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Abstract

Existing group theoretic analysis of pattern formation in three dimensions [T.K. Callahan, E. Knobloch, Symmetry-breaking
bifurcations on cubic lattices, Nonlinearity 10 (1997) 1179-1216] is used to make specific predictions about the formation
of three-dimensional patterns in two models of the Turing instability, the Brusselator model and the Lengyel-Epstein model.
Spatially periodic patterns having the periodicity of the simple cubic (SC), face-centered cubic (FCC) or body-centered cubic
(BCC) lattices are considered. An efficient center manifold reduction is described and used to identify parameter regimes
permitting stable lamellee, SC, FCC, double-diamond, hexagonal prism, BCC and BCCI states. Both models possess a special
wavenumbelk, at which the normal form coefficients take on fixed model-independent ratios and both are described by
identical bifurcation diagrams. This property is generic for two-species chemical reaction—diffusion models with a single
activator and inhibitor. ©1999 Elsevier Science B.V. All rights reserved.

PACS:82.40.Bj; 47.54.+r; 47.20.Ky; 87.10.+e
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1. Introduction

The instability now identified with Alan Turing’s name [1] is believed to be involved in the formation of structure

in many systems of biological interest [2]. The instability leads to a process that might be called differentiation
and in its simplest realization is the result of a competition between an activator and an inhibitor diffusing at
different rates. The instability that results has one characteristic property: its scale or wavelength is determined by
the concentrations of ambient species and the diffusion coefficients, and is therefore independent of any externally
imposed length scales. In the process of morphogenesis the instability is likely to be triggered by the increasing scale
of the system: the instability occurs once the system is large enough that it contains several natural wavelengths of
the instability.

* Corresponding author. Fax: +1-510-643-8497; e-mail: knobloch@physics.berkeley.edu.

0167-2789/99/$ — see front matter ©1999 Elsevier Science B.V. All rights reserved.
PIl: S0167-2789(99)00041-X



340 T.K. Callahan, E. Knobloch/Physica D 132 (1999) 339-362

The formation of structure or ‘patterns’ by the Turing instability has been investigated in a number of models of
the instability. One of the most popular of these is the Brusselator model [3]. These studies include the formation of
structure in one dimension, either with periodic boundary conditions designed to mimic large systems [4], or with
mixed boundary conditions appropriate for realistic finite systems [5]. In one dimension the former subsume the
case of no-flux (or Neumann) boundary conditions. Similar studies have also been carried out in two [6] and three
dimensions [7-9], usually with periodic boundary conditions. In the plane the general theory describing the spatially
periodic patterns arising from a spontaneous symmetry-breaking steady state instability in isotropic homogeneous
systems is described in [10] (see also [11]). The theory focuses on patterns symmetric with respect to the symmetry
operations preserving a particular two-dimensional lattice, for example, the square or the hexagonal lattice generated
by wavevectors of magnitude, where 2r/ k7 is the instability wavelength. This assumption selects four (resp., six)
wavevectors from the circle of marginally stable wavevectors present at onset. The theory then uses group-theoretic
techniques to construct coupled evolution equations for the evolution of the amplitudes of these wavevectors. These
equations predict the basic sequence of transitions that may be expected as a bifurcation parameter is varied. For
applications to specific models of the instability it is necessary to compute the coefficients in these equations from
the partial differential equations of the model with periodic boundary conditions. This is typically done using center
manifold reduction. Because of the use of periodic boundary conditions with petiter 2he aspect ratio of the
system is not a parameter of the problem, although effecteroéd breaking of translation invariance (due to
distant sidewalls) can be included by other methods [12]. Instead the theory uses one of the externally imposed
concentrations as the bifurcation parameter. The predictions of the resulting theory agree well with the results of
numerical integration of the model partial differential equations [6], at least for the Brusselator model. Other lattices,
with larger basic cell relative to the wavelength, can also be used, and allow the study of more complex patterns
[13].

Because of its intrinsic wavelength the Turing instability readily forms three-dimensional structures as well.

In sufficiently large domains such structures can be essentially periodic. It makes sense, therefore, to extend the
type of theory summarized above to three dimensions. For states with cubic symmetry, such an extension was
recently completed [14], and allows us to make systematic predictions of the types and stability properties of three-
dimensional patterns that arise in various models of the Turing instability. The purpose of the present paper is to make
such predictions for two models, the Brusselator model already mentioned, and the more recent Lengyel-Epstein
model [15]. In Section 2 we summarize the predictions of the theory for three lattices with cubic symmetry: the
simple cubic (SC), the face-centered cubic (FCC) and the body-centered cubic (BCC). In each case we simply list
the relevant amplitude equations together with the types of patterns that form in the primary symmetry-breaking
instability. We do not derive these equations here, nor do we discuss abstractly their stability properties. For these
the reader is referred to the paper by Callahan and Knobloch [14]. We truncate the amplitude equations at third order
in the pattern amplitude, and use these to introduce the coefficients that have to be computed from the two models.
The results of the center manifold reduction used to evaluate these coefficients are summarized in Sections 3 and 4
while the details of the reduction procedure are relegated to Appendix A. These sections also refer to the existing
theory for the construction of the resulting bifurcation diagrams. In both models the coefficients can be expressed
in terms of a single dimensionless parameter we Rallhis fact allows us to divide the space of coefficients into
regions with different diagrams, and indicate the trajectory through this sp&ds saried, i.e., how one bifurcation
diagram changes into the next one. We find that on the simple cubic lattice a one-dimensional state we call lamellse
can be stable, as can the three-dimensional simple cubic state, and identify the raRgdsere these states are
expected. Similarly, on the face-centered cubic lattice we show that both lamellee and the two three-dimensional
states we call FCC and double-diamond states can be stable, while on the BCC lattice we find that generically there
are no stable patterns near onset. In this case we show, by examining the regime in which the coefficient of the
quadratic terms in the amplitude equations is small, that a number of these unstable branches acquire stability at



T.K. Callahan, E. Knobloch/Physica D 132 (1999) 339-362 341

secondary bifurcations, and show that as a result two three-dimensional states we call BCC and BCCI can become
stable. Hexagonal prisms and lamellee can also acquire stability at finite amplitude. In Section 5 we compare the
predictions for the two models and summarize their implications. Although we do not carry out simulations of
the model partial differential equations we do compare our results with the three-dimensional simulations of the
Brusselator reported in [8,9].

We use two models, the first of which is the Brusselator [3],

X=-B+1X+X?Y+A+D,V2X, Y =BX-X%+D,V. (€

HereX andY are the chemical concentrations of an activator and an inhibitor, respecfiyebnd D, are their
diffusivities (Dx < D, ), andA andB are parameters which are held fixed. Although the Brusselator has been much
studied as a model system exhibiting a Turing instability it is not a model for any specific chemical system per
se. In contrast the second system we study, the Lengyel-Epstein model [15], models the chlorite—iodide—malonic
acid (CIMA) reaction in which the Turing instability was first experimentally established [16]. More precisely,
the Lengyel-Epstein model describes the closely related chlorine dioxide—iodine—malonic acid (CDIMA) reaction
which also exhibits the Turing instability. Like the Brusselator the Lengyel-Epstein model is a two species model
with one equation for an activator{() and another for an inhibitor (CIf). In dimensionless variables the model

takes the form

4XY

X=a—-X—-— ——
14 X2

+ V2X, Yy =46 [b <x - %) + cvzy} , 2)
whereX andY again represent the activator and inhibitor concentratioisthe ratio of their diffusivities, and
a andb are fixed parameters. In agueous solutida generally close to one and consequently the conditions for
the Turing instability are not satisfied. However, if starch is present, the iodide mobility is dramatically reduced
(because of the binding of Ito the starch) and the effective diffusivity ratio becomes larger by the factorl.
Thus the starch plays a vital if passive role in the appearance of the instability. A detailed derivation of the model
and its confrontation with experiments is described in [17].

Both models require four parameters for their complete specification. We think of two of these.B (resp.,
a, b), as representing concentrations of input chemicals, while the remaining two specify the diffusion rates of the
activator and inhibitor. Moreover, the nonlinear terms in the activator and inhibitor equations are of the same form
in each model. This fact, as we shall see, has important consequences for the properties of these models. In the
following we first describe the general theory we use to study pattern formation in three dimensions; this theory is
completely model-independent but depends on certain coefficients which are model-specific. Thus the application
of the theory to these two models reduces to the computation of these coefficients.

2. Amplitude equations for three-dimensional patterns

Inthis section we describe the construction of the amplitude equations governing the evolution of three-dimensional
spatially periodic patterns. The discussion is in terms of a bifurcation para®etext occurs in the Brusselator
model (1) but is otherwise completely general. We consider a system of reaction—diffusion equations with a spa-
tially uniform equilibrium state and suppose thatkagaries this equilibrium state loses stability to an exponentially
growing perturbation ofinite wavenumbekt when B reaches a critical valuBt (see Fig. 1). In the following
we focus on spatiallyperiodic patterns only, and consequently formulate the resulting bifurcation problem on
a three-dimensional lattice. Such a lattice is invariant under translations in three independent directions and the
symmetries of the unit cell. This assumption is equivalent to the selectioffimifeset of 2V wavevectors from
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Fig. 1. The neutral stability curvB (k) for the Brusselator model with = 2 andD, = 4D;.

the sphere of marginally stable wavevectors presemt at By. In the following we assume that the unit cell is
generated by wavevectors of lengthand that it hasubicsymmetry. There are three fundamental possibilities for
choosing such wavevectors and these lead to the SC lattice, the FCC lattice and the BCC lattice. In each of these
cases the partial differential equations can be projected onto the corresponding Fourier modes and the resulting
infinite-dimensional set of ordinary differential equations reduced;etder manifold reductiofl8], to a finite set

of ordinary differential equations for the\2near-marginal modes valid neBr= Br. In terms of these modes the
concentratiorX (x) is given by

2N ]
X(x) = sz ki 4nlt.,
=1

where thek; are the marginally stable wavevectors of lengittand thez ; are their complex amplitudes. The terms
denoted n.l.t. areonlinearin the z; and include the various harmonics of thegenerated by the nonlinearities.
This reduction procedure is described in detail for the Brusselator in Appendix A.

For the SC latticeN = 3 and the critical wavevectors may be chosen to be

relative to Cartesian coordinates y, z). For systems with the periodicity of the FCC lattide = 4 and the critical
wavevectors are

k k k
ki=—ks = \/—%(1, 1,1), ky=—kg= \/—%(1, —1,-1), kg=—ks= 713(—1, 1, -1,

k
kq=—kg = 7%(-1, ~1,1).
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Finally, for the BCC lattice N = 6 and the critical wavevectors are

k k k
ky=—k7 = —T2(1, 1,0), kp=—kg= —Tz(o, 11, ka=—ko= —T2<1, 0, 1),

V2 V2 V2
k k k
ks=—kio= 7%(1, -1,0), ks = k11 = 712(0, 1 -1, ke = —ki2 = 7%(—1, 0,D.

Since X is a real scalar the amplitudes of equal and opposite wavevectors must be complex conjugates of one
another. Thus the SC case is described by three coupled equations of the form

q (= Sf1(z1, 22, 23)
al2]= Sf2(z1,22,23) |,
23 f3(z1, 22, 23)

while the FCC and BCC cases are described by four- and six-dimensional systems. The structure of these equations
follows from the equivariance condition

y - f@=f(y-2, Vyerl, (3)
expressing the requirement thatifs a state of the system, sojs z. Herel™ is the symmetry group of the lattice
on which the problem is defined, i.e., the grdup= 7340 & Z,. HereT? is the three-torus of translation, is
the group of orientation-preserving symmetries of the cube, and the non-trivial elen#&ntegresents inversion
through the origin. The three-tord@® acts upon each amplitude by

a zj—>z gkia g c RS
while ¢ € Z; acts by

c: Zj —> Zj.

The groupO acts differently upon each of the lattices, but in each case is a group of permutationg pf The
form of the resulting equations is independent of the specific model under consideration. Consequently, the reduced
equations can be studied abstractly first, as done in [14], to determine the humber of possible solutions and their
stability properties.

The equivariance condition (3) determines the formyfoflo third order in the amplitudes; the most general
possible system for the SC lattice is

21 = Az1 + 1oy (122)% + 12212 + I231%) 21 + halzal?z1, 4)

whereh 5, andhgz are real coefficients and o« (B — Brt). To this equation one must append equationszfor
and z3 obtained by applying appropriate elemeptse T" to Eq. (4). Thusfa(z1, z2,z3) = fi(z2, 71, z3) and
f3(z1, 22, 23) = f1(z3. z2, z1). For the FCC lattice the corresponding system is

21 =221 + hioy (1211 + |22 + |z3® + 124l®) 21 + halza/’21 + paZoZaia, (5)
while for the BCC lattice, the system is
f1=ha1 + 3a12(z2%6 + 2325) + a1lzal’z1 + as((z2l + |zal® + |zs/” + |z61%)21 + aglzal’z
+3a16(222425 + 237426). (6)

Again, the remaining equations are generated by applying suitabl€ to Egs. (5) and (6). Note that, in contrast
to the SC and FCC cases, the BCC equations contain a quadratic equivariant. The presence of this term has a
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Table 1

Maximal isotropy branches for the SC lattice

Name Solution o1 Branching equation
Trivial (0,0,0) 0 01=0

Lamellee (x,0,0) x2 A+ (h1,, +h3)o1 =0
Square prisms (x, x,0) 2x2 A+ 3(2h16y +h3)or =0
Simple cubic (x,x,x) 32 A+ 3(@hye, +h3)or =0

profound effect on the stability of the solutions: all solutions near the primary bifurcatibn=ad areunstable

[10]. Since we are looking for stable solutions we consider in the following the special case in which the coefficient
a1z is small The analysis of the resulting degenerate bifurcation allows us to ceggaomdanbifurcations that

can stabilize the unstable primary branches, much as in the two-dimensional problem on the hexagonal lattice [11].
Consequently, in the following we impose an additional reflection symnagt¢y-1) with the actionx : z — —z,

k € Zy(—1I). This symmetry forces all even terms in Eqg. (6) to vanish; the secondary bifurcations appear when
this symmetry is weakly broken [14]. This procedure is not arbitrary. We show in Sections 3 and 4 that realizable
values of the physical parameters exist for whighis indeed small, so that our results have a well-defined regime

of applicability.

The behavior of the resulting equations depends on the values of the coefficients and these in turn depend on the
physical problem under consideration and through that on the physical parameters. However, using group-theoretic
techniquesitis possible to analyze the properties of these equations once and for all, as done in [14]. These techniques
allow us to identify solutions that are always present. For each representation of the symmetry ¢B@uFCC
or BCC) we classify the nontrivial solutions (patterns) by their symmetries. For any satutiofas, ... , zy), we
define itsisotropy subgrougX (z) to be

Y={yel:y-z=2z}

For each isotropy subgroup there ifixed point subspace
Fix(Z)={zeCV:0-2=2z VoeX}

The usefulness of these definitions stems from the following [10]:

Equivariant Branching Lemma. LetTI be a Lie group acting absolutely irreducibly @1 and letf € En (D)
be aI'-equivariant bifurcation problem such that apasses througl a real eigenvalue ofdf)o o passes through
the origin with non-zero speed. LEtbe an isotropy subgroup satisfying

dimFix(Z) = 1.
Then there exists a unique smooth solution brancfi te 0 such that the isotropy subgroup of each solutioXis

A representation of a group is absolutely irreducibléf the only matrices which commute with all elementsof
are multiples of the identity. This is true for all three representationsef 7340 & Z» discussed in this paper.

For each of the lattices, the primary branches guaranteed by the Equivariant Branching Lemma are listed in
Tables 1-3 using the quantity = Z;V:ﬂz]‘lz as a measure of the solution amplitude. These branches are called
axial, although the less precise temmaximalis frequently used. The tables list these (steady) solutions of the
equations in the fornizs, ... , zn), N = 3, 4 and 6, respectively, to cubic order. In these tables the varialaled
y are taken to be real. Note that Table 3 is constructed for the drabZ»(—1); Table 4 gives the corresponding
results wherZ,(—1) is weakly brokends, small). Tables 1-3 list three, four and 10 primary solution branches; in
each case these branch simultaneously from the trivial (spatially uniform) state. Additional primary branches with
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Table 2
Maximal isotropy branches for the FCC lattice
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Name Solution o1 Branching equation

Trivial (0,0,0,0) 0 01=0

Lamellee (x,0,0,0) x? A+ (h1, +h3)o1 =0
Rhombic prisms (x,x,0,0) 2x2 A+ 3(2h16, +h3)o1 =0
Fcc (. x, %, %) 4x2 A+ 3@h1g, +h3+ p3)or =0

Double-diamond (—x, x, X, X) 452

A+ 711(4’11,01 + h3z — p3)or =0

Table 3
Maximal isotropy branches for the BCC lattice with the ex@ra—1) symmetry

Name Solution o1 Branching equation

Trivial (0,0,0,0,0,0) 0 0o1=0

Lamellae (x,0,0,0,0,0 x2 A+ajo1 =0

Rhombs (x,x,0,0,0,0) 2x? A+ §(4ay + az)or =0

Squares (x,0,0,x,0,0) 2x2 A+ 3(ar+aglor =0

Hex 0,0,0, x, x, x) 3x2 A+ %(Zal +az)o1 =0

Tri i(0,0,0, x, x, x) 3x2 A+ %(Zal +az)o1 =0

BCC (x,x,Xx,X,X,Xx) 6x2 }»+%(al+a3+as+a16)01=0
BCCI i(x,x,x,x,x,x) 6x2 A+ %(a1+a3+agfa16)01=0
123 (x,x,x,0,0,0) 32 A+ E(2a1 + ag)oy =0

A 0, x,x,0, —x, x) 452 A+ %(2111 + a3 + 2ag — a1g)o1 =0
B 0, x,x,0,x, x) 452 A+%(2a1 + a3 + 2ag + a1g)o1 =0
Table 4

The maximal isotropy branches of Table 3 when the reflection symr#eiry /) is broken. Of the original ten branches six remain as primary
branches

Name Solution o1 Branching equation

Trivial  (0,0,0,0,0,0) 0 01=0

Lamellze (x,0,0,0,0,0) x2 A+ax2=0

Rhombs (x,x,0,0,0,y) 2x2 4 y2

Squares (x,0,0,x,0,0) 2x? A+ (a1 +ag)x2 =0

A+ 2[(4ay + az)x? + 2a12y + azy?] = 0, y = 2a12/(4a1 — as)

Hex 0,0,0,x,x,x) 3x? A+ %[alzx + (2a1 4+ az)x?] =0
Tri’ (0,0,0,z,2,2)  3x%2+3y2 A+ 3[(2a1 + a3)|z|? — azslz|* + 2a24x(x% — 3yD)] = O,
z=x+iyeC y2 = [a12 + (a13 + a15 — a24)x? + 2a23x%] /(—a13 — a1s + aza + 6azsx)
BCC (x, %, x,x,x,x) 6x2 A+a12x+(a1+a3+ag+a16)x2 =0
BCCI i(x,x,x,x,x,x) 6x2 X+ (a1 + a3 + ag — a1)x2 =0
123 (ox.x,y.y.y) 3x2+3y2 A+ 3[(2a1 + a3)x? + 2a12y + (as + 2ag + 2a16)y%] = 0, y = a12/(2a1 — 2ag — 2a16)
A 0, x,x,0,—x,x) 4x? A+%(2a1+a3+2agfa16)x2=0
B’ O x,x,y,x,x) A2 +2y2 h+ 3[(2a1 + a3 + 2ag + a16)x? + 2a12y + (a3 + a16)y?] = 0, y = 2a12/(2a1 — as + 2ag — aze)

submaximalsotropy (dim FiXxX) > 1) are present on the FCC and BCC lattices [14,19] but these are most likely
always unstable and are omitted. A pictorial representation of the most interesting primary solutions can be found in
[14]. In the BCC case only six primary branches remain onc&gte-7) symmetry is broken, with four branches
becoming secondary. In Table 4 these are indicated by a prime. Note that the branch ldlrelgairtes fifth order

terms (with coefficientas, ais, azz andayg, listed in [14]) for its specification. We do not calculate these terms

in this paper. Additional branches (call&d-5" in [14]), arising from submaximal primary branches for the group

I' ® Z»(—1), are omitted.
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The stability properties of all these solutions for the three lattices have been determined as a function of the coef-
ficients [14]. These calculations summarize stability properties with respect to perturbations on the particular lattice
used, i.e., they establishstability but because they do not consider all possible perturbations they cannot establish
strict stability. In the following we compute the necessary coefficients for the two models under consideration.

3. The Brusselator model

We have performed the center manifold reduction for the Brusselator model (1) on the SC, FCC and BCC lattices
(see Appendix A). This system has a uniform equilibriuniatY) = (A, B/A). Traditionally, B is chosen as the
bifurcation parameter. Fd® < By = 1+ A2 this uniform state is stable with respect to oscillatory perturbations.

At B = By, the system undergoes a Hopf bifurcation to a periodic state with wavenumbér(see Fig. 1). For

2
B < B 1+A Dx
< = _—
T D,

the uniform state is stable with respect to stationary perturbation8.-AtBt, the system undergoes a steady-state
bifurcation to a Turing pattern with critical wavenumbgrgiven by

A
k2
T /DiD,

(see Fig. 1). We define the new parameter

D
R=D2=A D—", 7
y

so thatBt = (1+ R)2. In order to see the Turing instability we must hae < By; this requires

R(R +2) < A°.

We also need to know the quantityvhich appears in Egs. (4)—(6) 4t B) is the eigenvalue that vanishesbat= Br,
then a Taylor expansion gives us

1. Forthe SC lattice, we obtain
hio, = A(16— 12R — 26R? 4 16R%), h3 = §A(—136+ 70R + 229R? — 136R"),

where

A4
A= RAT R(AZ_RDZ ©)

We note from Eq. (4), however, that a simple rescaling of the amplituges>( ¢ z;) results in a rescaling of
A (A — A/z?). Thus the magnitude of is irrelevant; the bifurcation diagrams depend only upon the sign
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Fig. 2. The ratio of cubic coefficientss/ 11, as a function oR for the Brusselator (solid) and Lengyel-Epstein (dashed) models. Also shown
are the degeneracy conditiohg/ 1,5, = 0, -1, =2, —3.

Fig. 3. The bifurcation diagramsg versus. containing stable solutions on the simple cubic lattice. Here L, R and C denote the branches of lamellee,
rhombs and simple cubes, respectively. Stable solutions are denoted by a solid line. The first diagram correspepdsite < 0, i3 > 0,

while the second corresponds .3, + h3 < 0, k3 < 0.

of h3 and the ratidhz/ h1,,. We plot this ratio (solid curve) as a function &fin Fig. 2, together with the
degeneracy conditionss/ 1., = 0, —1, —2, —3. The curve starts withz < 0 atR = 0. The bifurcation
diagrams containing stable solutions are shown in Fig. 3. As a result, both lamellze and the simple cubic pattern
can be stable for appropriate range®othe lamellze are stable for&18 < R < 1.621 while the cubic pattern

is stable for 0675 < R < 0.818 and 1621 < R < 1.763. We note that the quantihy ,, + h3 has been

calculated before (see Appendix B of [20]).
2. For the FCC lattice, we obtain
1o, = 2 A(1296— 1036R — 1706R? + 1296R),
h3 = 555 A(—11464+ 8374R + 1522R? — 11464R3),
p3= A(144— 108R — 186R? + 144R%).
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Cc

Fig. 4. The(a, c¢) parameter plane for the FCC lattice showing the regions with different bifurcation diagrams. The solid (dashed) line indicates
the location of the Brusselator (Lengyel-Epstein) model as a functid®, @fith R increasing in the direction of the arrows. For the right
branchhz < 0 for both models, while for the left branély > 0. The pointsR = 0, 0.8, 1.25 for the Brusselator anll = 0.45, 0.625 for the
Lengyel-Epstein model are indicated, a®is= R, for both models.

3.

The bifurcation diagrams depend only upon the sighgdind the ratios

_ hl,al

= s

o
Il
I3

We show the resulting-c plane in Fig. 4, together with the curve (solid line) traced out by the coefficierRs as
increases. The curve starts with < 0 atR = 0 at the vertex nedu, ¢) = (—1, —3) and follows the solid line

in the direction indicated by the arrow. After exiting the plot at the right it reenters at the left, and eventually
re-enters again from the right, closing up wheneacheso. The resulting curve enters a number of regions in
thea-c plane containing bifurcation diagrams with stable solution branches. These are shown in Fig. 5. We note
that the transformation — —c has the sole effect of interchanging the FCC and double-diamond solutions in
the bifurcation diagrams. Thus in Fig. 5 we show only the diagrams fe0; the corresponding diagrams for
regions D, E, F, H, K and L are obtained from those for regions C, B, A, G, J and I, respectively, by switching
the FCC and double-diamond branch labels. An unstable submaximal primary branch is omitted from these
diagrams [19]. From these computations we conclude that lamellae are stabhB¥<OR < 1.297, the FCC

state is stable for.855 < R < 0.907 and 1265 < R < 1.329, and the double-diamond state is stable for
0.925< R < 1.228.

Finally, for the BCC lattice, we find that

B 2A3(R-1)
VR +1(A2 - R?)3/2°

a2
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Region A Region B Region C
h >0 h >0 h >0
3 3 3
Lp
R
é{i——'D
Region G Region I Region J
h >0 h <0 h <0
3 3 3
L F D Rr D g
\\\ ’R /".F ,l,R
“\[/.~.D [ .- L [ .- L
Nezzl . A 11 -
(0}
1

Fig. 5. The six bifurcation diagrams versusi (with ¢ > 0) containing stable solutions on the FCC lattice, labeled by region. Here L, R, F and

D denote the branches of lamellae, rhombs, FCC and double-diamond, respectively. The stable branches are denoted by a solid line. In regions
B and | of Fig. 4 the relative amplitude of the lamellae and FCC branches depends. Mierassume in these cases that & < 3. Forc < 0

the diagrams are the same, but with the labels F and D reversed.

This term too is altered by a rescaling of the amplitudes, but the quantity

2 2 2
4A°R(R -1
o Y2 _ HATRR- 17 (10)
A (A2 — R?)
is not. This scale-invariant quantity is therefore suitable for the construction of the bifurcation diagram. The
expansion to third order is only valid whens is small, i.e., whemR ~ R, = 1.

When this is the case, the coefficients of the cubic terms are given by

4

A
1, 8, 2, 43,
1)2{ }

{a1, az, ag, a16} ~ —3A{1,8,2,4} = TP

There is thus only one bifurcation diagram, shown in scale-invariant form in Fig. 6, with solid lines indicating
stable branches and broken lines unstable ones. In contrast to Figs. 3 and 5, we do spvetstisi, but

instead plot one of the components of each solution vers8gecifically, for each primary branch we plot the
amplitudex given in Table 4, and for each secondary branch we plot the amplitu@ibe figure reveals that
whenai2 # 0 both BCC and hexagonal prisms bifurcate from the trivial solution in a transcritical bifurcation
and are unstable near onset. Both, however, acquire stability at secondary bifurcations, the former at a saddle-
node bifurcation and the latter by shedding a branch of unstable states calle@Hi3 in contrast to the BCC

state the hexagonal prisms do not acquire stability at a secondary saddle-node bifurcation. In fact the BCC state
is the only stable state present fo 0. Consequently we might expect to see the BCC state at or just below
onset. The BCC state loses stability again at larger amplitude in a transcritical bifurcation involving the 123
branch, resulting in a hysteretic transition to the hexagonal prism state. With increasing amplitude this state also
loses stability, this time in a transcritical bifurcation involving the state rHoffitis loss of stability results in
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Fig. 6. The bifurcation diagramversusx for the BCC lattice neaR = R... For clarity, we plot the amplitude of one of the components of each
branch instead of; (see text). Solid (dashed) lines indicate stable (unstable) solutions. The bramigpénds upon fifth order terms and is
omitted. The branches shown coexist with the double diamond state (not shown), which is stable on the FCC lattice from onset.

Table 5
Regions of stability for each of the stable solutions. Here sS&mple cubic and ‘dd=double-diamond
Name Regions of stability
Brusselator Lengyel-Epstein
SC 0675< R <0.818 1621< R < 1.763 0357< R <0421 Q697< R < 0.756
Lamellee 0894 < R < 1.297 Q0493 < R < 0.650
FCC 0855< R < 0.907 1265< R < 1.329 0475< R <0503 Q642< R < 0.667
dd 0925< R < 1.228 0515< R < 0.632
Lamellze R~1 v/4 < x R~ /21— 4=0.583
Hex R~1 O<i<v R~ /21— 4=0583
BCC R~1 —1/60 < 1 < /20 R~ /21— 4=0583
BCCI R~1 /24 < A R~ /21— 4=0583

a hysteretic transition to either stable lamellae or stable BCCI which remain stable with increddotg that

at large amplitude two stable branches coexist; which is realized depends on initial conditions. The ranges of
with stable solutions are summarized in Table 5. As shown below this sequence of transitions is universal for
two-species activator-inhibitor systems in the regime where the truncated amplitude equations apply.

Note that wherR ~ 1 the FCC calculation shows that the double-diamond state bifurcates stably from the trivial
state. Unfortunately, the present formulation of the pattern formation problem does not permit us to discuss the
relative stability between patterns on different lattices. Empirically, however, solutions found by these techniques
are often found to be stable with respect to perturbations on other lattices, although they can be distorted by
long-wavelength instabilities. This is so, for example, for the square and hexagonal patterns identified in a two-
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dimensional version of this analysis [11]; these patterns have long been observed in a wide variety of experiments.
In three dimensions, the BCC structure has been found in the numerical studies of [8], while the double-diamond has
been seen in simulations of optical Turing structures in [21], where itis called the tetragonal structure. Experiments
on block copolymer melts also show double-diamond-like structures [22].

4. The Lengyel-Epstein model

The center manifold reduction can be applied equally easily to the Lengyel-Epstein model (2). This system has
a uniform equilibrium atX, Y) = (a/5, 1 + (a/5)2). Traditionally,b is chosen as the bifurcation parameter. For
3a%2 — 125
5a8

this uniform state is stable with respect to oscillatory perturbations: At by, the system undergoes a Hopf
bifurcation to a periodic state with wavenumlies 0. For

_ [125+ 1342 — 4a,/10(25+ a?)]c
B 5a

b>by=

b > bt

the uniform state is stable with respect to stationary perturbations sAbt, the system undergoes a steady-state
bifurcation to a Turing pattern with critical wavenumlgrgiven by

40a2

2 _
=St s a

Because of this relationship, we can choose to tk%ais a parameter instead @f This simplifies many of our
results. In order to emphasize the similarities between the Lengyel-Epstein and Brusselator models, we define

REk-Zr.

For the Lengyel-Epstein model, space has already been scaled to make the activator diffusivity equal to one. Thus
this definition is completely analogous to Eq. (7) for the Brusselator. We will continue to refeasathe (square
of the) wavenumber.
Sincek2 > 0 we must have: > 5,/5/3 ~ 6.45. The maximum attainable critical wavenumbeRis= k% =
24/10— 5~ 1.32. In order to see the Turing instability, we must haye> by, which requires

342 — 125 10

=1+ —.
125+ 1342 — 4a/10(25+ a?) R

The coefficient is given by

cd >

58(R + 5)2
A=——- """ (B — By). 11
8a(cs — 1)R( ™) (1)
4.1. Results

1. The results for the SC lattice are

h1.6, =4A(500— 1775R + 890R? 4 711R> 4 120R* 4 6R®),
h3 = —3A(8500— 28275 + 1397(R? + 11647R> + 1968R* + 98R>),
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where
_ 25¢86(R+5)
" 32a(cs — 1)2R?

is again irrelevant, except for the sign. We plot the ratigh1 », as a function oRR in Fig. 2 in the form of a
dashed line. The curve starts wiif < 0 atR = 0. The lamellze are stable ford21 < R < 0.697 and the
cubic pattern is stable for.857 < R < 0.421 and 0697 < R < 0.756.

2. For the FCC lattice,

h1,0, = 26 A(40500— 12887 + 64610R* + 49391R> + 8064R* + 394R>),
h3 = — 555 A(716500— 222787R + 111173®R? + 86026R°> + 14035R* + 6842R°),
p3=12A(1500— 46258 + 2310R? + 1773R° + 288R* + 14RY).

We show the curve traced out énc parameter space in Fig. 4, again as a dashed line. Broadly speaking, the
curve looks like the corresponding curve for the Brusselator (solid line). The curve startsawithO just
to the left ofa = —1 whereR = 0; however, with increasing the system describes the dashed curve in a
direction opposite to that for the Brusselator with increastngyloreover, the curve does not close up: a small
gap is present near the vertex ¢) = (—1, —3). The lamellae are stable ford®3 < R < 0.650, the FCC
state is stable for.@75 < R < 0.503 and 642 < R < 0.667, and the double-diamond state is stable for
0.515< R < 0.632.

3. For the BCC lattice, we have

> 12528%(R 4+ 5)(—5+ 8R + R?)?

2= 8a(cs — 1)3R
The ratio
. a_fz _ 20c8R(=5+8R + R?)2 (12)
A cd—1

is again invariant under rescaling of the amplitudes. Again, weggekery small, so our analysis is only valid
for R ~ R, = /21— 4. In this case we have

75/18 — 24/21(3 + /21)cs
8(cs — 1)2

and the cubic coefficients are again in the special ratio 1:8:2:4 found for the Brusselator model. This is not
an accident. It is possible to show that this is a generic property of two-species systems of reaction—diffusion
equations with identical nonlinearities (see Appendix A). Thus such systems are generically described by the
bifurcation diagram in Fig. 6 in the limit of smath,. We remark that the special wavenumbgrappears on

the FCC lattice as well where it defines the intersection of the dashed (Lengyel-Epstein) and solid (Brusselator)
curves afla, c) = (-2, —2).

{a1, a3, ag, a1} ~ —60A(13v21—57)(1,8,2,4) = —

{1,8,2, 4}

5. Discussion

In this paper we have analyzed the types of patterns that may arise near onset of a steady-state Turing instabil-
ity in an isotropic homogeneous system of reaction—diffusion equations in three dimensions. Explicit predictions
were made for two models of interest, the Brusselator and the Lengyel-Epstein model. These predictions involve
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not only the spatially periodic patterns that are possible on the three lattices considered but also their stability
properties with respect to perturbations on these lattices. There are several points of similarity between the Brus-
selator and Lengyel-Epstein models, some expected and some not. These are easier to see if we note first that
in the Lengyel-Epstein model space has already been scaled so that the activator has diffusivity equal to one. If
we do the same for the Brusselator, i.e., Bgt= 1, then both models have only three independent parameters
(the Lengyel-Epstein model is described by the three parametébsandsc). One of these is determined by the
requirement that we have a bifurcation, and another can be eliminated by rescaling the (perturbation) amplitudes.
Thus it comes as no surprise that the types of possible bifurcations for each model are characterized by a single
parameter, which we have denoted By

What is perhaps more unexpected is that the two models trace out very similar curves in parameter space (see
Figs. 2 and 4). In fact, the two curves of Fig. 4 both pass through the @ninf = (—2, —2). This is a result of
the surprising fact that for each model there is a special wavenumber

2 1/Dy, Brusselator
* 7 | V21— 4, Lengyel-Epstein

for which the quadratic term on the BCC lattice vanishes. At this wavenumber, the cubic coefficients for each lattice
take on fixed ratiodndependent of the moddlhis is a generic feature of two-species chemical reaction—diffusion
models with identical nonlinearities, as shown in Appendix A. The Schnakenberg model [23], not discussed here,
provides another frequently studied system of this type. Such systems are a natural consequence of the law of mass
action in systems involving a single activator and a single inhibitor. Consequently this universality is a property of

a large class of useful models. However, there are two-species models, such as that put forward in [24], for which
k. doesnotexist.

We summarize in Table 5 the stable solutions on the three lattices and their stability ranges for each model. In
the first half we list solutions defined on the SC and FCC lattices, and give the rangefirwhich they are
stable. Note that for, e.g., the simple cubic solution, we can only determine its stability with respect to perturbations
defined on the SC lattice. Thus, strictly speaking, we have proved that this solutioat&blefor R outsidethe
given intervals. The same, of course, goes for the FCC and double-diamond solutions. As the lamellee are defined
on both the SC and FCC lattices, the rang&efalues given is for stability with respect to perturbations defined
on either lattice. For each of these solutions, the given branch is stable wherever it exists, i.eA, foGall

In the second half of the table we list stable solutions on the BCC lattice. For this lattice, all solutions are unstable
for R sufficiently far from the special values specified. Ror: R,., we show the range ihfor which each solution
is stable. These ranges depend upon the model only through the definitigigssei by Eq. (10) for the Brusselator
and Eq. (12) for the Lengyel-Epstein model. Note that in the intenv&2& < A < v there are four (including the
double diamond on the FCC lattice) solutions which are stable simultaneously.

There are few numerical simulations of activator-inhibitor systems in three dimensions, and no detailed experi-
ments. We are aware only of two sets of numerical results, both for the Brusselator model [8,9]. Other simulations
emphasize effects of gradients in the input concentration over the three-dimensional structures that form; such in-
homogeneities or pinning at boundaries can stabilize additional structures not described by the present theory, such
as the Scherck state discussed in [9]. The existing Brusselator simulations b@h=u%&9 but involve different
Turing wavenumbers because of the different diffusion coefficients ésed:1.261 in [8] andkt = 0.892 in [9].

Our theory does not find any stable states near onset for this valRgaf Table 5), a result that is consistent

with the simulations. Instead, De Wit et al. [8] found a sequence of transitions from a finite amplitude BCC state
to hexagonal prisms and then to lamellee Bais increased beyon#t. To explain the observed transitions they
appeal to a theory of the type described here but their bifurcation diagrams omit a number of primary and secondary
branches and with them several important stability changes that take place at finite amplitude. Moreover, as we have
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seen in the present paper, such a theory only applies Rhrerl, and even then some fifth order terms may have to

be retained. For the value & used in the simulations(= 1.59) the truncation of the amplitude equations at third

order cannot be justified, and the resulting predictions (such as the prediction that the hexagonal prisms acquire
stability at the saddle-node bifurcation) must be considered unreliable. Indeed, as shown in Fig. 6, in the regime of
validity of the truncated equations the hexagonal prisms acquire stability via a different secondary bifurcation. The
explicit reduction performed here suggests new parameter ranges that could prove rewarding for future simulations
of activator-inhibitor systems, and in which quantitative comparisons between amplitude equations and simulations
could be performed.
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Appendix A. The center manifold reduction

In this Appendix we describe the procedure by which we reduce a system of partial differential equations to a
finite-dimensional system of ordinary differential equations we call amplitude equations. We start with a general
Turing system forM chemical species for whick” = 0 is an equilibrium:

)'(h(x7 t) — thth + A]l,ixi + Ah,ljxlx/ + Ah,l/kxlx/xk + cee

where the indices, i, j andk run through the/ species, and we have employed the Einstein summation convention,
except in the diffusion term, paying no regard to co-or contravariance. Also, we defidé-theetc. so that they
are fully symmetric under permutations of all their indices after the comma.

We impose periodic boundary conditions in all three directions, and then write

X", =Y XP@) ek,
leL

whereL is the set of lattice points, indexed byWe can scale space so that the coordinates of pointsaire all
integers. We will use indicesand beyond in the alphabet to denote points in the lattick addition, to avoid
confusion, we write all species indices as superscripts and all lattice point indices as subscripts.
Substituting this into the previous equation, using the discrete convolution theorem and dropping the tildes, we
get
X' = =DMy 2X] + AMX] 4 AN xd X amiE N ] ] XE 4+ 0x).
l1+1p=l l1+1+13=l

To find the normal modes we first diagonalize the linear matrix
JP = MRSt 4 AN

For each we choose a matrix

S
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with inverse
STt =18).
such that dets;) = 1 andS; diagonalizes/;, so
1
A
SRS = A = . (A.1)

M
)‘l

We can do this provided that the eigenvalu.éare distinct. Generically, this is true for dlle L. For eachl we
order the eigenvalues so that

Reil > --- > Rea,

If two eigenvalues.) andk}”rl have equal real part we order them so thajns Im Af+1. Eachs; depends upon
[ only through the lengtlk;|.
We now work in a new basis, defined by
X} Wit
: =81:
X wiM
In this new basis we have
78 _ 1 8w8 gh s h.ij i’ ywri' i gh sh,ijk i’ il i g kK gk
W =2 WE + F AR N it Wl W AR N ol W el W e W (A.2)
l1+lo=l I1+lo+i3=l

Let Lo be the set of those wavevectors which go criticaBat= Bt. Since we are not considering a Hopf
bifurcation,All(B = Bt) = 0 for these lattice points and Ré < 0 for every other lattice point. We will use the
conventionl € L,m € Lgandn € L — Lo.

The coefficient. in the amplitude equations (4)—(6) is given by

A= (AL

(B — B7),
B=BT

where(-)’ = d(-)/dB. A simple calculation, for a two species system, now gives

_ [dett,)]
B=Bt o Tr(Jm)

’

B=BT
yielding the expressions (8) and (11). The coefficients of the nonlinear terms can all be calculated at threshold, and
consequently we now st = Br.

To determine the center manifold, we express each stable amplitidor i # 1 or! ¢ Lo) in terms of the
critical amplitudesw .. The center manifold is tangent to the subspace of critical amplitudes, so up to quadratic
terms we can write, for # 1 orl ¢ Lo,

. . N
Wi = Z &by W Wi (A.3)

m1,ma€Lg

Ly

It follows that

17l j 1 wsl i1 1
Wi=" > &l Wony Wy + Wi W), (A.4)

miy,mp€Lg
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By Eq. (A.2) we know thai¥/}. contains no terms linear in thé;.'s, so Eq. (A.4) must vanish 0((W,1)?). Thus
Eq. (A.2) for the stable modes gives us

h
OWHD :0=2f > &f W W, + 5" AR S it Wl ol Wi .

m1y,m2€Lg my+mo=l

To simplify notation we set = «,,; = @, andg = B, = Bm,. Thus we can take

B

gﬁmlmz = 28 e AN a8 . (A.5)
Because of the way the elememfsare defined in Eq. (A.1), this formula i®©tto be summed ovey and/. The
final § is the Kroneckes. In order to simplify our notation below, we sg},,mlmz = 0. We can still use Eq. (A.5)
if we setrl = oo instead of 0.

At this point we substitute the expressions (A.3) for the sta&;‘id)ack into Eq. (A.4) forw . To third order in
the W!'s we have

Wi = ﬁlh{Ah’ij Y alaltw Wk

mi+mo=m

h.ij i1 Jj’ wl i 1 g1
+4 Z o O512 mi Z glz,mzmawmzwms

mi+lo=m mp,m3€Lg
h,ij j1 1 l l
+A" Z a ' W Z gll anms W
I1+mo=m m1,m3€Lg

h,ijk il jl klysl 1 1
Ak N gt Wmleszs}-

mi+ma+ma=m

Now we shuffle dummy indices and use Eq. (A.5) and the symmetaytofget

1 ) phiij il jlysl il
Wi =8 {A YT adteltwy W
mi+mo=m
y Bl
_o Al Z allalj] I Aabcablaclwl Wnlzle
A

mi+ma+m3=m 1

m3

4 Ak Z ooty k1W1 Wl wl } (A.6)

mi+m+m3=m

wherel = m» + m3. The sum looks a little unusual in thaind j’ appear three times, but this is again due to the
way A; is represented in Eq. (A.1).

We have two very different cases: either it is possible (BCC) for two critical wavevectors to add up to a third (so
Zml+m2=m is not trivially 0) or it is not (SC and FCC). In the latter case the first line on the right hand side of
Eq. (A.6) vanishes. In the former case we generically have a quadratic term in the final amplitude equations. Cubic
terms in the amplitude equations are only relevant when the coefficient of the quadratic term is small. As we will
see later, this typically happens for a particular wavenurkbet k, that gives us

Aliigite it = {0, 0}. (A7)
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In this instance, we see that the middle line of Eq. (A.6) also vanishes. Thus if two critical wavevectors can add up
to a third, then we do not need to evaluate the middle line. This is the case for the BCC lattice.

For the SC and FCC lattices, no two critical wavevectors can add up to a third, but we can simplifggendent
expressions on this middle line. We know that my + m3 = n ¢ Lo. Note first that

o
JJ pla
Ay Pn

j/
j/ )\.n

= (SuA, s HIe

Using Eq. (A.1), we get

VR
JJ pla
On” Pn

j/
j/ A‘}’l

— (Jn—l)ja

Putting everything back together into Eq. (A.6), we obtain

Wy = plhatiiaiteat N wi wh o+ > F(ma+ma)We, We Wy, (A.8)

m3’
mi+mo=m mi+mo+ma=m

where
F(l) = [_2[31}!A/’l,ijail(Jl—l)jaAa,bcablacl +ﬁlhAh,l]kallajlakl]

depends upohonly through the square of the length/of
A.1l. Application to the Brusselator

We can use Mathemati€¥to simplify the process of applying this formula to individual models. We start by
defining the Brusselator without diffusion:

system = {—(B+ 1)x 4+ x"2y + A, Bx — x"2y}.

The equilibrium solutions are= A andy = B/A. When we redefine andy to be the deviations from equilibrium,
we get

cvaten — (B~ Dx+ (B/A)x?% 4+ A%y 4+ 2Axy + x2y
TSRO =\ _Bx — (B/A)x? — A%y — 2Axy — x2y

We definez = {x, y}, and then
J=Table[D[system[[h]], z[[i]]], {b, 2}, {1, 2}]
—kDiagonalMatrix[{Dx, Dy}]/.{x—0, y—0}
Quad = 1/2!Table[D[systen[[h]], z[[i]]. z[[ F]I] ,
{2}, {1, 2}, {3, 2)]/.{x—0,y — 0}
Cub = 1/3! Table[D[systen[[h]], z[[1]], z[[ j]]. z[[kI]],
(. 2}, {1, 2}, (3. 2. {k, 2}]/.{x > 0,y — 0}
For the diffusion terms id we have use# instead ofk~2. We would like to be able to differentiate with respect to
k2, so we havé = k2. Our results so far are

—1+4 B — Dk? A2
J= 2 2
B —A? — Dk
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e (00200 9)
NHOI
(%) (39

We remove the distance scale by substituting

Cub =

Wl

J = J/.{Dx — R/KT, Dy — T/KT,k — rkT}

(kT is k2) so that

S _(-1+B-rR A?
- —-B —A%—rT )"

Because = kz/k% r is proportional to the square of the length of the lattice pbarresponding té. The critical
wavevectors are those with= kt, i.e.,r = 1; k7 is the critical wavenumber in the absence of boundaries or that
at which B(k) reaches a minimum. We assume that, if there are boundaries, they are such as tg alkoithe
discrete spectrum.

We chooseB to be the distinguished bifurcation parameter. We find its critical v&l(¢ for each wavevector
by taking

subb = Solve[Det[J] == 0, B][[ 1]]

and getting
A2+ A"2rR+rT+r 2RT
{B— |5
rT
B(k) reaches a minimum at= kt (or B(r) reaches a minimum at= 1), so we differentiate the result with respect

tor, setr = 1, and set the result to 0 to get

A% = RT.
We therefore substitute
T— A"2/R
and letB be the minimum critical valu8t = B(kT) by setting
subb = subb/.r — 1
so that
subb={B — (R+1)"2}

i.e., BT = (R + 1)2. Altogether we obtain

;_ (R@+R-1) A? g l(@+R*A A —(1+R)?/A —A
=\ —a+r? —a2®R+nyr) 9T A o) —A o)

We can now find the transformation matxand the vectora®® andg!” for the critical wavevectors by taking
eig = Eigensystem[J/.r — 1]
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S = Transpose[eig[[2]]] /Sqrt[Det[eig[[2]]]

Si = Inverse[S]

al = Transpose[S][[ 1]]; b1 = Si[[1]]
We may need to provide Mathematléawith some guidance throughout this stepeag[[2]] may have a negative
determinant, or the square root may not appear as we wish, or its null eigenvector may not appear as the first row.
In this case we may use the fact that

T>R>0 = O<R<A.

MathematicdV always reads consecutive dot products from left to right, and always sums over the last index of
the left operand and the first index of the right operand. Using the symmetry aftdresors, all we need to do now
is set

quadratic = bl.Quad.al.al (A.9)
F[r] := Evaluate[Simplify[—2bl.Quad.al.Inverse[J].Quad.al.al + bl.Cub.al.al.al]] (A.10)

The answers for the Brusselator are
A3(R - 1) ) = A% 2r R34+(1-2r—r?)R*—2R + 2r
(A2 - R2)32 /TR’ ~ LR(1+R)(A2—R?)?2 (r—1)2 '

Note that the term in square brackets is jish Eq. (9). This concludes the general discussion.

quadratic =

A.2. The cubic lattices

At this point we start looking at specific lattices, starting with the simple cubic. Here
Lo ={(£1,0,0), (0, £1,0), (0,0, £1)},
and
r= |n|2.

No two critical wavevectors add up to a third so there are no quadratic terms. The general equivariant system for
the SC lattice is

21 = Az1 + h1o (J22)% + |22 + I2z31%) 21 + halzalz1 + O2°).

We consider first the coefficient af2|%z1, namelyhy o,. The terms in Eq. (A.8) which contribute to this arg =
(1,0,0), m» = (0, 1,0), m3 = (0, —1, 0) and permutations. Of these six possibilities, two hawve+ m3|® = 0
and four havems, + m3|? = 2. Thus

h1o, = 2F(0) + 4F (2).

Similarly, the coefficient ofz1/%z1 is hi1,6, + h3. This case includes; = mp = (1,0,0), m3 = (-1,0,0) and
permutations. Of these three possibilities, two hiave+ m3|?2 = 0 and one hagny + m3|? = 4. Thus

hi,6, +h3=2F(0) + F(4) =3 h3 =2F Q) + F(4) — h15, = F(4) —4F(2).
For the FCC lattice we have

Lo = {(£1, £1, £1)},
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and

2
]

==
Again, no two critical wavevectors add up to a third, so we have no quadratic terms. Our equivariant system is
21 =221+ hioy (21l + |22 + 231 + [24%)21 + halz1l’21 + paZoZaza + O(2).
Using the same reasoning as before, we get
hio =2F(0) +2F(3) +2F(3),  ha=F# —2F(3)—2F(§),  p3=6F(3).
For the BCC lattice we have

Lo = {(£1, £1,0), (£1, 0, £1), (O, 1, £1)},

for which

P2

=
Now we can have two critical lattice vectors add up to a thirdVi/S:,g does contain terms quadratic in thg,’s.
The new system is

. 1 = 2 1 2 2 2 2
71 = Az1 + 3a12(z226 + 2325) + a1lzal"za + Fas(|z2|” + |z3|” + [z5]° + |z6]7)z1

+aglzal’z1 + 3a16(222425 + 232426) + O(2%).
Comparing with Eg. (A.8), we see at a glance that
aip = 2quadratic.
For the cubic coefficients, the same reasoning as earlier gives
a1 =2F(0) 4+ F(4), a3=8F(0)+8F(l)+8F(3), ag=2F(0)+4F(2), ais=4F(2)+ 8F(1).

We have only defined (r) for r # 1, but we know that our expansion is only useful é@p ~ 0. As mentioned
after Eq. (A.6), this makes the middle line of Eq. (A.6) vanish, and we have

F(r) ~ g4 Ak ity gkl
for all r, includingr = 1. Thus we have
ay ~ 3F(0), az ~ 24F (0), ag ~ 6F (0), arg ~ 12F (0),

and hence:as.ag:a16 ~ 1:8:2:4.
A.3. Universal behavior of two species models on the BCC lattice

We still need to explain the existence of the special wavenumbé¥ote first from Eq. (1) that the nonlinear (in
X andY) terms in the evolution equations férandY are proportional. That is, the teri¥?Y appears in both the
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X andY equations, with a fixed ratio 6f1 between them. The Lengyel-Epstein model (2) has the same feature,
with a ratio ofsb/4. Thus when we take

Quad = 1/2! Table[D[system[[h]], z[[i]], z[[j]1]. {n, 2}, {1, 2}, {j.2}]/.{x — O,y — O}
we find that the first and second components are proportional. That is,
AL o AR

as matrices. Thus if the first component of the veQiord.al.a1 vanishes, the second must also. Now the matrix
AL is symmetric, so its eigenvalues are real. Suppose it has negative determinant. Then it has one positive and
one negative eigenvalue, and hence two flat directions, i.e., two linearly independent veetmis’ such that

ALYyl = 0= ALY/,
so that
Quad.u.u = Quad.v.v = {0, 0}.

These vectors depend upon the model parameters through the rratfixand hence rotate in the plane as these
parameters are changed.

The vectorr’! = a1 is the right null eigenvector af, and also rotates in the plane as the parameters are varied.
It is therefore not surprising that varyirkg can easily cause1 to coincide withu or v. When this happens, we
see from Eq. (A.9) thajuadratic vanishes. More surprisingly, we see from Eg. (A.10) that the parts involving
disappear. Ag is the only place whereappears, the functiof(r) becomes independentafand the coefficients
take on the fixed ratios given.
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