(¢) > 0, corresponding
to stable mechanical equilibria. Note that

d€
Du+U(u) =  —=-Vig (6.10)

£ I

N~

andthusf95§01fV>0while5§>0ifV<0.

Egn. 6.9 is an N = 2 dynamical system of the form

d (u y
d¢ <> - <—D-1R<u> - D_le> ) (6.11)
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Figure 6.1: Reaction functions R(u) = ru(a — u) with r = a = 1 (top left) and R(u) = —ru(u — a)(u — b)
withr =1, a = 1, b = —0.7 (top right), along with corresponding potentials U(u) (bottom panels).
Stable fixed points for the local reaction kinetics are shown with a solid black dot, and unstable fixed
points as a hollow black dot. Note that R(u) = U’(u), so stable fixed points for the local reaction kinetics
have R'(u) = U”(u) < 0, and thus correspond to unstable mechanical equilibria in the potential U (u).
Similarly, unstable fixed points for the local reaction kinetics correspond to stable mechanical equilibria.

with v = «/(€). Ata fixed point (u*, v*) we must have R(u*) = 0 and v* = 0. The linearized dynamics at
a fixed point are given by

M (u")
d (du 0 1 ou
de <5v> :<—D‘1R’(u*) —D‘1V> <5v> (6.12)
We thus have
rw)=TrM@*)=-D'V |,  A(u*)=det M(u*) = D'R'(u*) . (6.13)

Thus, if R'(u*) < 0 the fixed point is a saddle, whereas if R'(u*) > 0 the fixed point is stable if V' > 0
and unstable if V < 0, and is a node if R(u*) < V?/4D and a spiral if R'(u*) > V?/4D.
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A front solution corresponds to a mechanical motion interpolating between two equilibria at u(§ = +00).
If the front propagates to the right then V' > 0, corresponding to a positive (i.e. usual) friction coefficient
7. Any solution, therefore must start from an unstable equilibrium point «] and end at another equilib-
rium uj;. The final state, however, may be either a stable or an unstable equilibrium for the potential
U(q). Consider the functions R(u) and U (u) in the left panels of fig. 6.1. Starting at ‘time’ { = —oo with
u = uj = 1, a particle with positive friction rolls down hill and eventually settles at position uj; = 0. If
the motion is underdamped, it will oscillate as it approaches its final value, but there will be a solution
connecting the two fixed points for an entire range of V' values. Consider a model where

) (6.14)

with @ > 0 > b, which is depicted in the right panels of fig. 6.1. Assuming r > 0, there are two stable
fixed points for the local reaction kinetics: u* = a and u* = b. Since U(a) — U(b) = 57(a — b)?(a® — b?),
the fixed point which is farther from u = 0 has the higher value. Without loss of generality, let us assume
la| > |b|, as is the case in the figure. One can then roll off the peak at u* = a and eventually settle in at
the local minimum «* = 0 for a range of V' values, provided V is sufficiently large that the motion does
not take u beyond the other fixed point at v* = b. If we start at u* = b, then a solution interpolating
between this value and u* = 0 exists for any positive value of . As we shall see, this makes the issue
of velocity selection a subtle one, as at this stage it appears a continuous family of propagating front
solutions are possible. At any rate, for this type of front we have u({ = —o0) = uf and u(§ = +00) = uj,
where uf || correspond to stable and unstable fixed points of the local dynamics. If we fix z and examine
what happens as a function of ¢, we have £ — Foo ast — +oo, since V' > 0, meaning that we start out in
the unstable fixed point and eventually as the front passes over our position we transition to the stable
fixed point. Accordingly, this type of front describes a propagation into an unstable phase. Note that for
V' < 0, corresponding to left-moving fronts, we have negative friction, meaning we move uphill in the
potential U(u). Thus, we start at { = —oo with u(—o0) = 0 and end up at u(+o0) = ujy;. But now we
have £ — +o0 as t — oo, hence once again the stable phase invades the unstable phase.

Another possibility is that one stable phase invades another. For the potential in the lower right panel
of fig. 6.1, this means starting at the leftmost fixed point where u(—o0) = a and, with V' > 0 and positive
friction, rolling down hill past © = 0, then back up the other side, asymptotically coming to a perfect
stop at u(+00) = b. Clearly this requires that V be finely tuned to a specific value so that the system
dissipates an energy exactly equal to U(a) — U(b) to friction during its motion. If V' < 0 we have the
time reverse of this motion. The fact that V' is finely tuned to a specific value in order to have a solution
means that we have a velocity selection taking place. Thus, if R(a) = R(b) = 0, then defining

b
AU:[mmm:U@—U@ , (6.15)

we have that ©* = a invades v* = bif AU > 0, and v* = b invades v* = a if AU < 0. The front velocity
in either case is fixed by the selection criterion that we asymptotically approach both local maxima of
U(u) ast — £o0.

For the equation
Du" + V' =ru(u—a)(u—0b) (6.16)



6.1. REACTION-DIFFUSION SYSTEMS 5

we can find an exact solution of the form
u(é) = (a —; b> + (b ; a> tanh(AE) . (6.17)

Direct substitution shows this is a solution when

A=-u(gp) "

(6.18)
V =4/ % (a+0).

6.1.3 Stability and zero mode

We assume a propagating front solution u(xz — V't) connecting u(—oo) = u; and u(+00) = ug. For [¢|
very large, we can linearize about the fixed points u, . For £ = —oco we write R(u, + du) ~ R'(u,) ou
and the linearized front equation is

Déu" +Véu' + R (u)du=0 . (6.19)
This equation possesses solutions of the form §u = A e"1.%, where

Dr?+ Vi, +R(u)=0 . (6.20)

2 /
() - 62

We assume that v, is a stable fixed point of the local dynamics, which means R'(u,) < 0. Thus, s, _ <
0 < K, 4, and the allowed solution, which does not blow up as {§ — —oo is to take x;, = ;. If we
choose ¢, < 0 such that & << —1, then we can take as initial conditions u(;) = u, + A, e".5 and
u'(r,) = K, A, eLéL. We can then integrate forward to ¢ = +oco0 where u/(4+00 = 0) using the ‘shooting
method’ to fix the propagation speed V.

The solutions are

For £ — 400, we again linearize, writing « = u; + du and obtaining

Dou" +Vou' + R (ug)du=0 . (6.22)
We find
1% VN R(ug)

If we are invading another stable (or metastable) phase, then R'(u;,) < 0 and we must choose «;, = ki, _
in order for the solution not to blow up as { — +oc. If we are invading an unstable phase, however,
then R'(u,) > 0 and there are two possible solutions, with x;, _ < k; ;. < 0. In the { — oo limit, the
kg + mode dominates, hence asymptotically we have r, = ry |, however in general both solutions are
present asymptotically, which means the corresponding boundary value problem is underdetermined.
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Next we investigate stability of the front solution. To do this, we must return to our original reaction-
diffusion PDE and linearize, writing

u(z,t) = u(z — Vt) + du(z,t) (6.24)
where f(&) is a solution to Du” + Vu' + R(u) = 0. Linearizing in du, we obtain the PDE

0déu 0%5u
el D v + R (u(z — Vt)) du . (6.25)
While this equation is linear, it is not autonomous, due to the presence of u(x—V't) on the in the argument

of R’ on the right hand side.

Let’s shift to a moving frame defined by { = z — Vit and s = ¢. Then

o0 99 959 D

0z 0z Of 0z 0s  0f

(6.26)
o_oo 00 _ 0 D
ot ot oE 0otds O Os
So now we have the linear PDE
dug = D duge +V oug + R (u(€)) ou . (6.27)

This equation, unlike eqn. 6.25, is linear and autonomous. We can spot one solution immediately. Let
du(§, s) = Cu/(§), where C'is a constant. Then the RHS of the above equation is

RHS = Dugee + Vuge + R (u) ug

d (6.28)

by virtue of the front equation for u(&) itself. This solution is called the zero mode. It is easy to understand
why such a solution must exist. Due to translation invariance in space and time, if u(z,t) = u(x — Vt) is
a solution, then so must u(x —a, t) = u(zr—a—Vt) be a solution, and for all values of a. Now differentiate
with respect to a and set a = 0. The result is the zero mode, v'(z — V't).

If we define (writing t = s)

du(€,t) = e VPP (e t) (6:29)
then we obtain a Schrodinger-like equation for (¢, t), i.e.
N N o2
—tpy=K¢ , K= —Da—é,frW(ﬁ) ; (6.30)
with
%& ,
W) = 15— R (u©) (631)

The Schrodinger equation is separable, so we can write ¥(€,t) = e~ £t ¢(£), obtaining

E¢=-Doee +W(E) o . (6.32)
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Since the zero mode solution du = «/(§) is an E = 0 solution, and since u/(§) must be nodeless, the
zero mode energy must be the ground state for this system, and all other eigenvalues must lie at pos-
itive energy. This proves that the front solution u(xz — V't) is stable, provided the zero mode lies within the
eigenspectrum of eqn. 6.32.

For ¢ -+ —oco we have u — u, with R'(u,) < 0 by assumption. Thus, W(—o00) > 0 and all £ > 0
solutions are exponentially decaying. As { — +o0, the solutions decay exponentially if R'(u,) < 0, i.e.
if uy is a stable fixed point of the local dynamics. If on the other hand u, is an unstable fixed point, then
R (uR) > 0. We see immediately that propagation velocities with V' < V = 24/DR'(uy) are unstable,
since W (4o00) < 0 in such cases. On the other hand, for V' > V_, we have that

V(&) = V2 du(e) ~ Ay exp (VIZ=V2¢/2D) (633)

which is unnormalizable! Hence, the zero mode is no longer part of the eigenspectrum — translational
invariance has been lost! One possible resolution is that I = V_, where the threshold of normalizability
lies. This is known as the Fisher velocity.

6.1.4 Fisher’s equation

If we take R(u) = ru(1 — u), the local reaction kinetics are those of the logistic equation @ = ru(l — u).
With r > 0, this system has an unstable fixed point at v = 0 and a stable fixed point at u = 1. Rescaling
time to eliminate the rate constant r, and space to eliminate the diffusion constant D, the corresponding
one-dimensional RDE is

ou 0%

ot~ 0a?
which is known as Fisher’s equation (1937), originally proposed to describe the spreading of biological
populations. Note that the physical length scale is ¢ = (D/r)'/? and the physical time scale is 7 = .
Other related RDEs are the Newell-Whitehead Segel equation, for which R(u) = u(1 — u?), and the
Zeldovich equation, for which R(u) = u(1 — u)(a — u) with 0 < a < 1.

fu(l—u) | (6.34)

To study front propagation, we assume u(z,t) = u(xz — Vt), resulting in

d*u du ,
where
Uu) = =3’ + 3u® . (6.36)

Let v = du/d¢. Then we have the N = 2 dynamical system

du _ dv _
. T

with fixed points at (v*,v*) = (0,0) and (u*,v*) = (1,0). The Jacobian matrix is

0 1
M = <2u* . _V> (6.38)

—u(l—u)—Vo (6.37)
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Figure 6.2: Evolution of a blip in the Fisher equation. The initial configuration is shown in red. Progres-
sive configurations are shown in orange, green, blue, and purple. Asymptotically the two fronts move
with speed V' = 2.

At (u*,v*) = (1,0), we have det(M) = —1 and Tr(M) = —V, corresponding to a saddle. At (u*,v*) =
(0,0), we have det(AM) = 1 and Tr(M) = —V/, corresponding to a stable node if V' > 2 and a stable spiral
if 0 <V < 2. If u(z, t) describes a density, then we must have u(x,t) > 0 for all x and ¢, and this rules
out 0 < V < 2 since the approach to the v* = 0 fixed point is oscillating (and damped).

6.1.5 Velocity selection and stability

Is there a preferred velocity V? According to our analysis thus far, any V' > V, = 2 will yield an
acceptable front solution with u(z,t) > 0. However, Kolmogorov and collaborators proved that starting
with the initial conditions u(z,t = 0) = ©(—xz), the function u(z,t) evolves to a traveling wave solution
with V' = 2, which is the minimum allowed propagation speed. That is, the system exhibits velocity
selection.

We can begin to see why if we assume an asymptotic solution u(§) = Ae "¢ as & — oo. Then since
u? < u we have the linear equation

W'+ VU +u=0 = V=r+r' . (6.39)
Thus, any x > 0 yields a solution, with V' = V(). Note that the minimum allowed valueis V,;, = 2,
achieved at k = 1. If k < 1, the solution falls off more slowly than for x = 1, and we apparently have a

propagating front with V' > 2. However, if k > 1, the solution decays more rapidly than for x = 1, and
the x = 1 solution will dominate.

We can make further progress by deriving a formal asymptotic expansion. We start with the front equa-
tion
W+ Vi +u(l—u)=0 (6.40)

and we define z = {/V, yielding

du  du
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with e = V2 < 1. We now develop a perturbation expansion:
u(z; €) =ug(z) +euy(z) +... (6.42)

and isolating terms of equal order in ¢, we obtain a hierarchy. At order O(e"), we have

uf +ug (1 —ug) =0 (6.43)
which is to say
dug -1
—————— =dln(y, —1)=dz . (6.44)
ug(up — 1) (4 )
Thus,
1
up(z) = m ) (6.45)

where a is a constant of integration. At level k of the hierarchy, with £ > 1 we have
k
ug_l + u;C + U — Zul uk_l = O s (6.4:6)
1=0

which is a first order ODE relating u,, at level k to the set {u;} at levels j < k. Separating out the terms,
we can rewrite this as

k—1
up + (1 — 2ug) up = —uj_q — Z U Up_y - (6.47)
=1
Atlevel £ = 1, we have
uy + (1= 2ug)uy = —uy . (6.48)

Plugging in our solution for u,(z), this inhomogeneous first order ODE may be solved via elementary
means. The solution is

In cosh(zga)

-~ = 7 4
2cosh2(25“) (649)

ul(z =

Here we have adjusted the constant of integration so that u; (a) = 0. Without loss of generality we may
set a = 0, and we obtain

1 1 Incosh(£/2V)

= — oV . 6.50
u(®) exp(§/V)+1  2V2? cosh¢/2V) oV (6.50)
At £ = 0, where the front is steepest, we have
—d(0) = — 4 OV (651)
v . .

Thus, the slower the front moves, the steeper it gets. Recall that we are assuming V' > 2 here.
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6.2 Multi-Species Reaction-Diffusion Systems

We’ve already introduced the general multi-species RDE,
ou,
ot

We will be interested in stable traveling wave solutions to these coupled nonlinear PDEs. We’ll start
with a predator-prey model,

ON, N, 9*N,
W:T‘N1< —7>—OZN1N2+D1W

6.53
ON, 0°N, (659
1 = PNiNy =Ny + Dy o5

Rescaling z, t, N}, and N,, this seven parameter system can be reduced to one with only three parame-
ters, all of which are assumed to be positive:

ou 0%

(6.54)
ov %
TR COR

The interpretation is as follows. According to the local dynamics, species v is parasitic in that it decays
as v = —abv in the absence of u. The presence of u increases the growth rate for v. Species u on the other
hand will grow in the absence of v, and the presence of v decreases its growth rate and can lead to its
extinction. Thus, v is the predator and w is the prey.

Before analyzing this reaction-diffusion system, we take the opportunity to introduce some notation on
partial derivatives. We will use subscripts to denote partial differentiation, e.g.

0¢ % %
¢t ot ) ¢xw 6332 ) quwt 6332 ot , elc (6 55)
Thus, our two-species RDE may be written
uw=u(l—u—v)+Du,,
(6.56)

v, =av(u—>b) +v,,
We assume 0 < b < 1, in which case there are three fixed points:

empty state: (u*,v") = (0,0)
prey at capacity: (v*,v*) = (1,0)

coexistence: (u*,v*) = (b,1 — b)
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We now compute the Jacobian for the local dynamics:
Uy Uy\  (1—2u—w —u
M= <i}u i)v> N < av a(u — b)) ‘ (6:57)
We now examine the three fixed points.
o At (u*,v*) = (0,0) we have
1 0
Mooy =1{g _p = T=1-b ,D=-b , (6.58)

corresponding to a saddle.

e At (u*,v*) = (1,0),

M ) = <_01 a(l_—l b)) = T=a(l-0—-1 ,D=—-a(l-b) |, (6.59)

which is also a saddle, since 0 < b < 1.

e Finally, at (u*,v*) = (b,1 —b),
M = b b = I'=—b D = ab(1 —b) (6.60)
(b,1-b) a(l—=0) 0 ’ ) '

Since T < 0 and D > 0 this fixed point is stable. For D > 17? it corresponds to a spiral, and
otherwise a node. In terms of a and b, this transition occurs at a = b/4(1 — b). That is,

stable node: a < 10=0) ) stable spiral: a > =0 (6.61)
The local dynamics has an associated Lyapunov function,
u u v v
L(u,v)—ab[g—l—ln<;> +(1_b)[1—b_1_ln<1—b>] . (6.62)

The constants in the above Lyapunov function are selected to take advantage of the relation x —1—Inz >
0; thus, L(u,v) > 0, and L(u,v) achieves its minimum L = 0 at the stable fixed point (b, 1 — b). Ignoring
diffusion, under the local dynamics we have

dL 9
— = — — < . .
o a(u—0)*<0 (6.63)
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6.2.1 Propagating front solutions

We now look for a propagating front solution of the form
u(z,t) = u(z — Vi) , v(xz,t) =v(x—-Vt) . (6.64)
This results in the coupled ODE system,
Du'" +Vu' +u(l —u—v)=0
u ] u ,u( u—v) (6.65)
v+ Vv +av(u—>5)=0 |,

where once again the independent variable is £ = x — V't. These two coupled second order ODEs may
be written as an N = 4 system.

We will make a simplifying assumption and take D = D, /D, = 0. This is appropriate if one species
diffuses very slowly. An example might be plankton (D; =~ 0) and an herbivorous species (D, > 0). We
then have D = 0, which results in the N = 3 dynamical system,

du 1
d_§__v u(l—u—v)
dv _
d¢
dw
d—é——av(u—b)—Vw ,
where w = v’. In terms of the N = 3 phase space ¢ = (u,v, w), the three fixed points are
(u*7 ,U*7 w*) = (07 07 0)
(u®, 0", w") = (1,0,0) (6.67)
(u*,v*,w*) = (b,1 —b,0)
The first two are unstable and the third is stable. We will look for solutions where the stable solution
invades one of the two unstable solutions. Since the front is assumed to propagate to the right, we must
have the stable solution at { = —o0, i.e. p(—00) = (b,1 — b,0). There are then two possibilities: either (i)
p(+00) = (0,0,0), or (ii) p(+00) = (1,0,0). We will call the former a type-I front and the latter a type-II
front.

w (6.66)

For our analysis, we will need to evaluate the Jacobian of the system at the fixed point. In general, we
have
Vi1 —-2u*—v*) Vol 0
M = 0 0 1 . (6.68)
—av* —a(u*—b) -V
We now evaluate the behavior at the fixed points.

e Let’s first look in the vicinity of ¢ = (0,0,0). The linearized dynamics then give

p -Vt 0o o
Ny, M=| 0 0 1 , (6.69)

dg 0 ab -V
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- //
/ N

Figure 6.3: Analysis of the characteristic polynomial for the Jacobian of the linearized map at the fixed
point (u*,v*,w*) = (b,1 — b,0).

/

where ¢ = ¢* + 1. The eigenvalues are

M=V Ny =—3VEiVV2+dab . (6.70)
We see that A, , < 0 while A3 > 0.

e In the vicinity of ¢ = (1,0, 0), we have
d |Z N 0
dn
E=Mn . M=| 0 0 1 , (6.71)

The eigenvalues are
M=V Ny =—3VELi/V2—da(l-b) . (6.72)
We now have A\; > 0 and Re(}, ;) < 0. If we exclude oscillatory solutions, then we must have

V>V =2a(l—b) . 6.73)

min

¢ Finally, let’s examine the structure of the fixed point at ¢ = (b,1 — b, 0), where

p bVt bVl 0
N _ My, M= 0 0 1 , (6.74)

d —a(l—-b) 0 -V
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O<a<a, ﬁ a>a, /f_
”_/ u_’/\/\/
v_\ ﬁ/\
o

3 3

Figure 6.4: Sketch of the type-II front. Left panel: 0 < a < ag, for which the trailing edge of the front
is monotonic. Right panel: a > ay, for which the trailing edge of the front is oscillatory. In both cases,
+ < b < 1, and the front propagates to the right.

The characteristic polynomial is

P(\) =det(\-I— M)
=N+ (V=bV YN —bA+ab(1 -tV . (6.75)

Although physically we want to restrict a > 0, we will analyze this cubic for general a, but still
0 < b;. First, note that P()) has extrema when P’(\) = 0, which is to say

D Y X I VAL A ) R (6.76)

Note that A\_ < 0 < A, Since the sign of the cubic term in P(\) is positive, we must have that A_ is
alocal maximum and A, alocal minimum. Note furthermore thatboth A, and A _ are independent
of the constant a, and depend only on b and c. Thus, the situation is as depicted in fig. 6.3. The
constant a merely shifts the cubic P(\) uniformly up or down. When a = 0, P(0) = 0 and the
curve runs through the origin. There exists an a; < 0 such that for a = a; we have P(A_) = 0.
Similarly, there exists an a, > 0 such that for a = a, we have P(A, ) = 0. Thus,

a<a; <0 : Re(A,) <0<y
a<a<0 : A <A<0<)g
a=0 : XN <A=0<); (6.77)
0<a<ay, : A <0<A<Ag
0<ay<a : A <0<Re(Ay3)

Since this is the fixed point approached as £ - —oo, we must approach it along one of its unstable
manifolds, i.e. along a direction corresponding to a positive eigenvalue. Thus, we conclude that if
a > a, that the approach is oscillatory, while for 0 < a < a, the approach is monotonic.

In fig. 6.4 we sketch the solution for a type-II front, where the stable coexistence phase invades the
unstable ‘prey at capacity” phase.
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v
g(u,v) =0
g<0
g>0
<0
f>0
u
f(u,v) =0

Figure 6.5: Sketch of the nullclines for the dynamical system described in the text.
6.3 Excitable Media

Consider the following N = 2 system:

u= f(u,v)

b= cglu) | (6.78)

where 0 < ¢ < 1. The first equation is ‘fast’ and the second equation ‘slow’. We assume the nullclines
for f = 0 and g = 0 are as depicted in fig. 6.5. As should be clear from the figure, the origin is a stable
tixed point. In the vicinity of the origin, we can write

flu,v) = —au—bv+ ...

6.79
g(u,v) = +cu—dv+... (6.79)

where a, b, ¢, and d are all positive real numbers. The equation for the nullclines in the vicinity of the
origin is then au + bv = 0 for the f = 0 nullcline, and cu — dv = 0 for the g = 0 nullcline. Note that

y= Ao (e by (6.80)
A(u, ) |90 ec —ed
We then have TrM = —(a + ed) < 0 and detM = e(ad + bc) > 0. Since the trace is negative and

the determinant positive, the fixed point is stable. The boundary between spiral and node solutions is
det M = 1(TrM)?, which means

|a — ed| > 2V ebc : stable node

(6.81)
la — ed| < 2Vebe : stable spiral

Although the trivial fixed point (u*,v*) = (0,0) is stable, it is still excitable in the sense that a large
enough perturbation will result in a big excursion. Consider the sketch in fig. 6.6. Starting from A, v
initially increases as v decreases, but eventually both v and v get sucked into the stable fixed point at
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glu,v) =0

-~ f<o
\// i
A A B
flu,w) =0

Figure 6.6: Sketch of the fizzle, which starts from A, and the burst, which starts from A’.

O. We call this path the fizzle. Starting from A’, however, u begins to increase rapidly and v increases
slowly until the f = 0 nullcline is reached. At this point the fast dynamics has played itself out. The
phase curve follows the nullcline, since any increase in v is followed by an immediate readjustment of
u back to the nullcline. This state of affairs continues until C is reached, at which point the phase curve
makes a large rapid excursion to D, following which it once again follows the f = 0 nullcline to the
origin O. We call this path a burst. The behavior of u(t) and v(t) during these paths is depicted in fig.
6.7.

Ul B (%

A'q D
. B

A \

O \/ t OAA t

D

Figure 6.7: Sketch of u(t) and v(t) for the fizzle and burst.

It is also possible for there to be multiple bursts. Consider for example the situation depicted in fig. 6.8,
in which the f = 0 and g = 0 nullclines cross three times. Two of these crossings correspond to stable
(attractive) fixed points, while the third is unstable. There are now two different large scale excursion
paths, depending on which stable fixed point one ends up at'.

"For a more egregious example of a sentence ending in several prepositions: “What did you bring that book I didn’t want to
be read to out of up around for?”
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\ f<0 9<9 glu,v)=0

f(u,v) =0

Figure 6.8: With three nullcline crossings, there are two stable fixed points, and hence two types of burst.
The yellow-centered circles denote stable fixed points, and the blue-centered star denotes an unstable
fixed point.

6.3.1 Front propagation in excitable media

Now let’s add in diffusion:

ut:Dlumm+f(u7v) (682)
Ut:DZUxx+Eg(uvv) '

We will consider a specific model,

u, =ula —u)(u—1) —v+ Duy, (6.83)
vy =bu—~yv '

This is known as the FitzHugh-Nagumo model of nerve conduction (1961-2). It represents a tractable
simplification and reduction of the famous Hodgkin-Huxley model (1952) of electrophysiology. Very
briefly, u represents the membrane potential, and v the contributions to the membrane current from
Na™ and K+ ions. We have 0 < a < 1, b > 0, and v > 0. The nullclines for the local dynamics resemble
those in fig. 6.5, with the nullcline for the slow reaction perfectly straight.

We are interested in wave (front) solutions, which might describe wave propagation in muscle (e.g.
heart) tissue. Let us once again define { = x — Vt and assume a propagating front solution. We then
arrive at the coupled ODEs,

Du" +Vu' +h(u)—v=0

, (6.84)
Vv 4+bu—yv=0 |

where

h(u) =u(a —u)(u—1) . (6.85)
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a /<VE’ f>0 SB
o\/ A U

flu,v) =0

Figure 6.9: Excitation cycle for the FitzHugh-Nagumo model.

Once again, we have an NV = 3 dynamical system:

du _
d¢
dv _ -1 -1

€ bV u+~vV v (6.86)
dw
dg

w

=D 'hu)+Dtv—-VDtw |

where w = /.

We assume that b and « are both small, so that the v dynamics are slow. Furthermore, v remains small
throughout the motion of the system. Then, assuming an initial value (u,, 0,0), we may approximate
up &~ Dy, + h(u) . (6.87)

With D = 0, the points u = 1 and « = 1 are both linearly stable and u = a is linearly unstable. For finite
D there is a wave connecting the two stable fixed points with a unique speed of propagation.

The equation Du” + Vu' = —h(u) may again be interpreted mechanically, with h(u) = U’(u). Then since
the cubic term in h(u) has a negative sign, the potential U(u) resembles an inverted asymmetric double
well, with local maxima at v = 0 and © = 1, and a local minimum somewhere in between at u = a. Since

1
U)—-U(1) = /du h(u) = 5(1—2a) (6.88)
0

hence if V > 0 we must have a < 3 in order for the left maximum to be higher than the right maximum.
The constant V' is adjusted so as to yield a solution. This entails

[e'e] 1
V_/dgug = Vo/duu5 =U(0)-U1) . (6.89)
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Figure 6.10: Sketch of the excitation pulse of the FitzHugh-Nagumo model.

The solution makes use of some very special properties of the cubic h(u) and is astonishingly simple:
V=(D/2)"Y*(1—-2a) . (6.90)
We next must find the speed of propagation on the CD leg of the excursion. There we have
u = Dug, + h(u) —ve (6.91)
with u(—00) = up and u(4+00) = u.. The speed of propagation is
V = (D/2)'? (ug — 2up +uy) (6.92)

We then set V = V to determine the location of C. The excitation pulse is sketched in fig. 6.10

Calculation of the wave speed

Consider the second order ODE,
Lu)=Du" +Vu' + Alu —uy)(uy —u)(u —ug) =0 . (6.93)
We assume v, , 5 are all distinct. Remarkably, a solution may be found. We claim that if
= Mu—uy)(u—uy) (6.94)

then, by suitably adjusting A, the solution to eqn. 6.94 also solves eqn. 6.93. To show this, note that
under the assumption of eqn. 6.94 we have

pdu du

YT e

= A (2u — uy — uy) v (6.95)

= /\2(U —ug)(u — ug)(2u — uy — uy)
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/\\ : I

Figure 6.11: Mechanical analog for the front solution, showing force F'(z) and corresponding potential
U(x).

Thus,

L(u) = (u—uy)(u— uy) [)\QD(2u — Uy — Uy) + AV + A(ug — u)}

(6.96)
= (u—uy)(u — uy) [(2)\2D — Au+ (AV + Aug — N2 D(uy + u2))]
Therefore, if we choose
A AD
A=o 3D , V=co T(u1+u2—2u3) , (6.97)

with o = £1, we obtain a solution to £(u) = 0. Note that the velocity V has been selected.

The integration of eqn. 6.94 is elementary, yielding the kink solution

u(e) = 2t T e [A(ug — ug)(€ — &)l
1+ exp [Muy — up) (€ = &)l (6.98)

= %(ul +uy) + %(Ul — uy) tanh[%/\(uQ —uy)(€ — 50)] )

where § is a constant which is the location of the center of the kink. This front solution connects u = u;
and u = u,. There is also a front solution connecting u; and us:

u(€) = 5(uy +ug) + 5(uy — uy) tanh[%)\(ug —up)(§ — fo)] ; (6.99)
with the same value of A\ = o04/A4/2D, but with a different velocity of front propagation, given by
V = a(AD/2)"/?(u; + us — 2uy), again with o = +1.

It is instructive to consider the analogue mechanical setting of eqn. 6.93. We write D — M and V' — 7,
and u — z, giving
Mi+~vyi=Ax —z)(x —zy)(x —z3) = F(z) (6.100)

where we take r; < z, < z3. Mechanically, the points z = x, ; are unstable equilibria. A front solution
interpolates between these two stationary states. If v = V' > 0, the friction is of the usual sign, and the
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path starts from the equilibrium at which the potential U(x) is greatest. Note that

T3

U(zy) — Ulxg) = /dw F(x) = 35(x5 — 1) | (xg — 21)* — (3 — xz)z] - (6.101)

Ty

so if, for example, the integral of F'(x) between z; and z; is positive, then U(x,) > U(z4). For our cubic
force F'(z), this occurs if z, > %(zl + x3).
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