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Abstract

In the so-called `microscopica models of vehicular tra$c, attention is paid explicitly to each individual
vehicle each of which is represented by a `particlea; the nature of the `interactionsa among these particles is
determined by the way the vehicles in#uence each others' movement. Therefore, vehicular tra$c, modeled
as a system of interacting `particlesa driven far from equilibrium, o!ers the possibility to study various
fundamental aspects of truly nonequilibrium systems which are of current interest in statistical physics.
Analytical as well as numerical techniques of statistical physics are being used to study these models to
understand rich variety of physical phenomena exhibited by vehicular tra$c. Some of these phenomena,
observed in vehicular tra$c under di!erent circumstances, include transitions from one dynamical phase to
another, criticality and self-organized criticality, metastability and hysteresis, phase-segregation, etc. In this
critical review, written from the perspective of statistical physics, we explain the guiding principles behind all
the main theoretical approaches. But we present detailed discussions on the results obtained mainly from the
so-called `particle-hoppinga models, particularly emphasizing those which have been formulated in recent
years using the language of cellular automata. ( 2000 Elsevier Science B.V. All rights reserved.

PACS: 45.70.Vn; 02.50.Ey; 05.60.!k

Keywords: Cellular automata; Complex systems; Nonequilibrium physics
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1. Introduction

The concepts and techniques of statistical physics are being used nowadays to study several
aspects of complex systems [1] many of which, till a few decades ago, used to fall outside
the traditional domain of physical systems [2]. Physical-, chemical-, earth-, biological- and
social-sciences as well as technology meet at this frontier area of inter-disciplinary research. Flow
of vehicular tra$c and granular matter [3,4], folding of proteins [5], formation and growth
of bacterial colonies [6], biological evolution of species [7] and transactions in "nancial markets
[8] are just a few examples of exotic phenomena in such systems. Most of these systems
are interesting not only from the point of view of Natural Sciences for fundamental understanding
of how Nature works but also from the points of view of applied sciences and engineering for the
potential practical use of the results of the investigations. Our review of the current status and
future trends of research on the theory of vehicular tra$c (and some related systems) will, we
hope, convince you that, indeed, the results of recent studies of complex systems have been `a
conceptual revolution, a paradigm shift that has far reaching consequences for the very de"nition
of physicsa [9].

For almost half a century physicists have been trying to understand the fundamental principles
governing the #ow of vehicular tra$c using theoretical approaches based on statistical physics
[3,4,10}13]. The approach of a physicist is usually quite di!erent from that of a tra$c engineer.
A physicist would like to develop a model of tra$c by incorporating only the most essential
ingredients which are absolutely necessary to describe the general features of typical real tra$c. The
theoretical analysis and computer simulation of these models not only provide deep insight into the
properties of the model but also help in better understanding of the complex phenomena observed
in real tra$c. Our aim in this review is to present a critical survey of the progress made so far
towards understanding the fundamental aspects of tra$c phenomena from the perspective of
statistical physics.

There are two di!erent conceptual frameworks for modelling tra$c. In the `coarse-graineda
#uid-dynamical description, the tra$c is viewed as a compressible #uid formed by the vehicles
but these individual vehicles do not appear explicitly in the theory. In contrast, in the so-called
`microscopicamodels of vehicular tra$c attention is explicitly focused on individual vehicles each
of which is represented by a `particlea; the nature of the interactions among these particles is
determined by the way the vehicles in#uence each others' movement. In other words, in the
`microscopica theories vehicular tra$c is treated as a system of interacting `particlesa driven far
from equilibrium. Thus, vehicular tra$c o!ers the possibility to study various fundamental aspects
of the dynamics of truly nonequilibrium systems which are of current interest in statistical physics
[14}17].

In order to provide a broad perspective, we describe both `macroscopica and `microscopica
approaches although we put more emphasis on the latter. Sometimes the phenomenological
equations of tra$c #ow in the `macroscopica models can be obtained from microscopic consider-
ations in the same spirit in which macroscopic or phenomenological theories of matter are derived
from their molecular-theoretic description.

At present, even within the conceptual framework of `microscopica approach, there are several
di!erent types of mathematical formulations of the dynamical evolution of the system. For
example, the probabilistic description of vehicular tra$c in the kinetic theory is developed by
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appropriately modifying the kinetic theory of gases. On the other hand, a deterministic description
of the motion of individual vehicles is provided by the so-called car-following theories which are
based on the basic principles of classical Newtonian dynamics. In contrast, the so-called particle-
hopping models describe tra$c in terms of a stochastic dynamics of individual vehicles. We explain
the guiding principles behind all these formulations. But we discuss in detail the results obtained
mainly from the investigations of the recently developed `particle-hoppinga models which are
usually formulated using the language of cellular automata (CA) [18]. At present, there is no tra$c
model yet which can account for all aspects of vehicular tra$c. In this review we consider a wide
variety of CA models which describe various di!erent types of tra$c phenomena.

We map the particle-hopping models of vehicular tra$c onto some other model systems;
these mappings indicate the possibility of exploiting powerful techniques, used earlier for
other systems, to study tra$c models and, sometimes, enable us to obtain results for tra$c
models directly from the known results for models of other systems. We present pedagogical
summaries of the statistical mechanical treatments of the CA models of tra$c. We critically examine
the regimes of validity of the approximation schemes of analytical calculations which we illustrate
with explicit calculations in those limiting cases where these usually yield exact results. The results
of the theoretical analysis of these models are compared with those obtained from computer
simulations and, wherever possible, with the corresponding empirical results from real tra$c. We
also compare vehicular tra$c with many other similar physical systems to show the ubiquity of
some physical phenomena.

Computer simulations are known to provide su$ciently accurate quantitative results when
analytical treatments require approximations which are too crude to yield results of comparable
accuracy. In this review we demonstrate how computer simulations often help in getting deep
insight into various phenomena involved in tra$c and in qualitative understanding of the basic
principles governing them thereby avoiding potentially hazardous experiments with real tra$c.
Computer simulations of the `microscopica models of tra$c have not only attracted the attention
of a growing number of statistical physicists in the recent years, but have also been received
positively by many tra$c engineers. The ongoing research e!orts to utilize computer simulations of
the microscopic models for practical applications in planning and design of transportation net-
works have been reviewed very recently by Nagel et al. [19].

Our review is complimentary to those published in the recent years by Helbing [13] and by
Nagel et al. [19]. A large number of important papers on tra$c published in recent years are based
on the particle-hopping models. But these works have received very little attention in [13]. We
discuss the methods and results for the particle-hopping models in great detail in this review after
explaining the basic principles of all the theoretical approaches. Moreover, we focus almost
exclusively on the fundamental principles from the point of view of statistical physics while Nagel
et al. [19] emphasize practical applications which are directly relevant for tra$c engineering.

At this point a skeptic may raise a serious question: `can we ever predict tra$c phenomena with
statistical mechanical theories without taking into account e!ects arising from widely di!erent
human temperaments and driving habits of the individual drivers?a We admit that, unlike the
particles in a gas, a driver is an intelligent agent who can `thinka, make individual decisions and
`learna from experience. Besides, the action of the driver may also depend on his/her physical and
mental states (e.g., sorrow, happiness, etc.). It is also true that the behavior of each individual driver
does not enter explicitly into the `microscopicamodels of tra$c. Nevertheless, as we shall show in

203D. Chowdhury et al. / Physics Reports 329 (2000) 199}329



this review, many general features of tra$c can be explained in general terms with these models
provided the di!erent possible behavioural e!ects are captured collectively through a probabilistic
description which requires only a few phenomenological parameters. Similar strategies have been
suggested also for capturing the behavioural e!ects of some individual traders in "nancial markets
collectively through probabilistic descriptions [1]. These probabilistic descriptions make the
dynamics of the models intrinsically stochastic.

Throughout this article the terms vehicle (or, car) and driver are used interchangeably, although
each of these terms usually refers to the composite unit consisting of the vehicle and the driver.
The main questions addressed by physicists are posed as problems in Section 2. As a motivation we
present some relevant empirically observed general features of real tra$c as well as their plausible
phenomenological explanations in Section 3. The following sections review the di!erent theoretical
approaches. The classi"cation of the models into di!erent classes is not unique. Mostly, we choose
a classi"cation according to the use of discrete or continuous space, time and state variables. The
conceptual basis of the older theoretical approaches, namely, the #uid-dynamical theories,
the kinetic theories and the car-following theories, are explained, in Sections 4, 5 and 6, respectively,
where the corresponding recent developments are also summarized. These model classes are
continuous in space, time and state variables. Some coupled map lattice models of tra$c are
considered in Section 7. They are discrete in time. CA models are discrete in space, time and
state variables. The model suggested by Nagel and Schreckenberg (NaSch) [20] is the minimal
model of tra$c on highways; the theoretical results on various aspects of this model are discussed
in Section 8 where the nature of the spatio-temporal organization of vehicles are also investigated
and the fundamental question of the (im-)possibility of any dynamical phase transition in the
NaSch model is addressed. Various generalizations and extensions of the NaSch model (including
those for multi-lane tra$c) are reviewed in Section 9. The occurrence of self-organized criticality in
the so-called cruise-control limit of the NaSch model is pointed out. It is demonstrated how
additional `slow-to-starta rules of CA can give rise to metastability, hysteresis and phase-separation
in the generalized NaSch models, in qualitative agreement with empirical observations. In Section
10 the formation and `coarseninga of platoons of vehicles are investigated in an appropriate
generalization of the NaSch model with one type of quenched randomness; your attention is drawn
to the formal analogy between this phenomenon and the Bose}Einstein condensation. In this
section the e!ects of other kinds of quenched disorder on the nature of the steady states of the
NaSch model are also considered. In Section 11 we present some other CA models of highway
tra$c which are not directly related to the NaSch model. The Biham}Middleton}Levine
(BML) [21] model is the earliest CA model of tra$c in idealized networks of streets in cities;
it exhibits a "rst order phase transition. A critical review of this model is presented in Section 12
together with a list of its generalizations which have been reported so far. Furthermore, a
marriage of the NaSch description of tra$c and the BML model, which has led to the development
of a novel model of city tra$c, is explained. A brief status report of the ongoing e!orts to make
practical use of the theoretical models for tra$c engineering is also presented. The similarities
between various particle-hopping models of tra$c and some other systems far from equilibrium
are pointed out in Section 13 followed by the concluding Section 14 where your attention is
also drawn towards challenging open questions. Several Appendices deal mostly with more
technical aspects of some important calculations, but are not necessary for an understanding of
the main text.
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2. Fundamental and practical questions

The aim of basic research in trazc science is to discover the fundamental laws governing tra$c
systems. The main aim of trazc engineering is on planning, design and implementation of
transportation network and tra$c control systems. Statistical physicists have been contributing to
tra$c science by developing models of tra$c and drawing general conclusions about the basic
principles governing tra$c phenomena by studying these models using the tools of statistical
physics. Moreover, using these models, statistical physicists have also been calculating several
quantities which may "nd practical applications in tra$c engineering. Furthermore, several groups
of statistical physicists are currently also engaged in developing strategies for fast on-line simula-
tion and tra$c control so as to optimize tra$c #ow; signi"cant contributions to this traditional
domain of tra$c engineering can reduce the "nancial burden on the governments.

2.1. Some fundamental questions

Because of the apparent similarities between the `microscopica models of tra$c and macro-
scopic samples of ionic conductors in the presence of external electric "eld, the tools of statistical
mechanics seem to be the natural choice for studying these models. However, the actual calculation
of even the steady-state properties of tra$c from the `microscopica models is a highly di$cult
problem because (apart from the human element involved) (a) the vehicles interact with each
other and (b) the system is driven far from equilibrium, although it may attain a nonequilibrium
steady state.

In principle, the time-independent observable properties of large pieces of matter can be
calculated within the general framework of equilibrium statistical mechanics, pioneered by
Maxwell, Boltzmann and Gibbs, provided the system is in thermal equilibrium. Of course, in
practice, it may not be possible to carry out the calculations without making approximations
because of the interactions among the constituents of the system. Some time-dependent phe-
nomena, e.g., #uctuation and relaxation, can also be investigated using the linear response theory
provided the system is not too far from equilibrium. Unfortunately, so far there is no general
theoretical formalism for dealing with systems far from equilibrium. Moreover, the condition of
detailed balance does not hold [22] although a condition of pairwise balance [23] holds for some
special systems driven far from equilibrium.

The dynamical phases of systems driven far from equilibrium are counterparts of the stable
phases of systems in equilibrium. Some of the fundamental questions related to the nature of these
phases are as follows.

(i) What are the various dynamical phases of tra$c? Does tra$c exhibit phase-coexistence, phase
transition, criticality [24,25] or self-organized criticality [26,27] and, if so, under which
circumstances?

(ii) What is the nature of yuctuations around the steady states of tra$c? Analogous phenomenon of
the #uctuations around stable states in equilibrium is by now quite well understood.

(iii) If the initial state is far from a stationary state of the driven system, how does it evolve with time
to reach a truly steady state? Analogous phenomena of equilibration of systems evolving from
metastable or unstable initial states through nucleation (for example, in a supersaturated
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vapour) or spinodal decomposition (for example, in a binary alloy) have also been studied
earlier extensively [28].

(iv) What are the e!ects of quenched (static or time-independent) disorder on the answers of the
questions posed in (i)}(iii) above?

2.2. Some practical questions

Let us "rst de"ne some characteristic quantitative features of vehicular tra$c. The yux J, which
is sometimes also called yow or current, is de"ned as the number of vehicles crossing a detector site
per unit time [29]. The distance from a selected point on the leading vehicle to the same point on
the following vehicle is de"ned as the distance-headway [29]. The time-headway is de"ned as the
time interval between the departures (or arrivals) of two successive vehicles recorded by a detector
placed at a "xed position on the highway [29]. The distributions of distance-headways and
time-headways are regarded as important characteristic of tra$c #ow. For example, larger
headways provide greater margins of safety whereas higher capacities of the highway require
smaller headways.

Let us now pose some questions which are of practical interest in tra$c engineering.
(a) What is the relation between density c and #ux J? In tra$c engineering, this relation is usually

referred to as the fundamental diagram.
(b) What are the distributions of the distance-headway and time-headway?
(c) How should on- and o!-ramps be designed?
(d) Does an additional lane really lead to an improvement?
(e) What are the e!ects of a new road on the performance of the road network?
(f ) What type of signalling strategy should be adopted to optimize the tra$c #ow on a given

network of streets and highways?
(g) The generalized travelling salesman problem: Is the shortest trip also the fastest?

3. Some empirical facts and phenomenological explanations

For several reasons, it is di$cult to obtain very reliable (and reproducible) detailed empirical
data on real tra$c. First of all, unlike controlled experiments performed in the conventional "elds
of research in physical sciences, it is not possible to perform such laboratory experiments on
vehicular tra$c. In other words, empirical data are to be collected through passive observations
rather than active experiments. Secondly, unambiguous interpretation of the collected data is also
often a subtle exercise because tra$c states depend on several external in#uences, e.g. the weather
conditions. The systematic investigation of tra$c #ow has a quite long history [30}32]. Although
we now have a clear understanding of many aspects of real tra$c several other controversial
aspects still remain intellectual challenges for tra$c scientists. In this section we give an overview of
some of the well-understood experimental "ndings, which are relevant for our theoretical analysis
in the following sections. Moreover, wherever possible, we provide phenomenological explanations
of these empirically observed tra$c phenomena. Furthermore, we shall also mention some
of the more recent empirical observations for which, at present, there are no generally accepted
explanations.
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3 `Stau aus dem Nichtsa in german.
4The discontinuous trajectories correspond to vehicles changing the lane.

3.1. Acceleration noise

In general, because of the di!erent human temperaments and driving habits, di!erent drivers react
slightly di!erently to the same conditions on a highway, even when no other vehicle in#uences its
motion. Consequently, even on an empty stretch of a highway, a driver can neither maintain
a constant desired speed nor accelerate in a smooth fashion. In addition to the type of the highway
(i.e., the surface conditions, frequency of the curves, etc.) the driver-to-driver yuctuation of the
acceleration also depends on the density of vehicles on the highway. The root-mean-square deviation
of the acceleration of the vehicles is a measure of the so-called acceleration noise. The distributions of
the accelerations have been measured since mid-1950s and are well documented [33,34].

3.2. Formation and characterization of trazc jams

Tra$c jam is the most extensively studied tra$c phenomenon. Tra$c jams can emerge because
of various di!erent reasons. Most often tra$c jams are observed at bottlenecks, e.g. lane-reductions
or crossings of highways [35]. At bottlenecks the capacity of the road is locally reduced thereby
leading to the formation of jams upstream tra$c. Downstream the bottleneck, typically, a free-#ow
region is observed. In addition, tra$c accidents, which also lead to a local reduction of the capacity
of the highway, can give rise to tra$c jams.

Fig. 1 shows as an example empirical data of the velocity at a three-lane highway close to an on-
and o!-ramp [32]. The data show that downstream the bottleneck (at detector C) no slow vehicle
has been recorded. In contrast, in the merging regime near detector A vehicles often have to move
slowly. In between the on- and o!-ramps the vehicles move with larger velocities compared to
those in location A although the number of vehicles passing detector B is maximal. Therefore, the
on-ramp causes a local reduction of the capacity of the highway.

Perhaps, what makes the study of tra$c jams so interesting is that jams often appear, as if, from
nowhere (apparently without obvious reasons) suddenly on crowded highways; these so-called
`phantom jamsa3 are formed by spontaneous #uctuations in an otherwise streamlined #ow. Direct
empirical evidence for this spontaneous formation of jams was presented by Treiterer [36] by
analyzing a series of aerial photographs of a multi-lane highway. In Fig. 2 the picture from [36] is
redrawn. Each line represents the trajectory of an individual vehicle on one lane of the highway.4
The space}time plot (i.e., the trajectories x(t) of the vehicles) shows the formation and propagation
of a tra$c jam. In the beginning of the analysed time vehicles are well separated from each other.
Then, due to #uctuations, a dense region appears which, "nally, leads to the formation of a jam.
The jam remains stable for a certain period of time but, then, disappears again without any obvious
reason. This "gure clearly establishes not only the spontaneous formation of tra$c jam but also
shows that such jams can propagate upstream (opposite to the direction of #ow of the vehicles).
Moreover, it is possible that two or more jams coexist on a highway.

A more detailed analysis of tra$c jams in absence of hindrances has been given by Kerner and
Rehborn [37}39], who pointed out the following characteristic features of wide jams. They found
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Fig. 1. Experimental #ow speed-diagrams near on- and o! ramps of a three lane highway. The upper part of the "gure
shows the empirical results. Each dot represents a 5-min average of the local measurement. The lines serve merely as
guide to the eyes. The lower part of the "gure shows the location of the detectors (from [32]).

Fig. 2. Trajectories of individual vehicles on a single lane of a multi-lane highway. The trajectories were drawn from
aerial photographs. During the analyzed time-interval the spontaneous formation, propagation and dissolution of a jam
has been observed (from [36]).

that the upstream velocity and, therefore, the out#ow from a jam is approximately constant. The
out#ow from a jam and the velocity of the jam fronts are now regarded as two important empirical
parameters of highway tra$c which can be used for calibrating theoretical models.

3.3. Flux}density relation

Obviously, tra$c #ow phenomena strongly depend on the occupancy of the road. What type of
variation of #ux and average velocity SvT with density c can one expect on the basis of intuitive
arguments? So long as c is su$ciently small, the average speed SvT is practically independent of c as
the vehicles are too far apart to interact mutually. Therefore, at su$ciently low density of vehicles,
practically `free #owa takes place. However, from the practical experience that vehicles have to
move slower with increasing density, one expects that at intermediate densities,

dSvT/dc40 , (1)

when the forward movement of the vehicles is strongly hindred by others because of the reduction
in the average separation between them. A faster-than-linear monotonic decrease of SvT with
increasing c can lead to a maximum [29] in the #ux SJT"ScvT at c"c

.
; for c(c

.
, increasing

c would lead to increasing SJT whereas for c'c
.

sharp decrease of SvT with increase of c would
lead to the overall decrease of SJT. However, contrary to this naive expectation, in recent years
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Fig. 3. Empirical data for #ow and occupancy. The data have been collected by counting loops on a Canadian highway.
Both the occupancy and the #ow have been directly measured by the detector. Each point in the diagram corresponds to
an average over a time interval of 5 min (from [40]).

some nontrivial variation of #ux with density have been observed. The nature of the variation of
the #ux with the density is still not clearly understood [40] since the details of the complex
experimental setup can strongly in#uence the empirical results.

Fig. 3 shows typical time-averaged local measurements of the density and #ow which have
been obtained from the Queen Elizabeth Way in Ontario (Canada) [40]. At low densities the
data indicate a linear dependence of the #ow on the density. In contrast strong #uctuations of
the #ow at large densities exist which prevents a direct evaluation of the functional form at high
densities.

In order to use the empirical results for a theoretical analysis it is often more convenient to use
the mean values of the #ow at a given density. Fig. 4 shows a collection of possible forms of
averaged fundamental diagrams consistent with empirical data [40]. While the discontinuity of the
fundamental diagram now seems to be well established [41] no clear answer can be given to the
question on the form of the diagram in the free-#ow or high-density regime. In the low-density
regime linear as well as nonlinear functional forms of the fundamental diagrams have been
suggested. For the high-density branch no consistent picture for the high-density branch exists.
Here the results strongly depend on the speci"c road network.

In several situations it has been observed that J does not depend uniquely on c in an
intermediate regime of density; it indicates the existence of hysteresis ewects and meta-stable states.
In the context of tra$c #ow, hysteresis e!ects have the following meaning: if a measurement starts
in the free-#ow regime, an increase of the density leads to an increase of the #ow. However, beyond
a certain density, a further increase of the density leads to a discontinuous reduction of the
stationary #ow (`capacity dropa) and jams emerge. The corresponding fundamental diagram

209D. Chowdhury et al. / Physics Reports 329 (2000) 199}329



Fig. 4. Schematic representation of fundamental diagrams consistent with empirical investigations (from [40]).

(Fig. 4A and B) then has the so-called &inverse-j form'. Fig. 5 shows an experimental veri"cation of
a hysteresis loop [40] at a transition from a free #ow to a congested state.

Recent empirical observations which have been obtained near a crossing of highways exhibit
[41] a #at plateau (i.e., a density-indepedent #ux) over an intermediate regime of density of the
vehicles.

3.4. Microscopic states of trazc yow and phase transitions

The results for the #ux}density relation already suggest the existence of at least two di!erent
dynamical phases of vehicular tra$c on highways, namely a free-#ow phase and a congested phase.
In the free-#ow regime all vehicles can move with high speed close to the speed limit. The nature of
the congested tra$c is still under debate. Careful empirical observations in the recent years indicate
the existence of two di!erent congested phases, namely, the synchronized phase and the stop-and-
go tra$c phase [38,39,42}44]. Vehicles move rather slowly in the synchronized states, as compared
to the free-#ow states, but the #ux in the synchronized states can take a value close to the optimum
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Fig. 5. Time-traced measurements of the #ow (from [40]). Each data point corresponds to a time-averaged value of the
#ow and density obtained from a local measurement. The average was performed over 5min intervals.

value because of relatively small headways. Besides, nontrivial strong correlations between
the density on di!erent lanes exist in the synchronized state [38,44,45] which actually motivates
the notation synchronized tra$c. The stop-and-go tra$c di!ers from the synchronized states
in the sense that every vehicle inside the jams come to a complete halt for a certain period
of time.

Following Kerner three di!erent types of synchronized tra$c can be distringuished by the
time-dependent behaviour of the density and #ow [38,39,44]. In synchronized tra$c of type (i)
constant values of density and #ow can be observed during a long period of time. In synchronized
tra$c of type (ii) patterns of density and #ow quite similar to free #ow states have been observed.
The di!erences between synchronized states of type (ii) and free #ow are given by the reduced
average velocities and the alignment of the speeds on di!erent lanes in synchronized tra$c.
Moreover, irregular patterns of time-traced measurements of the #ow have been found in synchro-
nized tra$c (see Fig. 6) of type (iii).

3.5. Time- and distance-headways

The #ux J can be written as J"N/¹ where ¹"+N
i/1

t
i

is the sum of the time-headways
recorded for all the N vehicles. Hence, J"1/¹

!7
where ¹

!7
"(1/N)+

i
t
i

is the average TH.
Therefore, the TH distribution contains more detailed informations on tra$c #ow than that
available from the #ux alone. With the variation of density c of the vehicles, ¹

!7
exhibits

a minimum at c"c
.

where the #ux is maximum [29].
The results discussed in the preceding subsections are based on time-averaged local measure-

ments. But it is also very useful to analyze the single-vehicle data directly [46}48,41]. The
single-vehicle data allow calculation of the time-headway distributions [41]. All the time-headway
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Fig. 6. Fundamental diagrams corresponding to di!erent types of synchronized #ow. Measurements which correspond
to synchronized tra$c of type (i) are localized in a narrow region of the #ow density plane, while synchronized states of
type (ii) are similar to the results of free-#ow states. In contrast for synchronized tra$c of type (iii) the time-traced
measurements show an unsystematic behaviour.

Fig. 7. Time-headway distribution for di!erent density regimes. Top: In free-#ow tra$c the *t-distribution is dominated
by two peaks at 0.8 s and 1.8 s. Middle: In synchronized tra$c cars with narrow time gaps are to "nd as well as
a dominating peak. Bottom: In stop-and-go tra$c short time headways are surpressed. The peak at 1.8 s remains since
vehicles are leaving the jam with a typical temporal headway of approximately 2 s.

distributions in the free-#ow regime show a two peak structure. The "rst peak at *t"0.8 s
represents the global maximum of the distribution (see Fig. 7). On a microscopic level these short
time-headways correspond to platoons of some vehicles travelling very fast } their drivers are
taking the risk of driving `bumper-to-bumpera with a rather high speed. These platoons are the
reason for the occurrence of high-#ow states in free tra$c. The corresponding states exhibit
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Fig. 8. Speed-distance relation in free and congested tra$c. It turns out that the typical velocities at large distance
headways strongly depend on the present tra$c state (from [41]).

metastability, i.e. a perturbation of "nite magnitude and duration is able to destroy such a
high-#ow state [39]. Additionally, a second peak emerges at *t"1.8 s which can be associated
with a typical drivers' urge to maintain a temporal headway of +2 s (which is the safe distance
recommended in driving schools).

Surprisingly, the small time headways have much less weight in congested tra$c. Only the peak
at *t"1.8 s is recovered, where the time headway distribution now takes the maximum value. But
nevertheless, the small time headways (*t(1.8 s) contribute signi"cantly in synchronized tra$c. In
stop-and-go tra$c only the 1.8 s-peak remains and short time-headways are surpressed. The
asymptotic behavior is rather unsystematic and re#ects the dynamics of vehicles inside the jams.

Another important result characterizing the microscopic states is the dependence of the velocity
of individual vehicles on the distance headway (see Fig. 8).

This function is also of great importance for theoretical approaches, e.g. it is used as input for the
so-called optimal velocity model. In the free-#ow regime it is evident that the asymptotic velocity
is reached already for small distance-headways. The slope of the velocity function is much lower
than that in the free-#ow regime. Surprisingly, the asymptotic velocity depends strongly on the
microscopic state as well as on the density, e.g., in dense tra$c low velocities of the vehicles are also
observed even when large distance headways are available.

4. Fluid-dynamical theories of vehicular tra7c

When viewed from a long distance, say, an aircraft, #ow of fairly heavy tra$c appears
like a stream of a #uid. Therefore, a `macroscopica theory of tra$c can be developed, in analogy
with the hydrodynamic theory of #uids, by treating tra$c as an e!ectively one-dimensional
compressible #uid (a continuum) [49]. We follow the convention that tra$c is #owing from left
to right.
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Suppose, c(x; t) and J(x; t) are the `coarse-graineda density and #ux at an arbitrary location x at
an arbitrary instant of time t. The equation of continuity for the #uid representing tra$c is

Rc(x; t)
Rt #

RJ(x; t)
Rx "

J*/

+
i/1

a
i
(x!x

i
; t)!

J065

+
j/1

b
j
(x!x

j
; t) , (2)

where the "rst and the second terms on the right-hand side take care of the sources and sinks,
respectively, at the J

*/
on-ramps situated at x

i
(i"1, 2,2,J

*/
) and J

065
o!-ramps situated at

x
j

( j"1, 2,2,J
065

). We can write a
i
(x!x

i
; t) and b

j
(x!x

j
; t) as

a
i
(x!x

i
; t)"a0

i
(t)/

i
(x!x

i
) and b

j
(x!x

j
; t)"b0

j
(t)/

j
(x!x

j
) , (3)

where /
i
(x!x

i
) and /

j
(x!x

j
) describe the spatial distribution of the incoming and outgoing #ux,

respectively, while a0
i
(t) and b0

j
(t) account for the corresponding temporal variations.

In the following subsections, for simplicity, we shall consider a given stretch of highway with
no entries or exits. In such special situations the equation of continuity reduces to the simpler
form [50]

Rc(x; t)/Rt#RJ(x; t)/Rx"0 . (4)

One cannot get two unknowns, namely, c(x; t) and J(x; t) (or, equivalently, v(x; t)) by solving only
one equation, namely (4), unless they are related to each other. In order to proceed further, one
needs another independent equation, say, for v(x; t); we shall write down such an equation later in
Section 4.4. An alternative possibility, which Lighthill and Whitham [50] adopted in their
pioneering work, is to assume that J(x; t) is determined primarily by the local density c(x; t) so that
J(x; t) can be treated as a function of only c(x; t). Consequently, the number of unknown variables is
reduced to one as, according to this assumption, the two unknowns c(x; t) and J(x; t) are not
independent of each other.

4.1. Lighthill}Whitham theory and kinematic waves

As a "rst approximation, let us begin with Lighthill}Whitham assumption that

J(x; t)"j(c(x; t)) , (5)

where j(c) is a function of c. The functional relation (5) between density and #ux cannot be
calculated within the framework of the #uid-dynamical theory; this must be either taken as
a phenomenological relation extracted from empirical data or derived from more microscopic
considerations. In general, the #ux}density curve implied by Eq. (5) need not be identical with the
fundamental diagram in the steady state.

Under the assumption (5), the x-dependence of the local #ux J(x; t) arises only from the
x-dependence of c(x; t). Alternatively, since J(x; t)"c(x; t)v(x; t), assuming v(x; t) to depend only on
c(x; t) the x-dependence of v(x; t) arises only from the x-dependence of c(x; t). Using (5) the equation
of continuity (4) can be expressed as

Rc(x; t)
Rt #

Rc(x; t)
Rx Cv(x; t)#c(x; t)

dv
dcD"

Rc(x; t)
Rt #v

'

Rc(x; t)
Rx "0 , (6)
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where v
'
"dJ/dc. Note that Eqs. (5) and (6) form the complete system of dynamical equations

governing tra$c #ow in this "rst approximation. However, Eq. (6) is nonlinear because, in general,
v
'
"dJ/dc"v(c)#cdv(c)/dc depends on c. If v

'
were a constant v

0
, independent of c, Eq. (6)

would become linear and the general solution would be of the form c(x; t)"f (x!v
0
t) where f is an

arbitrary function of its argument. In that case, the solution of any particular problem would be
found by merely matching the function f to the corresponding given initial and boundary
conditions. Such a solution describes a density wave motion as an initial density pro"le would get
translated by a distance v

0
t in a time interval t without any change in its shape. However, the

nonlinearity of Eq. (6) gives rise to subtleties which are essential to capture at least some aspects of
real tra$c.

The solution of the nonlinear equation (6) is of the general form

c(x; t)"F(x!v
'
t) , (7)

where F is an arbitrary function of its arguments. If we de"ne a wave to be `recognizable signal that
is transferred from one part of a medium to another with a recognizable velocity of propagationa
[51] then the solutions of the form (7) can be regarded as a `density wavea. There are several
similarities between the density wave and the more commonly encountered waves like, for example,
acoustic or elastic waves. But, the acoustic or elastic waves are solutions of linearized partial
di!erential equations whereas Eq. (6) is nonlinear and, hence, v

'
is c-dependent. Besides, the waves

of the type (7) are called kinematic waves [50}52] to emphasize their purely kinematic origin, in
contrast to the dynamic origin of the accoustic and elastic waves. From the initial given density
proxle c(x; 0) the pro"le c(x;*t) at time *t can be obtained by moving each point on the initial
pro"le a distance v

'
(c)t to the right; obviously, the distance moved is di!erent for di!erent values of

c. The time-evolution of the density pro"le can be shown graphically [50,51] on the space}time
diagram (i.e., the x}t plane) where an arbitrary point x

0
on the t"0 axis moves along a straight

line of slope v
'
(c) if the initial density at x

0
is c. These straight lines are referred to as characteristics;

di!erent characteristics corresponding to di!erent c have di!erent slopes v
'
(c).

The speed v
'
(c) of the density wave should not be confused with v(c), the actual speed of the

continuum #uid representing tra$c. In fact, at any instant of time v(x; t) can be obtained from
the corresponding density pro"le c(x; t) by using the relation v(x; t)"j(c(x; t))/c(x; t). Moreover,
since v

'
"v(c)#c dv(c)/dc and since dv(c)/dc(0, the speed of the density wave is less than that of

the #uid. Therefore, the density wave propagates backward relative to the trazc and the drivers
are thereby warned of density #uctuations ahead downstream. Furthermore, the density wave
moves forward or backward relative to the road, depending on whether c(c

.
or c'c

.
where

c
.

corresponds to the maximum in the function j(c).
When J(c) is convex, i.e., d2J/dc2(0, we have dv

'
/dc(0; consequently, higher values of

c propagate slower than lower values of c thereby distorting the initial density pro"le. On the other
hand, when dv

'
/dc'0 higher values of c propagate faster and the distortion has the opposite

tendency as compared to the case of dv
'
/dc(0. In both the situations the distortion of the initial

density pro"le is caused by the c-dependence of v
'
which arises from the nonlinearity of Eq. (6). The

distortion of the density pro"le with time can also be followed on the space}time diagram. If
dv

'
/dc(0, in regions of decreasing density (i.e., c(x

1
)'c(x

2
) for x

1
(x

2
) the characteristics move

away from each other whereas, in regions of increasing density, the characteristics move towards
each other.
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When two characteristic lines on the space}time diagram intersect the density would be
double-valued at the point of intersection. We can avoid this apparently impossible scenario by
the following interpretation: when two characteristic lines intersect a shock wave is generated. By
de"nition, a shock represents a mathematical discontinuity in c and, hence, also in v. The speed of
a shock wave is given by

v
4
"(J(c`)!J(c~))/(c`!c~) (8)

where c` and c~ are, respectively, the densities immediately in front (downstream) and behind
(upstream) the shock while J(c`) and J(c~) represent the corresponding downstream and upstream
#uxes, respectively. Note that the shock wave moves downstream (upstream) if v

4
is positive

(negative). Often the shock is weak in the sense that the relative discontinuity (c`!c~)/c~ is small
and in such cases the shock wave speed tends to v

'
"dJ/dc. As a shock separates a section of high

and low densities of the model, it corresponds to a section of a highway where a free-#ow and
a congested regime is present. In particular for large di!erences between c` and c~ the velocity of
the shock can be interpreted as the velocity of a backwards moving jam.

One advantage of the kinematic approach outlined above over any dynamic approach is that
the dynamical equation, which will be given in Section 4.4, is di$cult to derive from basic "rst
principles and usually involve quite a few phenomenological parameters and even a phenom-
enological function. On the other hand, the only input needed for the kinematic approach is the
phenomenological function J(c) which can be obtained from empirical data.

4.2. Diwusion term in Lighthill}Whitham theory and its ewects

Let us now make improvement over the original Lighthill}Whitham theory, which is based on
the "rst approximation (5). We now assume that the local #ux J(x; t) is determined not only by
the local density c(x; t) but also by the gradient of the density. In other words, we replace the
assumption (5) by

J(c)"j(c)!D Rc/Rx (9)

where D is a positive constant. Note that, for "xed c(x; t) (and, hence, "xed j(c)), a positive (negative)
density gradient leads to a lower (higher) #ux as the drivers are expected to reduce (increase) the
speed of their vehicles depending on whether approaching a more (less) congested region. Using
relation (9) in the equation of continuity (4) we now get

Rc(x; t)/Rt#v
'
Rc(x; t)/Rx"D R2c(x; t)/Rx2 (10)

where v
'
(c)"dj(c)/dc. Eq. (10) reduces to the equation (6) when D"0. The nonlinearity and

di!usion have opposite e!ects: the term v
'
(c) Rc/Rx leads to `steepeninga and ultimate `breakinga

of the wave whereas the term DR2c/Rx2 smoothens out the pro"le. Nonvanishing D also leads to
a nonzero width of the shock wave.

4.3. Greenshields model and Burgers equation

So far in the preceding subsections we have not considered any speci"c form of the function j(c)
relating #ux with density. One can start with the simplest (di!erentiable) approximation capturing
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the basic form of the fundamental diagram,

J"v
.!9

c(1!c) . (11)

Note that v
.!9

in (11) is a phenomenological parameter and it is interpreted to be the maximum
average speed for cP0. In tra$c science and engineering, one usually uses 1!c/c

+!.
instead of

1!c in Eq. (11) and the corresponding form of the relation between J and c is known as the
Greenshields [30] model. Substituting (11) into Eq. (10) we get

Rc(x; t)
Rt #v

.!9

Rc(x; t)
Rx !2v

.!9
c
Rc(x; t)
Rx "D

R2c
Rx2

. (12)

Introducing the linear transformation of variables

x"v
.!9

t@!x@, t"t@ , (13)

one gets

Rc(x; t)
Rt@ #2v

.!9
c
Rc(x; t)
Rx@

"D
R2c
Rx@2

(14)

which is the (deterministic) Burgers equation [51,53]. Note that the transformation (13) takes one
from the space-"xed coordinate system (x, t) to a coordinate system (x@, t@) that moves with uniform
speed v

.!9
; so, vehicles moving with speed v

.!9
with respect to the coordinate system (x, t) do not

move at all with respect to the coordinate system (x@, t@).
The advantage of this route to the theory of tra$c #ow is that the Burgers equation (14) can be

transformed further into a di!usion equation, thereby getting rid of the nonlinearity, through
a nonlinear transformation called the Cole}Hopf transformation [51]. Since it is straightforward
to write down the formal solution to the di!usion equation, one can see clearly the role of the
coe$cient D and the nature of the solutions in the limit DP0.

If Eq. (6) is assumed to be the only equation governing tra$c #ow then an inhomogeneous initial
state can lead to a shock wave but the amplitude of the shock wave decreases with time and
eventually the shock wave fades out leading to a homogeneous steady state in the limit tPR.
Leibig [54] has studied how a random initial distribution of steps in the density pro"le evolves with
time in this theory. No tra$c jam forms spontaneously from a state of uniform density at this level of
sophistication of the #uid-dynamical approach.

4.4. Navier}Stokes-like momentum equation and consequences

Corresponding to the assumption (9) we can write a velocity equation

v(x; t)"v(c(x; t))!
D
c
Rc(x; t)
Rx , (15)

where v(c)"j(c(x; t))/c(x; t). In the kinematic approach discussed so far in the preceding subsections
it is implicitly assumed that, following any change in the local density (and density gradient) is
followed by an immediate response (without delay) of the velocity "eld. For a more realistic
description, the local speed should be allowed to relax after a nonzero delay time t

$
. So, it seems

217D. Chowdhury et al. / Physics Reports 329 (2000) 199}329



natural to treat the right-hand side in (15) as a desired local velocity at x and write the total-
derivative dv/dt of v with respect to time as [55}58]

c
Rv
Rt#v

Rv
Rx"

c
t
$

[v
4!&%

(c)!v]!D
Rc(x; t)
Rx (16)

where the function v
4!&%

(c) is identical to v(c). Note that v
4!&%

(c) is a monotonically decreasing
function of c, i.e. dv

4!&%
/dc(0. Eq. (16) is an additional dynamical equation describing the time

dependence of the velocity v(x; t).
Now let us interpret the two terms on the right-hand side of (16). The phenomenological function

v
4!&%

(c) gives the safe speed, corresponding to the vehicle density c, that is achieved in time-
independent and homogeneous tra$c #ow and t

$
is the corresponding average relaxation time.

Next, note that the term D Rc(x; t)/Rx takes into account the natural tendency of the drivers to
accelerate (decelerate) if the density gradient is negative (positive), i.e. if the density in front becomes
smaller (larger); therefore, it can be interpreted as proportional to the pressure gradient in the #uid
describing tra$c. In addition to these terms, another term proportional to R2v/Rx2 is also added to
the right-hand side of the velocity equation; this tends to reduce spatial inhomogeneities of
the velocity "eld and is usually interpreted as the analogue of the viscous dissipation term in the
Navier}Stokes equation.

Thus, "nally, in the #uid-dynamical approach, a complete mathematical description of the
vehicular tra$c on highways is provided by two equations, namely, the equation of continuity (2)
and the Navier}Stokes-like velocity equation [59}62]

cC
Rv
Rt#v

Rv
RxD"!D

Rc
Rx#k

R2v
Rx2

#

c
t
$

[v
4!&%

(c)!v] , (17)

where D, k and t
$

are phenomenological constants.

4.5. Fluid-dynamical theories for multi-lane highways and city trazc

One can describe the tra$c on two-lane highways [63] by two equations each of the same form
(2) and where the source term in the equation for lane 1 (lane 2) takes into account the vehicles
which enter into it from the lane 2 (lane 1) while the sink term takes into account those vehicles
entering the lane 2 (lane 1) from the lane 1 (lane 2).

A lattice hydrodynamic theory for city tra$c has been formulated recently [64]. This #uid-
dynamical model is motivated by the CA model, developed by Biham et al. [21], which will be
discussed in detail later in this review. Instead of generalizing the Navier}Stokes equation (17)
a simpler form of the velocity equation has been assumed.

4.6. Some recent results of the yuid-dynamical theories and their physical implications

The #uid-dynamical model of vehicular tra$c has been studied numerically by discretizing the
partial di!erential equations (2) and (17) together with appropriate initial and boundary condi-
tions. Both periodic boundary conditions and open boundary conditions with time-independent
external #ux a0

i
(t)"b0

i
(t)"c have been considered.
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5A brief summary of that work can be found in [65].

Fig. 9. Time evolution of a density pro"le in the KuK hne}Kerner}KonhaK user model [57}59] consisting of Eqs. (2) and (17)
with a special choice of v

4!&%
(c). Initially an approximately constant density pro"le is assumed. The "gure shows that the

homogeneous state is not stable, already for small deviations from a #at pro"le (from [13]).

In the #uid-dynamical theory, based on the equation of continuity (2) and the Navier}Stokes-
like equation (17) tra$c jams can appear spontaneously, even if the initial density pro"le c(x; 0)
deviates very little from the homogeneous state (Fig. 9). In order to understand the physical
mechanism of the formation of local cluster of vehicles, let us consider a local increase of the density
*c(x)'0 at some location x. Since dv

4!&%
/dc(0, the local increase of the density leads to

a decrease of v
4!&%

. This decrease in the safe velocity forces drivers to reduce their average velocity
v sharply if Ddv

4!&%
/dcD is large enough. On the other hand, it follows from the equation of continuity

that the local decrease of v gives rise to further increase of c around x and, consequently, further
subsequent decrease of v(x) in this location. This avalanche-like process, which tends to increase the
amplitude of the local #uctuation of the density around the homogeneous state, competes against
other processes, like di!usion and viscous dissipation, which tend to decrease inhomogeneities.

To our knowledge, the "rst attempt to understand the physical mechanism of synchronized tra$c
within the framework of the #uid-dynamical formalism was made by Lee et al. [62].5 On a "nite
stretch of highway, of length ¸, they installed an on-ramp and an o!-ramp on the model highway
with a separation of ¸/2 between them. They chose the spatial distribution of the external #ux /(x)
in Eq. (3) as

/(x)"(2pp2)~1@2 exp(!x2/2p2) (18)

with p"56.7m. They also assumed the form v
4!&%

(c)"v
0
(1!c/c( )/[1#E(c/c( )h] for the safe

velocity with adjustable parameters v
0
, E, h, c( . Lee et al. [62] "rst allowed the system to reach

the steady state after applying a weak time-independent #ux a0
i
(t)"b0

i
(t)"c and simulating the

time evolution of the tra$c by solving simultaneously the equation of continuity (2) and the
Navier}Stokes-like equation (17) with a speci"c set of chosen values for the parameters
t
$
, D,k, v

0
, E, h, c( , etc. Since they chose c(c

#
, an initially homogeneous tra$c reaches a steady

`free-#owa where homogeneous regions with di!erent densities are separated from each other by
narrow `transition layersa near the ramps (no stable `free-#owa exists if c5c

#
). Then, they applied

a pulse of additional #ux dq at the on-ramp for a short duration dt. After a transient period, which
depends on the parameters of the model, the system was found to settle in a limit cycle in which
the local density and local #ux oscillate periodically and the oscillations are localized near the
on-ramp. The discontinuous change of the spatio-temporally averaged velocity induced by the
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localized perturbations of "nite amplitude, associated hysteresis e!ects and the stability of the limit
cycle were found to be qualitatively similar to some of the empirically observed characteristics of
synchronized #ow in real tra$c; therefore, Lee et al. [62] identi"ed the limit cycle observed in their
theoretical investigation as the synchronized state of vehicular tra$c. They drew analogy between
this state and a `self-excited oscillatora [62]. However, this mechanism of the synchronized state is
not yet accepted as the true and only possible explanation of the phenomena associated with the
synchronized state observed empirically.

Meanwhile similar results have been obtained for a gas-kinetic-based tra$c model [66], also
using on- and o!-ramps in order to explain the transition from free-#ow to synchronized states.
This work was completed in a recent paper, where a phase diagram was calculated, which depends
on the on-ramp activity and the #ow on the highway [67]. Summarizing the recent results of the
macroscopic tra$c models, there seems to be evidence that on- and o!-ramps play an important
role for a theoretical explanation of synchronized tra$c. Nevertheless, some experimental features
are still not captured by these approaches. E.g. the empirical results show that for synchonized
tra$c of type (iii) no correlations between density and #ow exist [41], in contrast to the regular
patterns of the oscillating states found in simulations of the macroscopic models.

Despite its success in capturing many aspects of tra$c #ow the #uid-dynamical approach has its
limitations; for example, viscosity of tra$c is not a directly measurable quantity. Nevertheless,
the #uid dynamical approach is being pursued not only by some physicists but also by several
members of the tra$c engineering community [68,69].

5. Kinetic theories of vehicular tra7c

In the kinetic theory, tra$c is treated as a gas of interacting particles where each particle
represents a vehicle. The various di!erent versions of the kinetic theory of vehicular tra$c
[12,70}76] have been developed by modifying the kinetic theory of gases.

Recall that in the kinetic theory of gases [77] f (r, p; t)d3rd3p denotes the number of molecules
which, at time t, have positions lying within a volume element d3r about r and momenta lying
within the momentum-space element d3p about p. The Boltzmann equation, which describes the
time-evolution of the distribution f (x, v; t), is given by

C
Rf
Rt#

p
m
)+

r
#F )+

pD f (r, p; t)"A
Rf
RtB

#0--

, (19)

where the symbols +
r
and +

p
denote gradient operators with respect to r and p, respectively, while

F is the external force. The term (Rf/Rt)
#0--

represents the rate of change of f, with time, which is
caused by the mutual collisions of the molecules.

In the "rst of the following two subsections we present the earliest version of the kinetic theory of
vehicular tra$c which was introduced by Prigogine and co-workers [70,12] by modifying some of
the key concepts in the kinetic theory of gases and by writing down an equation analogous to the
Boltzmann equation (19). In the subsequent subsection we discuss the kinetic theory developed
later by Paveri-Fontana [71] to cure the defects from which the Prigogine theory was found
to su!er.
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5.1. Prigogine model

Suppose f (x, v; t)dxdv denotes the number of vehicles, at time t, between x and x#dx, having
actual velocity between v and v#dv. In addition, Prigogine and co-workers [70,12] introduced
a desired distribution f

$%4
(x, v) which is a mathematical idealization of the goals that the population

of the drivers collectively strives to achieve. The actual distribution may deviate from the desired
distribution because of various possible in#uences, e.g., road conditions, weather conditions or
interaction with other vehicles, etc. They also argued that some of these in#uences cease after some
time while the interactions with the other vehicles persist for ever. For example, only a short stretch
of the road surface may be icy and strong winds or rain may stop after a short duration; in such
situations f can relax to f

$%4
over a relaxation time q

3%-
provided mutual interactions of the vehicles

is negligibly small. On the basis of these arguments, Prigogine and co-workers [70,12] suggested
that the analogue of the Boltzmann equation for the tra$c should have the form

Rf
Rt#v

Rf
Rx"A

Rf
RtB

3%-

#A
Rf
RtB

*/5

(20)

where (Rf/Rt)
3%-

accounts for the relaxation of f towards f
$%4

in the absence of mutual interactions
of the vehicles while (Rf/Rt)

*/5
accounts for the changes of f arising from mutual interactions among

the vehicles. Note that the term (Rf/Rt)
*/5

on the right-hand side of (20) may be interpreted as the
analogue of the term (Rf/Rt)

#0--
in Eq. (19) whereas the term (Rf/Rt)

3%-
in Eq. (20) may be interpreted

as the counterpart of the term F )+
p
f (r, p; t) in Eq. (19).

Prigogine and co-workers wrote down an explicit form for the term (Rf/Rt)
*/5

by generalizing
that for the term (Rf/Rt)

#0--
in the kinetic theory of gases. We shall consider this term in the next

subsection. In order to write down a simple explicit form of the relaxation term in Eq. (20) they
assumed that (i) the collective relaxation, which would cause the actual distribution to tend towards
the desired distribution, involves only a single relaxation time q

3%-
so that

(Rf/Rt)
3%-

"!( f!f
$%4

)/q
3%-

(21)

and (ii) the desired speed distribution F
$%4

(v) remains independent of the local concentration c(x; t)
so that

f
$%4

(x, v; t)"c(x; t)F
$%4

(v) . (22)

Therefore, a more explicit form of the Boltzmann-like equation (20) in the Prigogine theory is given
by

Rf
Rt#v

Rf
Rx"!

f (x, v; t)!c(x; t)F
$%4

(v)
q
3%-

#A
Rf
RtB

*/5

. (23)

Note that, in the absence of mutual interactions of the vehicles, the distribution f (x, v; t) would relax
exponentially with time. The concept of desired distribution f

$%4
(x, v; t) and this scenario of collective

relaxation of f towards f
$%4

has subsequently come under severe criticism [71]. Analyzing a set of
`ideal experimentsa in the light of the Prigogine theory, Paveri-Fontana [71] showed that the
results obtained from the Boltzmann-like equation (23) are physically unsatisfactory.

More recently, Lehmann [72] has attempted to revive the Prigogine approach by reformulating
it as a semi- phenomenological theory where the distribution f (x, v; t) is assumed to follow the
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simpler form

Rf
Rt#v

Rf
Rx"!

f!f
$%4

(v, c)
q
3%-

(24)

and the e!ects of the interactions are taken into account implicitly through a density-dependent
desired distribution function f

$%4
(v, c) which has to be determined empirically.

5.2. Paveri}Fontana model

In order to remove the conceptual as well as mathematical drawbacks of the Prigogine model of
the kinetic theory of vehicular tra$c, Paveri-Fontana [71] argued that each vehicle, in contrast to
the molecules in a gas, has a desired velocity towards which its actual velocity tends to `relaxa in the
absence of `interactiona with other vehicles. Thus, Paveri-Fontana model is based on a scenario
of relaxation of the velocities of the individual vehicles rather than a collective relaxation of the
distribution of the velocities.

In mathematical language, Paveri-Fontana introduced an additional phase-space coordinate,
namely, the desired velocity. Suppose, g(x, v, v

$%4
; t) dx dv dv

$%4
denotes the number of vehicles at

time t between x and x#dx, having actual velocity between v and v#dv and desired velocity
between v

$%4
and v

$%4
#dv

$%4
. The one-vehicle actual velocity distribution function

f (x, v; t)"Pdv
$%4

g(x, v, v
$%4

; t) (25)

describes the probability of "nding a vehicle between x and x#dx having actual velocity between
v and v#dv at time t. Similarly, the one-vehicle desired velocity distribution function

f
0
(x, v

$%4
; t)"Pdv g(x, v, v

$%4
; t) (26)

describes the probability of "nding a vehicle between x and x#dx having desired velocity between
v
$%4

and v
$%4

#dv
$%4

. The local density of the vehicles c(x; t) at the position x at time t can be
obtained from

c(x; t)"P
=

0

dv
$%4P

=

0

dv g(x, v, v
$%4

; t) .

Similarly, the corresponding average actual speed Sv(x; t)T and the average desired speed Sv
$%4

(x; t)T
are de"ned as

Sv(x; t)T"
:=
0

dv
$%4

:=
0

dv vg(x, v, v
$%4

; t)
c(x; t)

,

Sv
$%4

(x; t)T"
:=
0

dv
$%4

:=
0
dv v

$%4
g(x, v, v

$%4
; t)

c(x; t)
.

Finally, the local #ux J(x; t) is de"ned as J(x; t)"c(x; t)Sv(x; t)T.
Now let us assume that the desired velocity of each individual driver is independent of time, i.e.,

dv
$%4

/dt"0. Of course, the drivers may also adapt to the changing tra$c environment and their
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desired velocities may change accordingly. In principle, these features can be incorporated into the
kinetic theory at the cost of increasing complexity of the formalism.

Next, let us also assume that, in the absence of interaction with other vehicles, an arbitrary
vehicle reaches the desired velocity exponentially with time, i.e., dv/dt"(v

$%4
!v)/q where q is

a relaxation time. The Boltzmann-like kinetic equation for g(x, v, v
$%4

; t) can be written as

C
R
Rt#v

R
RxDg#

R
RvC

v
$%4

!v
q

gD"A
Rg
RtB

*/5

. (27)

In order to write down an explicit form of the `interaction terma we have to model the interactions
among the vehicles. First of all, we model the vehicles as point-like objects. We consider the
scenario where a fast vehicle, when hindered by a slow leading vehicle, either passes or slows down
to the velocity of the lead vehicle. Let us now make some further simplifying assumptions:

(i) The slowing down takes place with a probability 1!P
1!44

where P
1!44

is the probability of
passing.

(ii) If the fast vehicle passes the slower leading vehicle, its own velocity remains unchanged.
(iii) The velocity of the slower leading vehicle remains unchanged, irrespective of whether the faster

following vehicle passes or slows down.
(iv) The slowing down process is instantaneous, i.e., the braking time is negligibly small.
(v) It is adequate to consider only two-vehicle interactions; there is no need to consider three-

vehicle (or multi-vehicle) interactions.
(vi) The postulate of `vehicular chaosa, which is the analogue of the postulate of `molecular chaosa

in the kinetic theory of gases, holds, so that the two-vehicle distribution function
g
2
(x, v, v

$%4
, x@, v@, v@

$%4
; t) can be approximated as a product of two one-particle distributions

g(x, v, v
$%4

; t) and g(x@, v@, v@
$%4

; t), i.e., g
2
(x, v, v

$%4
, x@, v@, v@

$%4
; t)Kg(x, v, v

$%4
; t)g(x@, v@, v@

$%4
; t). Thus,

Eq. (27) can be written explicitly as

C
R
Rt#v

R
RxDg#

R
RvC

v
$%4

!v
q

gD"f (x, v; t)P
=

v

dv@(1!P
1!44

)(v@!v)g(x, v@, v
$%4

; t)

!g(x, v, v
$%4

; t)P
v

0

dv@(1!P
1!44

)(v!v@) f (x, v@; t) , (28)

where the form of the `interaction terma on the right-hand side of Eq. (28) follows from the
assumptions (i)}(vi) above. The "rst term on the right-hand side of (28) describes the `gaina of
probability g(x, v, v

$%4
; t) from the interaction of vehicles of actual velocity v@ with slower leading

vehicle of actual velocity v while the second term describes the loss of the probability g(x, v, v
$%4

; t)
arising from the interaction of vehicles of actual velocity v with even slower leading vehicle of actual
velocity v@.

The stationary homogeneous solution g(v, v
$%4

) is, by de"nition, independent of x and t. But, to
our knowledge, so far it has not been possible to get even this solution of the Boltzmann-like
integro-di!erential equation (28) by solving it analytically even for the simplest possible choice of
the desired distribution function although numerical solutions [74,76] provide some insights into
the regimes of validity of Eq. (28) and gives indications as to the directions of further improvements
of the Paveri-Fontana model. For example, the "nite sizes of the vehicles must be taken into
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account at high densities. Besides, the assumption (iv) of instantaneous relaxation has also been
relaxed in a more recent extension [74].

Normally passing would require more than one lane on the highway. Therefore, the models
discussed so far in the context of the kinetic theory may be regarded, more appropriately, as
quasi-one-dimensional. These neither deal explicitly with g

i
(x, v, v

$%4
; t) for the individual lanes

(labeled by i) nor take into account the process of lane-changing. Besides, all the vehicles were
assumed to be of the same type. Now, in principle, we can generalize the formalism of the kinetic
theory of tra$c to deal with diwerent types of vehicles on multi-lane highways. Suppose ga

i
(x, v, v

$%4
; t)

is the distribution for vehicles of type a on the ith lane of the highway. Obviously, the Boltzmann-
like equations for the di!erent lanes are coupled to each other. However, one needs additional
postulates to model the lane-changing rules [78,79].

Very little work has been done so far on developing kinetic theories of two-dimensional tra$c
#ow which would represent, for example, tra$c in cities. Suppose, for simplicity, that the network
of the streets consists of north}south and east}west streets and that east}west streets allow only
east-bound tra$c while only north-bound tra$c #ow takes place along the north}south streets.
Let P

xx
(P

xy
) denote the probabilities of an east-bound vehicle passing another east-bound (north-

bound) vehicle. Similarly, suppose, P
yx

(P
yy

) denote the probabilities of a north-bound vehicle
passing an east-bound (north-bound) vehicle. Let g

x
(x, y, u, u

$%4
; t) and g

y
(x, y, v, v

$%4
; t) represent

the distributions for the east-bound and north-bound vehicles, respectively, where u and v refer to
the actual their actual velocities whereas u

$%4
and v

$%4
refer to the corresponding desired velocities.

The Boltzmann-like equations governing the time evolutions of these distributions are given
by [80]

C
R
Rt#u

R
Rx#v

R
RyDgx#

R
RuC

u
$%4

!u
q

g
xD"A

Rg
x
Rt B

x,#0--

#A
Rg

x
Rt B

y,#0--

, (29)

where

A
Rg

x
Rt B

x,#0--

"f
x
(x, y, u; t)P

=

u

du@(1!P
xx

)(u@!u)g
x
(x, y, u@, u

$%4
; t)

!g
x
(x, y, u, u

$%4
; t)P

u

0

du@(1!P
xx

)(u!u@)f
x
(x, y, u@; t) (30)

and

A
Rg

x
Rt B

y,#0--

"d
u,0P

=

0

dv@f
y
(x, y, v@; t)P

=

0

du@(1!P
xy

)u@g
x
(x, y, u@, u

$%4
; t)

!g
x
(x, y, u, u

$%4
; t)P

=

0

dv@(1!P
xy

)uf
y
(x, y, v@; t) . (31)

The "rst term on the right-hand side of Eq. (30) describes gain of population of east-bound vehicles
with velocity u because of interaction with other east-bound vehicles with velocity u@5u while the
second term describes the loss of population of east-bound vehicles because of interaction with
east-bound vehicles of velocity u@(u. The right-hand side of Eq. (31) is based on the assumption
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that when an east-bound vehicle interacts with a north-bound vehicle at a crossing, it either passes
or stops.

5.3. Derivation of the phenomenological equations of the macroscopic yuid-dynamical theories
from the microscopic gas-kinetic models

In this section we discuss the results of the attempts to derive the phenomenological equations
of tra$c #ow in the macroscopic #uid-dynamical theories from the microscopic gas-kinetic
models. Several attempts have been made so far to derive the equation of continuity and the
Navier}Stokes-like equation for tra$c from the corresponding Boltzmann-like equation in the
same spirit in which the derivations of the equation of continuity and Navier}Stokes equation for
viscous #uids from the Boltzmann equation have been carried out. However, because of the
postulate of `vehicular chaosa, Eq. (28) is expected to be valid only at very low densities where the
correlations between the vehicles is negligibly small whereas tra$c is better approximated as
a continuum #uid at higher densities!

Let us de"ne the moments

m
k,l

(x; t)"PdvPdv
$%4

vkvl
$%4

g(x, v, v
$%4

; t) . (32)

Note that c"m
0,0

, SvT"m
1,0

. Integrating the Boltzmann-like equation (28) over the actual
velocities we get

R
Rt f

0
(x, v

$%4
; t)#

R
Rx[v6 (x, v

$%4
; t) f

0
(x, v

$%4
; t)]"0 , (33)

where v6 (x, v
$%4

; t) is de"ned as

v6 (x, v
$%4

; t)"
:dv vg(x, v, v

$%4
; t)

f
0
(x, v

$%4
; t)

. (34)

Eq. (33) is an equation of continuity for each desired speed v
$%4

separately; it is consequence of the
assumption that dv

$%4
/dt"0, i.e., no driver changes the desired speed.

Using the Boltzmann-like equation (28) and the de"nition (32) we can get separate partial
di!erential equations for the moments of v, moments of v

$%4
and the mixed moments of v and v

$%4
.

Unfortunately, these lead to a hierarchy of moment equations where each evolution equation for
moment of a given order involves also moments of the next higher order. In order to close this
system of equations, one needs to make appropriate justi"able assumptions.

6. Car-following theories of vehicular tra7c

In the car-following theories [10,11,81] one writes, for each individual vehicle, an equation of
motion which is the analogue of the Newton's equation for each individual particle in a system of
interacting classical particles. In Newtonian mechanics, the acceleration may be regarded as the
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6 In the following we label the vehicles in driving direction such that the (n#1)th vehicle is in front of the nth vehicle.

response of the particle to the stimulus it receives in the form of force which includes both the
external force as well as those arising from its interaction with all the other particles in the system.
Therefore, the basic philosophy of the car-following theories [10,11,81] can be summarized by the
equation

[Response]
n
J[Stimulus]

n
, (35)

for the nth vehicle (n"1, 2,2). Each driver can respond to the surrounding tra$c conditions only
by accelerating or decelerating the vehicle. Di!erent forms of the equations of motion of the
vehicles in the di!erent versions of the car-following models arise from the di!erences in their
postulates regarding the nature of the stimulus (i.e., `behavioural forcea or a `generalized forcea
[82]). The stimulus may be composed of the speed of the vehicle, the di!erence in the speeds of the
vehicle under consideration and its lead vehicle, the distance-headway, etc., and, therefore, in
general,

xK
n
"f

45*
(v

n
, *x

n
,*v

n
) , (36)

where the function f
45*

represents the stimulus received by the nth vehicle. Di!erent versions of the
car-following models model the function f

45*
di!erently. In the next two subsections we discuss two

di!erent conceptual frameworks for modelling f
45*

.

6.1. Follow-the-leader model

In the earliest car-following models [83,84] the di!erence in the velocities of the nth and (n#1)th
vehicles was assumed to be the stimulus for the nth vehicle.6 In other words, it was assumed that
every driver tends to move with the same speed as that of the corresponding leading vehicle so that

xK
n
(t)"(1/q)[x5

n`1
(t)!x5

n
(t)] , (37)

where q is a parameter that sets the time scale of the model. Note that 1/q in Eq. (37) can be
interpreted as a measure of the sensitivity coe$cient S of the driver; it indicates how strongly the
driver responds to unit stimulus. According to such models (and their generalizations proposed in
the 1950s and 1960s) the driving strategy is to follow the leader and, therefore, such car-following
models are collectively referred to as the follow-the-leader model.

Pipes [84] derived Eq. (37) by di!erentiating, with respect to time, both sides of the equation

*x
n
(t)"x

n`1
(t)!x

n
(t)"(*x)

4!&%
#qx5

n
(t) (38)

which encapsulates his basic assumption that (a) the higher is the speed of the vehicle the larger
should be the distance-headway, and, (b) in order to avoid collision with the leading vehicle, each
driver must maintain a safe distance (*x)

4!&%
from the leading vehicle.

It has been argued [85] that, for a more realistic description, the strength of the response of
a driver at time t should depend on the stimulus received from the other vehicles at time t!¹
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where ¹ is a response time lag. Therefore, generalizing Eq. (37) one would get [85]

xK
n
(t#¹)"S[x5

n`1
(t)!x5

n
(t)] , (39)

where the sensitivity coe$cient S is a constant independent of n.
According to Eqs. (37) and (39), a vehicle would accelerate or decelerate to acquire the same

speed as that of its leading vehicle. This implies that, as if, slower following vehicle are dragged by
their faster leading vehicle. In these linear dynamical models the acceleration response of a driver is
completely independent of the distance-headway. Therefore, this oversimpli"ed equation, fails to
account for the clustering of the vehicles observed in real tra$c. Moreover, since there is no density
dependence in this dynamical equation, the fundamental relation cannot be derived from this
dynamics. In order to make the model more realistic, we now assume [86] that the closer is the nth
vehicle to the (n#1)th the higher is the sensitivity of the driver of the nth car. In this case, the
dynamical equation (39) is further generalized to

xK
n
(t#¹)"

i
[x

n`1
(t)!x

n
(t)]

[x5
n`1

(t)!x5
n
(t)] , (40)

where i is a constant. An even further generalization of the model can be achieved [87,88] by
expressing the sensitivity factor for the nth driver as

S
n
"

i[v
n
(t#q)]m

[x
n`1

(t)!x
n
(t)]l

, (41)

where l and m are phenomenological parameters to be "xed by comparison with empirical data.
These generalized follow-the-leader models lead to coupled nonlinear di!erential equations for x

n
.

Thus, in this `microscopica theoretical approach, the problem of tra$c #ow reduces to problems of
nonlinear dynamics.

So far as the stability analysis is concerned, there are two types of analysis that are usually
carried out. The local stability analysis gives information on the nature of the response o!ered by
the following vehicle to a #uctuation in the motion of its leading vehicle. On the other hand, the
manner in which a #uctuation in the motion of any vehicle is propagated over a long distance
through a sequence of vehicles can be obtained from an asymptotic stability analysis.

From experience with real tra$c we know that drivers often observe not only the leading vehicle
but also a few other vehicles ahead of the leading vehicle. For example, the e!ect of the leading
vehicle of the leading vehicle can be incorporated in the same spirit as the e!ect of `next-nearest
neighboura in various lattice models in statistical mechanics. A linear dynamical equation, which
takes into account this `next-nearest neighboura within the framework of the follow-the-leader
model, can be written as [81]

xK
n
(t#¹)"S(1)[x5

n`1
(t)!x5

n
(t)]#S(2)[x5

n`2
(t)!x5

n
(t)] , (42)

where S(1) and S(2) are two phenomenological response coe$cients.
The weakest point of these theories is that these involve several phenomenological parameters

which are determined through `calibrationa, i.e., by "tting some predictions of the theory with the
corresponding empirical data. Besides, extension of these models to multi-lane tra$c is di$cult
since every driver is satis"ed if he/she can attain the desired speed!
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6.2. Optimal velocity models

We can express the driving strategy of the driver in the car-following models in terms of
mathematical symbols by writing

xK
n
(t)"(1/q)[<$%4*3%$

n
(t)!v

n
(t)] , (43)

where <$%4*3%$
n

(t) is the desired speed of the nth driver at time t. In all follow-the-leader models
mentioned above the driver maintains a safe distance from the leading vehicle by choosing the
speed of the leading vehicle as his/her own desired speed, i.e., <$%4*3%$

n
(t)"x5

n`1
.

An alternative possibility has been explored in recent works based on the car-following approach
[89}104]. This formulation is based on the assumption that <$%4*3%$

n
depends on the distance-

headway of the nth vehicle, i.e., <$%4*3%$
n

(t)"<015(*x
n
(t)) so that

xK
n
(t)"(1/q)[<015(*x

n
(t))!v

n
(t)] (44)

where the so-called optimal velocity function <015(*x
n
) depends on the corresponding instan-

taneous distance-headway *x
n
(t)"x

n`1
(t)!x

n
(t). In other words, according to this alternative

driving strategy, the nth vehicle tends to maintain a safe speed that depends on the relative position,
rather than relative velocity, of the nth vehicle. In general, <015(*x)P0 as *xP0 and must be
bounded for *xPR. For explicit calculations, one has to postulate a speci"c functional form of
<015(*x). Car-following models along this line of approach have been introduced by Bando et al.
[89,90]. For obvious reasons, these models are usually referred to as optimal velocity (OV) models.

Since the equations of motion in the follow-the-leader models involve only the velocities, and not
positions, of the vehicles these can be formulated as essentially xrst-order di!erential equations (for
velocities) with respect to time. In contrast, since the equations of motion in the OV model involve
the positions of the vehicles explicitly, the theoretical problems of this model are formulated
mathematically in terms of second-order di!erential equations (for the positions of the vehicles)
with respect to time [89,90].

The simplest choice for <015(*x) is [91,92]

<015(*x)"v
.!9

H(*x!d) , (45)

where d is a constant and H is the Heavyside step function. According to this form of <015(*x),
a vehicle should stop if the corresponding distance-headway is less than d; otherwise, it can
accelerate so as to reach the maximum allowed velocity v

.!9
. A somewhat more realistic choice

[92,96] is

<015(*x)"G
0 for *x(*x

A
,

f*x for *x
A
4*x4*x

B
,

v
.!9

for *x
B
(*x .

(46)

The main advantage of the forms (45) and (46) of the OV function is that exact analytical
calculations, e.g. in the jammed region, are possible [92]. Although (45) and (46) may not appear
very realistic, they capture several key features of more realistic forms of OV functions [89], e.g.,

<015(*x)"tanh[*x!*x
#
]#tanh[*x

#
] (47)
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Fig. 10. Fundamental diagram of the OV model. The solid line shows the OV function and the dots simulation data. One
can distinguish "ve di!erent density regimes with respect to the stable stationary state (from [92]).

for which analytical calculations are very di$cult. For the convenience of numerical investigation,
the dynamical equation (44) for the vehicles in the OV model has been discretized and, then,
rewritten as a diwerence equation [104].

The main question addressed by the OV model is the following: what is the condition for the
stability of the homogeneous solution

x)
n
"bn#ct , (48)

where b"(*x)
!7
"¸/N is the constant average spacing between the vehicles and c is the constant

velocity. It is not di$cult to argue that, in general, in the OV models the homogeneous #ow
becomes unstable when R<015/R*xD*x/b

'2/q [89].
One can distinguish "ve di!erent density regimes with respect to the stability of microscopic

states (see Fig. 10). At low and at high densities the homogeneous states are stable. For intermedi-
ate densities one can distinguish three regimes where jammed states exist. In region III the jammed
state is stable whereas in regions II and IV both homogeneous and jammed states form stable
structures. Beyond the formation of jams also hysteresis e!ects have been observed. Thus, the OV
model is able to reproduce many aspects of experimental "ndings.

Modi"ed Korteweg}de Vries (KdV) equation has been derived from Eq. (44) in a special regime
of the parameters [93] and the relations between its kink solutions and tra$c congestion have been
elucidated [99]. A generalization to two-lane tra$c can be found in [105]. In order to account
for tra$c consisting of two di!erent types of vehicles, say, cars and trucks, Mason et al. [97]
generalized the formulation of Bando et al. [89] by replacing the constant q by q

n
so that

xK
n
(t)"(1/q

n
)[<015

n
(t)!v

n
(t)] , (49)

where q
n

now depends on whether the nth vehicle is a car or a truck. Since a truck is expected to
take longer to respond than a car we should assign larger q to trucks and smaller q to cars. Some
other mathematically motivated generalizations of the OV model have also been considered
[95,98,100].
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As mentioned earlier, drivers often receive stimulus not only from the leading vehicle but also
a few other vehicles ahead of the leading vehicle. One possible way to generalize the OV models for
taking into account such multi-vehicle interactions [102] is to write the dynamical equations as

xK
n
"

m
+
j/1

S
jC<015A

x
n`j

!x
n

j B!v
nD , (50)

where S
j

are sensitivity coe$cients; one of the commonly used explicit forms of the optimal
velocity function, for example (47) can be chosen for that of the function <015 in (50).

Before concluding our discussions on the OV models let us mention a very simple model [94]
where one assumes that

xK
n
(t)"G

a for *x
n
5*x

c
,

!a for *x
n
(*x

c
.

(51)

with a'0. Obviously, *x
c

may be interpreted as the safety distance. Moreover, a restriction
v
.*/

4v
n
4v

.!9
is imposed on the allowed velocities of the vehicles by introducing the allowed

minimum and maximum velocities v
.*/

and v
.!9

, respectively. Note that in this oversimpli"ed
model xK

n
depends on the corresponding distance-headway and, therefore, has some apparent

similarities with the OV models. But, unlike the more general OV models, in this model xK
n
does not

depend on its instantaneous velocity. The main reason for considering such an oversimpli"ed
scenario is that velocity of the propagation of jams can be calculated analytically.

Some ideas of the OV model has been utilized by Mahnke and Pieret [106] in their master
equation approach to the study of jam dynamics. They assumed that, at a time, only one vehicle
can go into or come out of a jam; this, naturally, does not take into the merging or splitting of jams.
Under this assumption, the master equation (see e.g. Eq. (F.1)) governing the probability distribu-
tion P(n; t) of the jam sizes n is given by

dP(n; t)
dt

"=
`

(n!1)P(n!1; t)#=
~

(n#1)P(n#1; t)! [=
`

(n)#=
~

(n)]P(n; t) , (52)

where=
`

and=
~

, are the `growtha and `decaya transition rates, respectively. It has been argued
[106,107] that=

~
(n)"1/q"constant since a vehicle would require a constant average time q to

come out of a jam. However, =
`

(n) would depend on <015(*x) since the time taken by a free-
#owing vehicle immediately behind a jam to get into the jam would depend on *x as well as on
<015(*x) although the actual expression of=

`
(n) may be complicated in a reasonable ansatz [107].

Moreover, several assumptions of the model will have to be relaxed before the results of this
approach can be compared with those from real tra$c.

Before concluding this section we would like to emphasize that while formulating the dynamical
equations for updating the velocities and positions of the vehicles in any `microscopica theory the
following points should be considered:

(i) in the absence of any disturbance from the road conditions and interactions with other
vehicles, a driver tends to drive with a desired velocity v

$%4
; if the actual current velocity of the

vehicle v(t) is smaller (larger) than v
$%4

, the vehicle accelerates (decelerates) so as to approach
v
$%4

.
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(ii) In a freely-#owing tra$c, even when a driver succeeds in attaining the desired velocity v
$%4

, the
velocity of the vehicle #uctuates around v

$%4
rather than remaining constant in time.

(iii) The interactions between a pair of successive vehicles in a lane cannot be neglected if the gap
between them is shorter than v

$%4
; in such situations the following vehicle must decelerate so as

to avoid collision with the leading vehicle.

Clearly, the reliability of the predictions of the OV model depends on the appropriate choice of the
optimal velocity function.

7. Coupled-map lattice models of vehicular tra7c

Recall that, in the car-following models, space is assumed to be a continuum and time is
represented by a continuous variable t. Besides, velocity and acceleration of the individual vehicles
are also real variables. However, most often, for numerical manipulations of the di!erential
equations of the car-following models, one needs to discretize the continuous variables with
appropriately chosen grids. In contrast, in the coupled-map lattice approach [108], one starts with
a discrete time variable and, the dynamical equations for the individual vehicles are formulated as
discrete dynamical maps that relate the state variables at time t with those at time t#1, although
position, velocity and acceleration are not restricted to discrete integer values. The unit of time in
this scheme (i.e., one time step) may be interpreted as the reaction time of the individual drivers as
the velocity of a vehicle at the time step t depends on the tra$c conditions at the preceding time
step t!1.

Keeping in mind the general points raised at the end of the preceding section regarding the
formulation of the dynamical equations for updating the velocities and positions of the vehicles, the
general forms of the dynamical maps in the coupled-map lattice models can be expressed as

v
n
(t#1)"Map

n
[v

n
(t), v

$%4
, *x

n
(t)] , (53)

x
n
(t#1)"v

n
(t)#x

n
(t) , (54)

where v
$%4

is a desired velocity. In general, the dynamical map Map[v
n
(t), v

$%4
, *x

n
(t)] takes into

account the velocity v
n
(t) and the distance-headway *x

n
(t) of the nth vehicle at time t for deciding

the velocity v
n
(t#1) at time t#1. The e!ects of the interactions among the vehicles enter into the

dynamical updating rules (53), (54) only through the distance-headway *x
n
.

7.1. The model of Yukawa and Kikuchi

Yukawa and Kikuchi [109}111] have studied coupled-map models based on the map

v(t#1)"F(v(t)) :"cv(t)#b tanhA
vF!v(t)

c B#e (55)

for the unin#uenced motion of a single vehicle. vF is the preferred velocity of the vehicle and b, c, d
and e are parameters. For c close to 1 the map becomes chaotic, but acceleration and deceleration
are approximately constant far from vF. Their magnitude is determined by the parameter b. e
controls the di!erence of the acceleration and deceleration capabilities. Although the model is
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deterministic, #uctuations in the velocity are introduced through deterministic chaos. These
#uctuations around vF are determined by the parameter d.

If there is more than one vehicle on the road one needs an additional deceleration mechanism to
avoid collisions. This can be achieved by introducing a deceleration map. Assuming that deceler-
ation is dominated by the headway, two models have been studied in [109]. In model A, the
deceleration map describes a sudden braking process. If the front-bumper to front-bumper distance
*x

n
to the next vehicle ahead is less than the current velocity v

n
(t) of the following vehicle, then

the velocity is reduced to *x
n
!l where l is the length of the vehicles. The corresponding map is

B(*x
n
(t))"*x

n
(t)!l.

Model B has a more complex deceleration map:

v
n
(t#1)"G(*x

n
(t), v

n
(t)) :"

F(v
n
(t))!v

n
(t)

(a!1)v
n
(t)

[*x
n
(t)!l!v

n
(t)]

(for v
n
(t)4*x

n
(t)!l4av

n
(t)) . (56)

The parameter a determines the range within which the deceleration map G(*x, v) is used. For
headways less than av

n
(t) the map G is used instead of F(v). Note that G(*x, v"*x!l)"*x!l

and G(*x, v"(*x!l)/a)"F(v"(*x!l)/a), i.e. G interpolates between the free-motion map
F and the sudden braking map of model A. The full velocity map of Model B is thus given by

Map
n
(v

n
(t),*x

n
(t))"G

F(v
n
(t), vF

n
) for av

n
(t)4*x

n
(t) ,

G(*x
n
(t), v

n
(t)) for v

n
(t)4*x

n
(t)4av

n
(t)) ,

B(*x
n
(t)) for *x

n
(t)4v

n
(t)) .

(57)

Local measurements of the #ow for a system of vehicles with di!erent preferred velocities
vF
n

produce a fundamental diagram of inverse-j shape (see Fig. 4A) [111]. Here the non-uniqueness
of the #ow has a simple explanation. Due to the di!erent vF

n
, platoons form behind the slowest

vehicles. Whenever such a platoon passes the measurement region, a #ow value on the lower
branch is recorded. Otherwise, the #ow corresponds to the upper branch.

Measurements of the power spectral density of temporal density #uctuations, i.e. the Fourier
transform of the time-series of local densities, show a 1/f a-behaviour with a+1.8 in the free-#ow
regime. Due to the deterministic dynamics, the system evolves into a state with power-law
#uctuations. In [110,111] it has been suggested that the origin of the 1/f a-#uctuations is the
power-law distribution (J1/(*x)3.0) of the headways *x, since these are related to density waves.
The occurrence of jams destroys long-time correlations since vehicles lose their memory of current
#uctuations when they are forced to stop in a jam [110]. Therefore, no 1/f a-behaviour can be
observed in the jammed regime.

In [112] a coupled-map model based on optimal-velocity functions has been introduced by
discretizing the time variable of the OV model (see Section 6.2). This allows to study systems with
open boundaries and multilane systems. Furthermore, a multiplicative random noise can be
imposed in the velocity update so that the velocity map is given by

v(t#1)"[v(t)#a(<
015

(*x)!v(t))](1#f
/0*4%

m) , (58)

where m3[!1/2,1/2] is a uniform random variable and f
/0*4%

the noise level.
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7.2. The model of Nagel and Herrmann

Nagel and Herrmann (NH) [113] have introduced a coupled-map model which is related to the
continuum limit of the Nagel}Schreckenberg cellular automata model (see Section 8). A generaliz-
ation of the NH model has later been presented in [114]. Vehicles are characterized by a maximal
velocity v

.!9
and a safety distance a. The velocity map for the NH model is given by

v
n
(t#1)"G

max(*x
n
(t)!d, 0) for v

n
(t)'*x

n
(t)!a ,

min(v
n
(t)#a, v

.!9
) for v

n
(t)(*x

n
(t)!b .

(59)

In the velocity update step, vehicles which have a headway *x smaller than the safety distance
a decelerate. The headway distance after deceleration is determined by the parameter d. Vehicles
which have a large enough headway, on the other hand, accelerate. The acceleration coe$cient a is
determined by a"a

.!9
max(1,*x

n
(t)/c).

Since the dynamics of the model is deterministic, the behaviour depends strongly on #uctuations
of the initial state [114]. For equidistant starting positions of the vehicles the fundamental diagram
consists of two linear branches with maximum #ow f (c

.
)"v

.!9
c
.

at density c
.
"1/(v

.!9
#b).

For homogeneous starting positions the system is free-#owing up to a critical density c
#3*5

. Beyond
this density free-#owing and congested areas coexist.

7.3. The model of Krauss, Wagner and Gawron

Krauss et al. [115,116] introduced a whole class of stochastic models by considering necessery
conditions for the collision-free motion of vehicles. The models are continuous in space and
discrete in time.

The vehicles are characterized by a maximum velocity v
.!9

, their acceleration and deceleration
capabilities a(v) and b(v), respectively, and their length l which will be taken to be l"1 in the
following. Then the update rules for the velocity v and the space coordinate x of each vehicle are as
follows:

Step 1: Determine desired velocity;

v
$%4

"min[v
.!9

, v#a(v), v
4!&%

] .

Step 2: Randomization;

v"max[0, rand(v
$%4

!a, v
$%4

)] .

Step 3: Vehicle movement;

xPx#v .

Here rand(v
1
, v

2
) denotes a random number uniformly distributed in the interval [v

1
, v

2
) and v

4!&%
is

a velocity which guarantees collision motion of the vehicles. It is given explicitly by

v
4!&%

"v
1
#b(v( )(g!v

1
)/(v(#b(v( )) , (60)

where v
1

is the velocity of the preceding vehicle located at x
1

and g"x
1
!x!1 is the headway,

i.e. the distance to the preceding vehicle.
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Fig. 11. Schematic sketch of the three di!erent classes of models in the KWG model.

In the simplest case the acceleration and deceleration capabilities do not depend on the velocity,
i.e., a(v)"a"const and b(v)"b"const. The behaviour of the model can be classi"ed in three
di!erent families (see Fig. 11).

The three families of models sketched schematically in Fig. 11 can be characterized as follows:
Class I: High acceleration. Here no spontaneous jamming exists. For aPv

.!9
and b<1 the

behaviour is similar to that of a cellular automata model without velocity memory introduced in
[117] which is closely related to the Kasteleyn model [118] of statistical physics. It can also be
interpreted as 5-vertex model [119]. Another model belonging to this class has been introduced by
Fukui and Ishibashi [120] (see Section 11.1).

Class II: High acceleration}low deceleration. The out#ow from a jam is identical to the maximal
possible #ow. The jamming transition is not a true phase transition, but rather a crossover. The
limit bPR, a"1 corresponds to a continuum version of the Nagel}Schreckenberg cellular
automata model [20] which will be introduced in the next section.

Class III: Low acceleration}low deceleration. These models exhibit phase separation and metasta-
bility. The jamming transition is of "rst order. The out#ow from a jam is not maximal. For a;v

.!9
and b;v

.!9
the model is closely related to the Gipps model [88] discussed in Section 6.1. Other

models belonging to this class are the Kerner}KonhaK user model (see Section 4.4), the optimal-
velocity model (Section 6.2) and the models with slow-to-start rules which will be introduced in
Section 9.1.2.

On a macroscopic level, classes I, II and III can be distinguished by the ordering of the densities
c
f

and c
c
, where c

f
is the density of the out#ow from a jam and c

c
is the density where

homogeneous #ow becomes unstable [116]. For c
c
'c

f
the out#ow from a jam is stable and

the system phase-separates into free-#ow and jammed regions. Furthermore, metastable states can
be found. This is the type of the behaviour found in class III. For c

c
(c

f
, on the other hand, the

out#ow from a jam is unstable and no metastable states or phase separation can be found. This is
the typical behaviour of classes I and II. These classes can further be distinguished since in class
I one does not "nd any structure formation, like spontaneous jamming, in contrast to class II.

A related model has been studied before by Migowsky et al. [121]. In this model vehicles
are also characterized by a maximum velocity v

.!9
and a bounded acceleration capability

(!b
.!9

(xK(a
.!9

) which determines the safety distance d
4

necessary to avoid accidents. The
investigations in [121] focused on the e!ect of so-called driving strategies. These strategies are
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7 In other words, the maximum velocity is given by v(n)
.!9

"f (n)
v

v
.!9

, etc.

Fig. 12. A typical con"guration in the NaSch model. The number in the upper right corner is the speed of the vehicle.

characterized by a vector ( f
7
, f
!
, f
4
), where f

7
, f
!

and f
4

are the fraction of the vehicle's
maximal velocity, acceleration and safety distance actually used,7 respectively. This can lead to the
possibility of accidents and allows to study the number of crashes as a function of the driving
strategies.

In [121] di!erent strategies have been compared. Furthermore, dynamical changes of strategies
can be introduced which allow the drivers to adapt to the local tra$c conditions. In general this
leads to a decrease in the number of accidents, jams and fuel consumption, but at high densities the
#ow is reduced compared to the case of "xed strategies.

8. Nagel}Schreckenberg cellular automata model of vehicular tra7c on highways

In general, CA are idealization of physical systems in which both space and time are assumed to
be discrete and each of the interacting units can have only a "nite number of discrete states. Note
that for a discretization of di!erential equations, e.g. those of the hydrodynamic approach, space
and time variables are discrete, but the state variable still is continuous. The concept of CA was
introduced in the 1950s by von Neumann while formulating an abstract theory of self-replicating
computing machines [122]. However, it received the attention of a wider audience in the 1970s
through Conway's game of life [123]. The family of one-dimensional CA was studied systemati-
cally, in the 1980s, from the point of view of dynamical systems and popularized by Wolfram
[18,124]. Since then the concept of CA has been applied to model a wide variety of systems
[125}127]. To our knowledge, the "rst CA model for vehicular tra$c was introduced by Cremer
and Ludwig [128].

In the CA models of tra$c the position, speed, acceleration as well as time are treated as discrete
variables. In this approach, a lane is represented by a one-dimensional lattice. Each of the lattice
sites represents a `cella which can be either empty or occupied by at most one `vehiclea at a given
instant of time (see Fig. 12). At each discrete time step tPt#1, the state of the system is updated
following a well de"ned prescription (a summary of various possible di!erent schemes of updating
is given in Appendix A). The computational e$ciency of the discrete CA models is the main
advantage of this approach over the car-following and coupled-map lattice approaches.

In the NaSch model, the speed v of each vehicle can take one of the v
.!9

#1 allowed integer
values v"0, 1,2, v

.!9
. Suppose, x

n
and v

n
denote the position and speed, respectively, of the nth

vehicle. Then, d
n
"x

n`1
!x

n
, is the gap in between the nth vehicle and the vehicle in front of it at

time t. At each time step tPt#1, the arrangement of the N vehicles on a "nite lattice of length ¸ is
updated in parallel according to the following `rulesa:
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Step 1: Acceleration. If v
n
(v

.!9
, the speed of the nth vehicle is increased by one, but v

n
remains

unaltered if v
n
"v

.!9
, i.e.,

v
n
Pmin(v

n
#1, v

.!9
) . (U1)

Step 2: Deceleration (due to other vehicles). If d
n
4v

n
, the speed of the nth vehicle is reduced to

d
n
!1, i.e.,

v
n
Pmin(v

n
, d

n
!1) . (U2)

Step 3: Randomization. If v
n
'0, the speed of the nth vehicle is decreased randomly by unity with

probability p but v
n

does not change if v
n
"0, i.e.,

v
n
Pmax(v

n
!1, 0) with probability p (U3)

Step 4: Vehicle movement. Each vehicle is moved forward according to its new velocity deter-
mined in Steps 1}3, i.e.,

x
n
Px

n
#v

n
. (U4)

The NaSch model is a minimal model in the sense that all the four steps are necessary to reproduce
the basic features of real tra$c; however, additional rules need to be formulated to capture
more complex situations. Step 1 re#ects the general tendency of the drivers to drive as fast as
possible, if allowed to do so, without crossing the maximum speed limit. Step 2 is intended to avoid
collision between the vehicles. The randomization in step 3 takes into account the di!erent
behavioural patterns of the individual drivers, especially, nondeterministic acceleration as well as
overreaction while slowing down; this is crucially important for the spontaneous formation of
tra$c jams. Even changing the precise order of the steps of the update rules stated above would
change the properties of the model. E.g. after changing the order of steps 2 and 3 there will be no
overreactions at braking and thus no spontaneous formation of jams. The NaSch model may be
regarded as stochastic CA [18]. In the special case v

.!9
"1 the deterministic limit of the NaSch

model is equivalent to the CA rule 184 in Wolfram's notation [18] and some abstract extensions of
this CA-184 rules [129] have been studied in the more general context of complex dynamics and
particle #ow.

Why should the updating be done in parallel, rather than in random sequential manner, in tra$c
models like the NaSch model? In contrast to a random sequential update, parallel update can lead
to a chain of overreactions. Suppose, a vehicle slows down due the randomization step. If the
density of vehicles is large enough this might force the following vehicle also to brake in the
deceleration step. In addition, if p is larger than zero, it might brake even further in Step 3.
Eventually this can lead to the stopping of a vehicle, thus creating a jam. This mechanism of
spontaneous jam formation is rather realistic and cannot be modeled by the random sequential
update.

The update scheme of the NaSch model is illustrated with a simple example in Fig. 13.
Space}time diagrams showing the time evolutions of the NaSch model demonstrate that no jam

is present at su$ciently low densities, but spontaneous #uctuations give rise to tra$c jams at
higher densities (Fig. 14(a)). From Fig. 14(b) it should be obvious that the intrinsic stochasticity of
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Fig. 13. Step-by-step example for the application of the update rules. We have assumed v
.!9

"2 and p"1/3. Therefore,
on average one-third of the cars qualifying will slow down in the randomization step.

the dynamics [20], arising from nonzero p, is essential for triggering the jams [20,113]. For
a realistic description of highway tra$c [20], the typical length of each cell should be about 7.5m
which is the space occupied by a vehicle in a dense jam. When v

.!9
"5 each time step should

correspond to approximately 1 s of real time which is of the order of the shortest relevant timescale
in real tra$c, namely the reaction time of the drivers.

Almost all the models of tra$c considered in this review, including the NaSch model, have been
formulated in such a way that no accident between successive vehicles is possible. However,
accident of the vehicles is possible if the condition for safe driving is relaxed. For example, Boccara
et al. [130] replaced the update rule of the NaSch model by the rule

if v
n`1

(t)'0 then x
n
(t#1)"x

n
(t)#v

n
(t#1)#*v , (61)

where *v is a Bernoulli random variable which takes the value 1 with probability p
#!3%-%44

and zero
with the probability 1!p

#!3%-%44
. The probability P

!#
of accident per vehicle per time step is

a non-monotonic function of the vehicle density c [130,131].

237D. Chowdhury et al. / Physics Reports 329 (2000) 199}329



Fig. 14. Typical space}time diagrams of the NaSch model with v
.!9

"5 and (a) p"0.25, c"0.20, (b) p"0, c"0.5.
Each horizontal row of dots represents the instantaneous positions of the vehicles moving towards right while the
successive rows of dots represent the positions of the same vehicles at the successive time steps.

Fig. 15. ASEP with periodic boundary conditions.

8.1. Relation with other models

8.1.1. Relation with totally asymmetric simple exclusion process
Now we point out the similarities and di!erences between the v

.!9
"1 limit of the NaSch model

and the totally asymmetric simple exclusion process (TASEP) which is the simplest prototype
model of interacting systems driven far from equilibrium [14}16]. In the TASEP (Fig. 15)
a randomly chosen particle can move forward, by one lattice spacing, with probability q if the
lattice site immediately in front of it is empty. It corresponds to a Kawasaki dynamics [132] for
exchange of a charged particle and hole on nearest-neighbour lattice sites at in"nite temperature
and in the presence of an in"nite electric "eld [133] (Appendix B for some technical aspects of
TASEP). Several di!erent generalized variants of the TASEP have been considered. For example,
in the k-hop model [134] a particle can exchange its position with the nearest-hole on its right with
probability q, provided the separation of the two sites under consideration is not more than
k lattice spacings. The k-hop model reduces to the TASEP in the special case k"1.

Note that in the NaSch model with v
.!9

"1 every vehicle moves forward with probability
q"1!p in the time step t#1 if the site immediately in front of it were empty at the time step t;
this is similar to TASEP. But, updating is done in parallel in the NaSch model whereas that in the
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Fig. 16. The schematic pictorial representation of the mapping of the NaSch model with v
.!9

"1 onto a stochastic
model of surface growth.

TASEP is done in a random sequential manner. Nevertheless, the special case of v
.!9

"1 for the
NaSch model achieves special importance from the fact that so far it has been possible to derive
exact analytical results for the NaSch model only in the special limits (a) p"0 and arbitrary
v
.!9

(which we have already considered), and (b) v
.!9

"1 and arbitrary p.

8.1.2. Relation with surface growth models and the phenomenological
yuid-dynamical theories of trazc

The NaSch model with v
.!9

"1 can be mapped onto stochastic growth models of one-
dimensional surfaces in a two-dimensional medium, the single-step model [135]. Corresponding
to each con"guration Mp

j
N of the NaSch model in the site-oriented description, one can obtain

a unique surface pro"le MH
j
N through the relation H

j
"1

2
+

jyk
(1!2p

k
) [135,136]. Pictorially one

can interpret this mapping as shown in Fig. 16. Particle (hole) movement to the right (left)
correspond to local forward growth of the surface via particle deposition. In this scenario a particle
evaporation would correspond to a particle (hole) movement to the left (right) which is not allowed
in the NaSch model. It is worth pointing out that any quenched disorder in the rate of hopping
between two adjacent sites would correspond to columnar quenched disorder in the growth rate for
the surface [137].

The surface growth model described above is known to be a discrete counterpart of continuum
models of growing surfaces whose dynamics are governed by the so-called Kardar}Parisi}Zhang
equation [135,136]. Since the Kardar}Parisi}Zhang equation can be mapped onto the Burgers
equation [53] using the Cole}Hopf transformation [135], it is not surprising that several features
of vehicular tra$c are described by the NaSch model at the microscopic level and by the noisy
Burgers equation for the coarse-grained continuum of the #uid-dynamical theory [138].

8.2. Limiting cases of the NaSch model

In spite of the fact that the deterministic limits p"0 and 1 of the NaSch model do not capture
some of the most essential features of vehicular tra$c it may be instructive to examine these limits
to gain insight into the features of this simpler scenario. Another limiting case which exhibits
a surprisingly complex behaviour is the case v

.!9
"R.
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8See also [113], where the case p"0 was studied.

8.2.1. NaSch model in the deterministic limit p"0
The NaSch model, a stochastic CA, becomes a deterministic CA in the limit p"0. In this special

case, the deterministic dynamical update rules of the model can be written as

v
n
(t#1)"min[v

.!9
, v

n
(t)#1, d

n
(t)!1] ,

x
n
(t#1)"x

n
(t)#v

n
(t#1)

(62)

which can lead to two types of steady states depending on the density c [113]. At low densities, the
system can self-organize so that d

n
'v

.!9
for all n and, therefore, every vehicle can move with v

.!9
,

i.e., v
n
(t)"v

.!9
, giving rise to the corresponding #ux cv

.!9
. This steady state is, however, possible

only if enough empty cells are available in front of every vehicle, i.e., for c4c$%5
.

"(v
.!9

#1)~1
and the corresponding maximum #ux is J$%5

.!9
"v

.!9
/(v

.!9
#1). On the other hand, for c'c$%5

.
,

d
n
(t)!14min[v

n
(t)#1, v

.!9
] and, therefore, the relevant steady states are characterized by

v
n
(t)"d

n
(t)!1, i.e., the #ow is limited by the density of holes. Since the average distance-headway

is 1/c!1, the fundamental diagram in the deterministic limit p"0 of the NaSch model (for any
arbitrary v

.!9
) is given by the exact expression

J"min(cv
.!9

,1!c) . (63)

Note that the result v
n
"1/c!1 is identical with Greenshields ansatz v

n
"1/c!1/c

+!.
if we

identify c
+!.

"1.

8.2.2. NaSch model in the deterministic limit p"1
Are not the properties of the NaSch model with maximum allowed speed v

.!9
, in the determinis-

tic limit p"1, exactly identical to those of the same model with maximum allowed speed v
.!9

!1?
Although this expectation may seem to be consistent with the observation that J"0 for all c in
the special case v

.!9
"1"p, the answer to the question posed above is: NO. To understand the

subtle features of the deterministic limit p"1 one has to consider v
.!9

'1. You can easily
convince yourself that if, for example, v

.!9
"2, then, for c'1/3, all stationary states correspond to

J"0 because at least one vehicle will have only one empty cell in front (i.e. d
n
"2) and it will never

succeed in moving forward. For v
.!9

"2 and p"1, although there are stationary states corre-
sponding to JO0 for all c41/3, such states are metastable in the sense that any local external
perturbation leads to complete breakdown of the #ow. If the initial state is random, such
metastable states cannot lead to nonzero J because they have a vanishing weight in the thermodyn-
amic limit. Hence, if p"1, all random initial states lead to J"0 in the stationary state of the
NaSch model irrespective of v

.!9
and c!

8.2.3. NaSch model in the limit v
.!9

"R

The limit v
.!9

"R has been introduced in [139]. One has to be aware that there are several
possible ways of performing this limit since only "nite systems of length ¸ can be treated in
computer simulations. In [139] the case v

.!9
"¸ has been investigated,8 but other limiting

procedures are also possible, e.g. v
.!9

J¸a with a'0 or even v
.!9

"R independent of the system
size. In principle, these di!erent limiting procedures could lead to di!erent results, but up to now
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Fig. 17. Fundamental diagram of the NaSch model with v
.!9

"¸ for a system size of ¸"1000 (from [139]).

no systematic study has been performed. We therefore restrict ourselves to the case v
.!9

"¸

studied in [139].
Surprisingly one "nds that the fundamental diagram has a form quite di!erent from that of the

case of a "nite v
.!9

. The #ow does not vanish in the limit cP0 since already one single car
produces a "nite value of the #ow, J(cP0)"1. Due to the hindrance e!ect of other cars, J(c) is
a monotonically decreasing function of the density c (see Fig. 17). Another characteristic feature of
the fundamental diagram is the existence of a plateau at #ow J

P
where the value J

P
depends on the

randomization p, but not on the system size ¸. The length of the plateau, on the other hand,
increases with ¸.

What is the microscopic structure of the stationary state leading to such a fundamental diagram?
At low densities, where #ow J is larger than the plateau value J

P
, the cars tend to be uniformly

distributed just as in the deterministic case p"0 (see Section 8.2.1). For densities in the plateau
regime, however, one jam exists in the system, whereas for higher densities there is more than one
jam. In the thermodynamic limit, one expects a phase transition at c"0 between a jamless phase
with J"1 and a phase with one jam and #ow J

P
[139]. Increasing the density further, more jams

develop and the plateau ceases. Note that this behaviour is completely di!erent from the prediction
of mean-"eld theory in that limit [140] (see Section 8.3.1) showing the importance of correlations.

8.3. Analytical theories of the NaSch model with periodic boundary conditions

CA are, by design, ideal for large-scale computer simulations. However, proper interpretations of
the numerical data obtained from computer simulations are not always quite straightforward
because of the "nite-size e!ects and `numerical noisea. One cannot deny the importance of exact
analytical results in providing a testing ground for the computer codes. On the other hand, the
parallel updating makes exact analytical solution of CA models very di$cult. Nevertheless, even in
those situations where exact solutions are not possible, a combination of approximate analytical
treatments and computer simulation often turns out to be very powerful method of analysis of
a problem. This approach has been quite successful in recent years in the studies of the NaSch
model and its generalizations.
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Before we proceed with the analytical theories in the nondeterministic NaSch model, we would
like to point out that the fundamental diagram J(c) is known exactly for arbitrary v

.!9
and p in the

two limits cP0 and cP1. In the former case, JKcv
F

where v
F
"v

.!9
!p is the free-#ow velocity.

On the other hand, in the latter case, JK(1!p)(1!c) as #ow is determined by holes moving
backwards at a speed 1!p.

8.3.1. Site-oriented naive mean-xeld theory for the NaSch model
In the `site-orienteda theories one describes the state of the "nite system of length ¸ by

completely specifying the state of each site, i.e., by the set (p
1
, p

2
,2,p

L
) where p

j
( j"1, 2,2,¸)

can, in principle, take v
.!9

#2 values one of which represents an empty site while the remaining
v
.!9

#1 correspond to the v
.!9

#1 possible values of the speed of the vehicle occupying the site j.
In some of the analytical calculations of steady-state properties of the NaSch model one follows, for
convenience, the sequence 2!3!4!1, instead of 1!2!3!4 of the stages of updating [140]
as this merely shifts the starting step and, therefore, does not in#uence the steady-state properties of
the model. The advantage of this new sequence is that, in a site-oriented theory, the variable p

j
can now take v

.!9
#1 values as none of the vehicles can have a speed v"0 at the end of the

acceleration stage of the updating.
Let us introduce the lattice gas variables n(i; t) through the following de"nition: n(i; t)"0 if the

site labeled by i is empty and n(i; t)"1 if it is occupied by a vehicle (irrespective of the speed).
Obviously, the space-average of n(i; t) is the density of the vehicles, i.e., +

i
n(i; t)/¸"c. Suppose,

c
v
(i; t) is the probability that there is a vehicle with speed v (v"0, 1, 2,2, v

.!9
) at the site i at the

time step t. Obviously, c(i; t)"+v.!9

v/0
c
v
(i; t) is the probability that the site i is occupied by a vehicle at

the time step t and d(i; t)"1!c(i; t) is the corresponding probability that the site i is empty at the
time step t.

In the naive site-oriented mean-"eld (SOMF) approximation for the NaSch model one writes
down the equations relating c

v
(i; t#1) (v"1,2, v

.!9
) with the corresponding probabilities at time

t and, then, solves the equations in the steady-state (see Appendix C for a detailed derivation of
these equations for arbitrary v

.!9
). In the simplest case of v

.!9
"1 and periodic boundary

conditions one gets [140]

c
0
(i; t#1)"c(i; t)c(i#1; t)#pc(i; t)d(i#1; t) , (64)

c
1
(i; t#1)"qc(i!1; t)d(i; t) . (65)

Eq. (64) expresses the simple fact that at the time step t#1 the speed of the vehicle at the ith site
can be zero either because the site i#1 was occupied at time t or because of random deceleration
(if the site i#1 was empty at time t). Similarly, Eq. (65) implies that the speed of the vehicle at the
site i can be 1 at time t#1 if at the time step t the site i was empty while the site i!1 was occupied
by a vehicle which did not decelerate during the random deceleration stage of updating.

In the steady state, c
v
(i, t) are independent of t. Besides, if periodic boundary conditions are

imposed, the i-dependence of c
v
(i) also drops out in the translational-invariant steady state.

Therefore, in the steady state

J"c
1
"qc(1!c) . (66)
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9The con"guration shown in Fig. 12 is also a GoE state!

Fig. 18. A GoE state for the NaSch model with v
.!9

52.

It turns out [140] that the naive SOMF underestimates the #ux for all v
.!9

. Curiously, if instead of
parallel updating one uses the random sequential updating, the NaSch model with v

.!9
"1

reduces to the TASEP for which the equation (66) is known to be the exact expression for the
corresponding #ux (see, e.g., [20])!

8.3.2. Paradisical mean-xeld theory of the NaSch model
What are the reasons for these di!erences arising from parallel updating and random sequential

updating? There are `Garden of Edena (GoE) [141] states (dynamically forbidden states) [142] of
the NaSch model which cannot be reached by the parallel updating whereas no state is dynamically
forbidden if the updating is done in a random sequential manner. For example, the con"guration
shown in Fig. 18 is a GoE state9 because it could occur at time t only if the two vehicles occupied
the same cell simultaneously at time t!1.

The naive SOMF theory, discussed in the preceding subsection, does not exclude the GoE states.
On the other hand, results of the paradisical mean-"eld (pMF) theory are derived by repeating the
calculations of the naive SOMF theory excluding all the GoE states from consideration. The exact
expression, given in the next subsection, for the #ux in the steady state of the NaSch model
with v

.!9
"1 is obtained in the pMF theory (see Appendix D for detailed calculations), thereby

indicating that the only source of correlation in this case is the parallel updating [142]. But, for
v
.!9

'1, there are other sources of correlation because of which exclusion of the GoE states merely
improves the naive SOMF estimate of the #ux (Fig. 19) but does not yield exact results [142,143].

8.3.3. Site-oriented cluster-theoretic approach to the NaSch model
The site-oriented cluster theoretic approach leads to a systematic improvement of the naive

SOMF theory of the NaSch model. We de"ne a n-cluster to be a collection of n successive sites and
denote the probability of "nding an n-cluster in the state (p

1
, p

2
,2, p

n
) in the steady state of the

system by the symbol P
n
(p

1
, p

2
,2, p

n
). In the general n-cluster approximation [140], one divides

the lattice into `clustersa of length n such that two neighbouring clusters have n!1 sites in
common (see Fig. 20); an n-cluster is treated exactly and the cluster is coupled to the rest of the
system in a self-consistent way, as we shall show in this subsection. Even without any calculation,
one would expect that, for a given v

.!9
, the n-cluster approximation should yield more accurate

results with increasing n and should give exact results in the limit nPR. Fortunately, in the
special case v

.!9
"1 exact results are obtained already for n as small as 2, i.e., the results of 2-cluster

calculations are exact for v
.!9

"1 [140].

243D. Chowdhury et al. / Physics Reports 329 (2000) 199}329



Fig. 19. Fundamental diagram for v
.!9

"2 and p"0.5 (left) and p"0.1 (right). Comparison of paradisical MFT
(full line) with results from computer simulations (v) and the naive MFT (dotted line).

Fig. 20. Decomposition of a lattice into (a) 1-clusters, (b) 2-clusters, and (c) 3-clusters in the SOMF theory.

Let us "rst explain the key concepts involved in the cluster theory. It is straightforward to verify,
for example, in the special case of v

.!9
"1, that the state of the 2-cluster p

i
, p

i`1
at time t#1

depends on the state of the 4-cluster (q
i~1

, q
i
, q

i`1
, q

i`2
) at time t. In general, in the n-cluster

approximation for an arbitrary v
.!9

one has to take into account the vehicles that can enter an
n-cluster from one of the v

.!9
cells to its left and can leave it to occupy one of the v

.!9
cells to its

right. Therefore, in general, the state p
j
, p

j`1
,2p

j`n~1
of an n-cluster at time t#1 depends on the

state of a n#2v
.!9

cluster q
j~v.!9

,2q
j
, q

j`1
,2, q

j`n~1
,2, q

j`n~1`v.!9
at time t. Therefore, in the

special case of v
.!9

"1, the master equations

P
2
(p

i
, p

i`1
; t#1)"+

qj
=(p

i
, p

i`1
Dq
i~1

, q
i
, q

i`1
, q

i`2
)P

4
(q

i~1
, q

i
, q

i`1
, q

i`2
; t) (67)
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governing the time evolution of the 2-cluster probabilities P
2
(p

i
,p

i`1
) involve the 4-cluster

probabilities for all those con"gurations (q
i~1

, q
i
, q

i`1
, q

i`2
; t) which can lead to the 2-cluster

con"guration (p
i
, p

i`1
; t#1) under consideration as well as the corresponding transition probabil-

ities=(p
i
, p

i`1
Dq
i~1

, q
i
, q

i`1
, q

i`2
). Similarly, the master equation governing the time evolution of

the 4-cluster probabilities P
4
(q

i~1
, q

i
, q

i`1
, q

i`2
) involve 6-cluster probabilities, and so on. In order

to obtain a closed set of equations one has to truncate this hierarchy in an appropriate manner; in
the n-cluster approximation one expresses the (n#2v

.!9
)-cluster probabilities in terms of products

of n-cluster probabilities.
The n-cluster approximation represented geometrically in Fig. 20 for n"1 can be expressed

mathematically as

P(q
j~2

, q
j~1

, q
j
, q

j`1
, q

j`2
)"

qj`2

<
i/qj~2

P
1
(q

i
) . (68)

Thus, 1-cluster approximation is equivalent to the naive SOMF approximation. The 2-cluster
approximation represented geometrically in Fig. 20 can be expressed mathematically as [140]

P(q
j~2

, q
j~1

, q
j
, q

j`1
, q

j`2
, q

j`3
)JP

2
(q

j~2
, q

j~1
)P

2
(q

j~1
, q

j
)P

2
(q

j
, q

j`1
)

P
2
(q

j`1
, q

j`2
)P

2
(q

j`2
, q

j`3
) (69)

or, more precisely,

P(q
j~2

, q
j~1

, q
j
, q

j`1
, q

j`2
, q

j`3
)"P

2
(q

j~2
Dq
j~1

)P
2
(q

j~1
Dq
j
)P

2
(q

j
, q

j`1
)

P
2
(q

j`1
Dq
j`2

)P
2
(q

j`2
Dq
j`3

) , (70)

where

P
2
(q

j~1
Dq
j
)"

P
2
(q

j~1
, q

j
)

+qj~1
P

2
(q

j~1
, q

j
)

(71)

are 2-cluster conditional probabilities. Similarly, the 3-cluster approximation consists of the
approximate factorization

P(q
j~2

, q
j~1

, q
j
, q

j`1
, q

j`2
, q

j`3
, q

j`4
)"P

3
(q

j~2
Dq
j~1

, q
j
)P

3
(q

j~1
Dq
j
, q

j`1
)

]P
3
(q

j
, q

j`1
, q

j`2
)P

3
(q

j`1
, q

j`2
Dq
j`3

)P
3
(q

j`2
, q

j`3
Dq
j`4

) . (72)

Analoguous factorizations hold for an arbitrary number of sites on the left-hand-side of (68), (70)
and (72).

Let us now illustrate the scheme of the cluster calculations for the NaSch model by carrying out
the calculation for the simplest case, namely, the 2-cluster calculations for v

.!9
"1. For conveni-

ence, one follows the sequence 2}3}4}1, instead of 1}2}3}4 of the stages of updating so that, for
v
.!9

"1, a two-state variable p is adequate to describe the state of a lattice site; p"0, 1
correspond, respectively, to an empty site and a site occupied by a vehicle with speed 1. Thus,
in the special case of v

.!9
"1 one would need only four 2-cluster probabilities, namely,
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Fig. 21. The four circles in the "rst two columns represent the states of the sites of a 4-cluster; the open and "lled circles
correspond, respectively, to empty sites and sites occupied by vehicles with speed v"1.

P
2
(0, 0), P

2
(1, 0),P

2
(0, 1), P

2
(1, 1). Interestingly, the constraints

P
2
(1, 0)#P

2
(1, 1)"c (73)

and

P
2
(0, 0)#P

2
(0, 1)"1!c (74)

together with the particle-hole symmetry

P
2
(1, 0)"P

2
(0, 1) (75)

leave only one of the four 2-cluster probabilities, say, P
2
(1, 0), as an independent variable which one

needs to calculate by solving the corresponding master equation. For general v
.!9

, the n-cluster
approximation on the right hand side of the master equation leads to (v

.!9
#1)n nonlinear

equations; the number of independent equations gets reduced by the so-called Kolmogorov
consistency conditions [144].

Using (70) one factorizes the 4-cluster probabilities on the right-hand side of (62) for P
2
(1, 0) in

terms of 2-cluster conditional probabilities. In the "rst column of the table in Fig. 21 we list all
those con"gurations (q

i~1
, q

i
, q

i`1
, q

i`2
; t) which can lead to the con"gurations, shown in the

second column, which is the exhaustive list of the 4-cluster con"gurations each having
p
i
"1, p

i`1
"0; the corresponding transition probabilities=(1, 0Dq

i~1
, q

i
, q

i`1
, q

i`2
) are given in

the third column.
Using the con"gurations at t and t#1 as well as the corresponding transition probabilities

given in table in Fig. 21 the master equation (67) for P
2
(1, 0) reduces to the quadratic algebraic

equation

qy2!y#c(1!c)"0 , (76)
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Fig. 22. The fundamental diagram in the NaSch model for (a) v
.!9

"1 and (b) v
.!9

'1, both for p"0.25. The data for
all v

.!9
'1 have been obtained through computer simulations.

where we have used the shorthand notation y"P
2
(1, 0). Solving this quadratic equation we get

[140] (see also [145])

P
2
(1, 0)"(1/2q)[1!J1!4qc(1!c)] (77)

and, hence, P
2
(1, 1),P

2
(0, 0),P

2
(0, 1) from Eqs. (73)}(75). Moreover, the expression (77) establishes

that P
2
(1, 0)5P

1
(1)P

1
(0)"c(1!c), which indicates an e!ective particle-hole attraction (par-

ticle}particle repulsion) in the NaSch model with v
.!9

"1. Furthermore, from Eq. (77) one gets the
expression

J(c,p)"qP
2
(1, 0)"1

2
[1!J1!4qc(1!c)] (78)

which can be proved [140] to be the exact expression for the corresponding #ux. It is not di$cult to
carry out 2-cluster calculations for higher values of v

.!9
, but one gets only approximate results for

v
.!9

'1 [140].
An interesting feature of expression (78) is that the #ux is invariant under charge conjugation, i.e.,

under the operation cP(1!c) which interchanges particles and holes. Therefore, the fundamental
diagram is symmetric about c"1/2 when v

.!9
"1 (see Fig. 22(a)). Although this symmetry breaks

down for all v
.!9

'1 (see Fig. 22(b)), the corresponding fundamental diagrams appear more
realistic. Moreover, for given p, the magnitude of c

.
decreases with increasing v

.!9
as the higher is

the v
.!9

the longer is the e!ective range of interaction of the vehicles (see Fig. 22). Furthermore, for
v
.!9

"1, #ux merely decreases with increasing p (see Eq. (78)), but remains symmetric about
c"1/2"c

.
. On the other hand, for all v

.!9
'1, increasing p not only leads to smaller #ux but

also lowers c
.

(Fig. 23).
For v

.!9
'1, one needs to carry out higher order cluster calculations [140,143] to get more

accurate results than those obtained in the 2-cluster approximation. For v
.!9

"2, the fundamental
diagrams obtained from the n-cluster approximation (n"1, 2,2, 5) are compared in Fig. 24 with
the Monte Carlo data. This comparison clearly establishes a rapid convergence with increasing
n and already for n"4 the di!erence between the cluster calculation and MC data is extremely
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Fig. 23. The fundamental diagrams in the NaSch model with v
.!9

"5 are plotted for a few values of p.

Fig. 24. The fundamental diagrams in the NaSch model with v
.!9

"2 in the n-cluster approximation (n"1, 2,2, 5).

small. In [143] the cluster probabilities for v
.!9

"2 have been obtained from computer simula-
tions. The results suggest that the n-cluster approximation for n53 becomes asymptotically exact
in the limit pP0.

8.3.4. Car-oriented mean-xeld theory of the NaSch model
In the `car-orienteda theories the state of the tra$c system is described by specifying the positions

and speeds of all the N vehicles in the system [146]. Suppose, P
n
(t) is the probability to "nd at time

t exactly n empty sites immediately in front of a vehicle. Another auxiliary quantity, which turns out
to be very convenient to use in several di!erent calculations, is g(t), the probability at time t that
a vehicle moves in the next time step. These two sets of quantities, namely, P

n
(t) and g(t) are related.

For example, in the NaSch model with v
.!9

"1, a vehicle will move in the next time step if there is
at least one empty cell in front of it (probability +

nz1
P
n
(t)) and if it does not decelerate in

the randomization step (probability q); therefore, g(t)"q[+
nz1

P
n
(t)]"q[1!P

0
(t)]. Hence, the

#ux J(c, p) can be obtained from J(c, p)"cg"cq[1!P
0
].
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10A similar approach, the so-called interparticle distribution functions technique, is used for studying reaction-
di!usion systems [147].

11Note that for random-sequential dynamics also MFT is no longer exact!

The essence of the car-oriented mean-"eld (COMF) approximation [146] is to neglect the
correlations between the gaps in front of the successive cars.10 The equations describing the time
evolution of the probabilities P

n
(t), under this approximation (see Appendix E for the derivation of

these equations), can be solved in the steady state using a generating function technique [146].
Following this approach, in the special case v

.!9
"1, one recovers the exact expression (78) for

J(c,p)"cq[1!P
0
].

For v
.!9

"2 one has to distinguish between P
n
(v"1) and P

n
(v"2). Moreover, one has to

generalize the quantity g to ga , the probability that the vehicle moves a cells (a"1, 2) in the next
time step. Applying the same generating function techniques as for v

.!9
"1, one can also solve the

coupled sets of steady-state equations for P
n
(v"1) and P

n
(v"2) for v

.!9
"2 but gets only

approximate results [146].
Interestingly, "nite size of the system a!ects the equations for v

.!9
"2 in a much more dramatic

way [143] than those for v
.!9

"1 thereby revealing the intrinsic qualitative di!erences in the
nature of correlations in the NaSch model for v

.!9
"1 and v

.!9
'1.

Comparisons with Monte Carlo simulations show that in contrast to the 3-cluster approxima-
tion for v

.!9
"2 COMF does not become asymptotically exact in the limit pP0. This implies that

even in this limit correlations between the headways are not negligible. It is interesting, however,
that for the fundamental diagram one "nds an excellent agreement between MC simulations and
the predictions of COMF [146] for pP0. The reason is that in the deterministic limit many
con"gurations exist which produce the same #ow. COMF is not able to identify the dominating
structures correctly, but nevertheless can predict the correct current.

8.3.5. Microscopic structure of the stationary state
As we have seen MFT underestimates the #ow in the stationary state considerably. Deviations

become larger for higher velocities v
.!9

. This shows the importance of correlations. As described
above a particle-hole attraction exist. Using the 2-cluster probabilities for v

.!9
"1 this attraction

can be expressed in mathematical form as P
2
(1, 0)'P

1
(1)P

1
(0)"c(1!c).

For v
.!9

"1 all improvements of MFT (2-Cluster, COMF and pMFT) are exact. Here only
correlations between neighbouring cells are important. The fact that pMFT is exact shows that no
`truea correlations exist. All correlations have their origin in the existence of GoE states. This also
helps to understand why for random-sequential dynamics already MFT is exact for v

.!9
"1 and

the stationary state is uncorrelated. The reason is simply that for random-sequential dynamics no
GoE states exist!

The situation changes for higher velocities v
.!9

'1. Here pMFT is no longer exact.11 Therefore
`truea correlations exist. This corresponds to the observation made in [140] that the NaSch model
shows a qualitatively di!erent behaviour for v

.!9
"1 and v

.!9
'1. Furthermore, it explains why

so far the exact determination of the stationary state for v
.!9

'1 has not been possible.
It is interesting to investigate how the microscopic structure of the stationary state depends on

the randomization p. For p"0 we have seen in Section 8.2.1 that for densities c41/(v
.!9

#1) the
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vehicles arrange themselves in such a way that all headways are at least v
.!9

. This is no longer
possible for larger densities, but still the vehicles have the tendency to maximize their headway.
Furthermore, for p"0 no spontaneous formation of jams exists since overreactions are not
possible. The behaviour in this limit can be interpreted as coming from a kind of `repulsive
interactiona between the vehicles.

The behaviour for p"1 is a little bit di!erent. Here we have seen in Section 8.2.2 that metastable
states with "nite #ow exist for c41/3 and v

.!9
'1.

For 0(p(1 the microscopic structure interpolates between these two limiting cases. This can
be seen by analysing the 3-cluster probabilities obtained from Monte Carlo simulations [143]. For
small p the microscopic structure of the stationary state is determined by the `repulsive interac-
tionsa between vehicles. With increasing p one "nds a tendency towards phase separation into
jammed and free-#ow regions. A standing vehicle is able to induce a jam even at low densities since
the restart probability is small. The jams formed are typically not compact, but of the form `.0.0.0.a
since a vehicle approaching the jam slows down in the randomization step with a rather high
probability.

Concluding one might say that the microscopic structure for 0(p(1 is determined by the
competition of the two `"xed pointsa p"0 and p"1.

8.4. Spatio-temporal organization of vehicles; is there a phase transition?

The density c
.

corresponding to maximum #ux is an obvious "rst candidate for a critical density
separating the regimes of free-#ow and congested #ow in the NaSch model. We shall show in this
subsection that this, indeed, is a critical point provided p"0. However, in spite of strong
indications that, probably, a noise-induced smearing of the transition takes place when pO0,
rigorous proofs are still lacking.

8.4.1. Order parameter
For a proper description of a phase transition one should introduce an appropriate order

parameter which can distinguish the two phases because of its di!erent qualitative behaviour
within the two phases [24,25].

A "rst candidate [148] for the NaSch model would be the average fraction of vehicles at rest, i.e.,
with instantaneous speed v"0. In the deterministic limit p"0 this, indeed, serves the purpose of
the order parameter for the sharp transition at c$%5

.
from the free-#owing dynamical phase to the

congested dynamical phase. But, in the general case of nonzero p, there is a nonvanishing
probability that a vehicle comes to an instantaneous rest merely because of random braking even at
extremely low density c; this probability is p for v

.!9
"1 and decreases with increasing c.

The next obvious choice would be [149] the density of nearest-neighbour pairs in the stationary
state

m"

1
¹

1
¸

T
+
t/1

L
+
j/1

n
j
n
j`1

, (79)

where, as de"ned earlier, n
j
"0 for an empty cell and n

j
"1 for a cell occupied by a vehicle

(irrespective of its velocity). Because of the step 2 of the updating rule (deceleration due to other
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Fig. 25. The density dependence of the order parameter m in (a) the deterministic limit p"0 of the NaSch model
(v

.!9
"1, 2) and (b) the NaSch model with v

.!9
"2, p"0.5.

vehicles) m gives the space}time-averaged density of those vehicles with velocity 0 which had to
brake due to the next vehicle ahead.

Fig. 25(a) shows that m vanishes at c$%5
.

if p"0. On the other hand, if pO0, m does not vanish
even for c(c

.
although m becomes rather small at small densities (see Fig. 25(b)).

We now present a heuristic argument to point out why any quantity related to the fraction of
jammed vehicles is nonzero at any density c'0 and, hence, inadequate to serve as an order
parameter [150]. To slow down to v

.!9
!2 a vehicle must be hindered by one randomly braking

vehicle in front. Similarly, to reach a speed v
.!9

!3 a vehicle must "nd two vehicles within the
range of interaction, and so on. The probability for n vehicles to be found in the close vicinity of
a given vehicle is proportional to cn. Therefore, the probability P

v
(c) of "nding a vehicle with speed

v(v
.!9

!1 is proportional to cv.!9~1~v and, hence, even for v"0, P
v
(c) is, in general, nonzero for

all cP0.

8.4.2. Spatial correlations
A striking feature of second-order phase transitions is the occurrence of a diverging length scale

at criticality and a corresponding algebraic decay of the correlation function [24,25]. Using lattice
gas variables n

j
, the equal-time density}density correlation function is de"ned by

G(r)"
1
¹

1
¸

T
+
t/1

L
+
j/1

n
j
n
j`r

!c2 . (80)

which measures the correlations in the density #uctuations that occur at the same time at two
di!erent points in space separated by a distance r.

Again it is very instructive to consider "rst the deterministic case p"0 (Fig. 26(a)). Since, as
argued before, there are exactly v

.!9
empty sites in front of each vehicle at c"c$%5

.
the correlation

function at c"c$%5
.

is given by

G(r)"G
c$%5
.

(1!c$%5
.

) for,0mod (v
.!9

#1) ,

!(c$%5
.

)2 else .
(81)
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Fig. 26. The density}density correlation function G(r) (a) the deterministic limit p"0 of the NaSch model (v
.!9

"2) and
(b) the NaSch model with v

.!9
"2, p"1/128.

For all v
.!9

the correlation function for small nonzero p (Fig. 26(b)) has essentially the same
structure as that for p"0 (Fig. 26(a)) but the amplitude decays exponentially [149] for all c. In the
general case of non-vanishing p, the asymptotic behaviour (rPR) of the correlation length m can
be obtained analytically [143] only for v

.!9
"1. It turns out that, for given p, m is maximum at

c"1/2"c
.

and that m(c"1/2)Jp~1@2. Thus, for v
.!9

"1, m diverges only for p"0 but remains
"nite for all nonzero p. For v

.!9
'1 the trend of variation of m with c (Fig. 27(a)) in the vicinity of

c
.

is the same as that for v
.!9

"1 [149]. Moreover, for v
.!9

'1, the maximum value of the
correlation length, m

.!9
plotted against p (Fig. 27(b)), is also consistent with the corresponding

trend of variation for v
.!9

"1. Thus, the correlation function G(r) gives a strong indication that the
NaSch model exhibits a second order phase transition, at c"c$%5

.
, only for p"0 but this transition

is smeared out if pO0. This noise-induced smearing of the phase transition in the NaSch model is
very similar to the smearing of critical phenomena by "nite-size e!ects.

8.4.3. Distribution of lifetimes of jams
Another quantity which should be able to give information about the nature of the transition

from free-#ow to the jammed regime is the distribution of lifetimes of jams. Following Nagel [151]
each vehicle which has a velocity less than v

.!9
before the randomization step will be considered
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Fig. 27. The dependence of (a) m(c,p) on c for four di!erent values of p (v
.!9

"2) and (b) m
.!9

on p (v
.!9

"2, 3).

Fig. 28. Lifetime distribution in the NaSch model for v
.!9

"5 and p"0.5 and various densities below and above
c
.
+0.085.

jammed. This de"nition is motivated by the cruise-control limit (see Section 9.1.1) where it is more
natural than in the NaSch model. One expects, however, that the long-time behaviour of the
lifetime distribution is independent of the exact de"nition of a jam. The short-time behaviour, on
the other hand, might di!er strongly, e.g. for `compact jamsa where a jam is de"ned as a series of
consecutive standing vehicles without any empty cells in between.

Fig. 28 shows the results of Monte Carlo simulations for the lifetime distribution in the NaSch
model for di!erent densities near the transition region, c+c

.
"0.085$0.005 (for v

.!9
"5,

p"0.5), where c
.

is the density where the #ow is maximal. The most interesting feature of the
lifetime distribution is the existence of a cuto! near q

#
"10000. It has been shown [151] that this

cuto! is neither a "nite-size nor a "nite-time e!ect. For times smaller than q
#
a scaling regime exists

where the distribution decays algebraically.

8.4.4. Dissolution of a megajam
Gerwinski and Krug [150] tried to "nd an intuitive criterion which allows the distinction of

free-#ow and jammed phases. It is based on the investigation of jam dissolution times. Starting
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12 In [150] the same de"nition of a jam as in the previous point `Distribution of lifetimes of jamsa (see [151]) has been
used.

from a megajam con"guration, i.e., a block of N consecutive cells occupied by vehicles with the
remaining ¸!N cells being empty, they determined the time until the jam12 has dissolved
completely.

A simple estimate gives the density at which the lifetime is expected to become in"nite. Suppose
that the jam dissolves with velocity v

J
. Since the "rst vehicle move freely with average velocity

v
F
"v

.!9
!p it will reach the end of the jam at the same time as the dissolution wave if the

condition (¸!N)/v
F
"N/v

J
is satis"ed. The corresponding density is then given by

cH"v
J
/(v

J
#v

F
)"v

J
/(v

J
#v

.!9
!p) . (82)

For v
.!9

"1 vehicles accelerate immediately to v
.!9

. In this case one has v
J
"q"1!p. For

higher velocities, q"1!p is only an upper bound for v
J
. Inserting v

J
"1!p into (82) one

therefore obtains an upper bound for the density cH. Taking into account interactions between
vehicles in the out#ow region of the jam, one can derive an e!ective acceleration rate q

%&&
, and thus

the jam dissolution velocity v
J
"q

%&&
, as a function of p [150].

Computer simulations show a sharp increase of the lifetime near the density cH. It becomes
`in"nitea, i.e. the jam does not dissolve within the measurement time, only at a higher density
cH
1

which is considerably larger than the density c
.

of maximum #ow. At intermediate densities
cH(c(cH

1
the jam does not dissolve during the "rst lap, but later due to #uctuations of the two

ends of the jam. During this time other jams have usually formed. All results found in [150] are
consistent with the measurements of the lifetime distributions presented in the previous point.

8.4.5. Relaxation time
A characteristic feature of a second-order phase transition is the divergence of the relaxation

time at the transition point. For p"0 this has been studied "rst by Nagel and Herrmann [113].
They found a maximum q

.!9
of the relaxation time at the density c"1/(v

.!9
#1) which diverges in

the thermodynamic limit ¸PR as q
.!9

J¸. For "nite p the behaviour of the relaxation time is
more complicated. For technical reasons CsaH nyi and KerteH sz [152] made no direct measurements
of the relaxation time, but used the following approach: Starting from a random con"guration of
cars with velocity v

j
"0 the average velocity v6 (t) is measured at each time step t. For tPR the

system reaches a stationary state with average velocity Sv6
=

T. The relaxation time is characterized
by the parameter [152]

q"P
=

0

[minMvH(t),Sv6
=

TN!Sv6 (t)T] dt . (83)

vH(t) denotes the average velocity in the acceleration phase tP0 for low vehicle density oP0. In
this regime, due to the absence of interactions between the vehicles, one has vH(t)"(1!p)t. Thus,
the relaxation time is obtained by summing up the deviations of the average velocity Sv6 (t)T from the
values of a system with one single vehicle which can move without interactions with other cars
(oP0). Note that for a purely exponentially decaying quantity v(t)"v

=
#C exp(!t/q@) the

de"nition (83) is proportional to q@, i.e., the standard de"nition of the relaxation time. One "nds
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Fig. 29. Relaxation parameter near the transition density for v
.!9

"5 and p"0.25.

a maximum of the relaxation parameter near, but below, (see Fig. 29) the density of maximum #ow
for p"0.25 and v

.!9
"5 (see [152]).

The relaxation time (83) shows interesting behaviour [152,139,149] which is di$cult to interpret
in terms of critical point phenomena. One "nds a maximum of the relaxation parameter near, but
below, the density of maximal #ow. This maximum value increases with system size, but the width
of the transition region does not seem to shrink [139]. Two scenarios are possible: (1) The
relaxation time converges to a large but "nite value for large system sizes beyond the present
computer power; (2) The relaxation time diverges for ¸PR. Scenario (1) appears to be more
plausible in view of the "nite lifetimes of jams discussed above. Complicated interactions between
jams could in principle lead to a divergence. Keeping in mind the unusual scaling behaviour of the
width, this should occur in a "nite interval, not at a special (critical) point.

The interpretation of the parameter q as a relaxation time can be problematic. This can be seen
clearly for c'c

53!/4*5*0/
, where q can become negative [149]. Here it is possible that during

relaxation the system can temporarily reach states with a higher average velocity than in the
stationary state. This overreaction can be divided into two phases for p'0. Within the "rst few
time steps small clusters which occur in the initial con"guration vanish. The second phase is
characterized by the growth of surviving jams. More and more cars get trapped into large jams and
therefore the average #ow decreases to its stationary value. This decrease causes negative values of
q at large densities.

8.4.6. Distribution of distance-headways
In order to get information on the spatial organization of the vehicles, one can calculate the

distance-headway distribution P
$)

(*x) by following either a site-oriented approach [153] or
a car-oriented approach [146] if *x

j
"x

j`1
!x

j
, i.e., if the number *x

j
!1 of empty lattice sites

in front of the jth vehicle is identi"ed as the corresponding distance-headway.
Stated precisely, P

$)
(k) is the conditional probability of "nding a string of k empty sites in front

of a site which is given to be occupied by a vehicle. A comparison between the naive mean-"eld
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Fig. 30. Distributions of distance-headways in the NaSch model for p"0.5 and di!erent densities for (a) v
.!9

"1 and (b)
v
.!9

"5. n denotes the number of empty cells in front of a vehicle and is related to the distance-headway by n"*x!1.

expression

P.&!
$)

( j)"c(1!c)j (84)

for the distance-headway distribution in the NaSch model with v
.!9

"1 and the corresponding
Monte Carlo data [153] reveals the inadequacy of equation (84) at very short distances which
indicates the existence of strong short-range correlations in the NaSch model that are neglected by
the mean-"eld treatment. This is consistent with our earlier observation that there are particle-hole
e!ective short-range attraction in the NaSch model with v

.!9
"1. Again, this correlation disap-

pears when a random sequential updating is carried out! The exact distance-headway distribution
in the NaSch model with v

.!9
"1 is found to be [153,146]

P2c
$)

( j)"
y2

c(1!c)C1!
y

(1!c)D
j~1

( j"1, 2,2) , (85)

where y"P
2
(1, 0) is given by Eq. (76).

For all v
.!9

'1, at moderately high densities, P
$)

(*x) exhibits two peaks, in contrast to a single
peak in the distance-headway distributions for v

.!9
"1 at all densities (Fig. 30); the peak at *x"1

is caused by the jammed vehicles while that at a larger *x corresponds to the most probable
distance-headway in the free-#owing regions. At "rst sight, the simultaneous existence of free-
#owing and jammed regions may appear analogous to the coexistence of gaseous and liquid phases
of matter in equilibrium. In fact, when the two-peaked structure of the distance-headway distri-
bution was "rst observed [153,115], it was erroneously interpreted as a manifestation of the
coexistence of two dynamical phases, namely, the free-#owing phase and the jammed phase. But,
later works [154] established that the analogy between the coexistence of free-#owing and jammed
regions in the NaSch model and the coexistence of the gas and liquid phases of matter cannot be
pushed too far because the analogue of the gas}liquid interfacial tension is zero in the NaSch
model. Thus, one cannot conclude that the NaSch model exhibits a "rst order dynamical phase
transition.
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8.4.7. Distributions of jam sizes and gaps between jams
One can identify a string of k successive stopped vehicles as a jam of length k (by de"nition, such

jams are compact). Similarly, when there are k lattice sites between two successive jams, each
occupied by a moving vehicle or is vacant then we say that there is a gap of length k between the
two successive jams. Analytical expressions for the distributions of the jam sizes as well as of
the gaps between jams can be calculated for the NaSch model (and some of its extensions) using the
2-cluster approximation or COMF [143,153,155,156]. The expressions are exact in the case
v
.!9

"1 with periodic boundary conditions. For higher velocities the results are only approxi-
mative. In COMF the probability C

k
to "nd a jam of length k is given by

C(COMF)
k

"(1!P
0
)Pk~1

0
, (86)

whereas in the 2-cluster approach one "nds

C(2~#-)
k

"

1
N

J

P(0
1
D1)P(1

1
D1)k~2P(1

1
D1)P(1

1
D0) (k52) ,

C(2~cl)
1

"

1
N

J

v.!9

+
v/1

P(0
1
Dv)P(v

6
D0) . (87)

For the n-cluster approximation similar expressions can be derived.
Both distributions (86) and (87) decay exponentially for large jam sizes. COMF always predicts

a monotonous distribution with C(COMF)
k

5C(COMF)
k`1

. In contrast, the jam size distribution in the
n-cluster approximation can in principle exhibit a maximum at small jam sizes 14k4n.

8.4.8. Distribution of time-headways
Since #ux is equal to the inverse of the average time-headway, much more detailed information

is contained in the full distribution of the time-headway than in the fundamental diagram. The
time-headway distribution contains information on the temporal organization of the vehicles.

Suppose, P
.
(t
1
) is the probability that the following vehicle takes time t

1
to reach the detector,

moving from its initial position where it was located when the leading vehicle just left the detector
site. Suppose, after reaching the detector site, the following vehicle waits there for q!t

1
time steps,

either because of the presence of another vehicle in front of it or because of its own random braking;
the probability for this event is denoted by Q(q!t

1
Dt
1
). The distribution P

5)
(q), of the time-

headway q, can be obtained from [154,157]

P
5)

(q)"
q~1
+

t1/1

P
.
(t
1
)Q(q!t

1
Dt
1
) . (88)

Substituting the expressions for P
.
(t
1
) and Q(q!t

1
Dt
1
) for v

.!9
"1 in (88) we, "nally, get

[154,157]

P5)(t)"
qy

c!yA1!
qy
c B

t~1
#

qy
d!yA1!

qy
d B

t~1

!C
qy

c!y
#

qy
d!yDpt~1!q2(t!1)pt~2 , (89)
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Fig. 31. Time-headway distribution in the NaSch model with (a) v
.!9

"1 and (b) v
.!9

"5.

where, q"1!p, d"1!c and, for the given c and p, y can be obtained from Eq. (77). The
expression is plotted in Fig. 31(a) for a few typical values of c for a given p. A few typical
time-headway distributions in the NaSch model for v

.!9
'1, obtained through computer simula-

tion, are shown in Fig. 31(b).

8.4.9. Temporal correlations
In order to probe the spatio-temporal correlations in the #uctuations of the occupation of the

cells, one can study the space}time correlation function

C(r, q)"
1
¹

1
¸

L
+
j/1

T
+
t/1

n
i
(t)n

j`r
(t#q)!c2 (90)

which, by de"nition, vanishes in the absence of any correlation. In [158] three di!erent regimes
have been distinguished.

Free-yow (0(o4o
1
): `Minijamsa occur which resolve immediately. The correlation function

shows anticorrelations around propagating peak.
Jamming (o

1
(o4o

2
): Free-#ow and jamming coexist, i.e., jams with a "nite lifetime and

vehicles moving with v
.!9

occur. This coexistence is re#ected in the behaviour of the correlation
function which exhibits a double-peak structure.

Superjamming (o
2
(o41): The whole system is congested. Jamming waves are connected and

form an in"nite wave. As a consequence, the propagating peak in the correlation function has
disappeared.

Neubert et al. [159] have introduced a special autocorrelation function of the density in order to
study the velocity of jams. They have determined jam velocities for several variants of the NaSch
model which will be introducted in later sections.

8.4.10. Structure factor
Structure factors are known to give valuable information about driven systems [14]. For the

NaSch model the static structure factor

S(k)"
1
¸TK

L
+
j/1

n
j
e*kjKU (91)
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13Measurements of the jam dissolution speed in [150], however, show a decrease with increasing v
.!9

and saturation
for large v

.!9
.

has been investigated in [160]. Again n
j
denotes the occupation number of cell j. Note that S(k) is

related to the Fourier transform of the density}density correlation function (80).
For all densities, S(k) exhibits a maximum at k

0
+0.72 which corresponds to the characteristic

wavelength j
0
"2p/k

0
of the density #uctuations in the free-#ow regime. For v

.!9
'1 one "nds

k
0
(v

.!9
#1)"const.

In [161] these investigations have been extended to the dynamical structure factor in velocity-
space,

S
v
(k, u)"

1
N¹TK+

n,t

v
n
(t)e*(kn~ut)K

2

U , (92)

with k"2pm
k
/N, u"2pmu/¹, where N is the number of vehicles and m

k
and mu are integers. v

n
(t)

is the velocity of the nth vehicle at time t.
Compared to the dynamical structure factor in real space, (92) has the advantage that the

free-#ow regime only contributes white noise, S
v
(k,u)D

&3%%v&-08
"const. Therefore it is easier to study

jamming properties. It is found in [161] that S
v
(k,u) exhibits one ridge with negative slope,

corresponding to backward moving jams. One "nds that the velocity of the jams is a function of the
randomization parameter p only. It is independent of the density c and the maximal velocity
v
.!9

[161]. This is consistent with results from a direct study of the autocorrelation function
[159].13 Above a transition density, an algebraic behavior S

v
(k,u)Du@k/v+

&k~c of the structure
factor is found. This has been interpreted as an indication of critical behaviour in [161]. However,
due to the di$culties involved in the calculation of (92) only relatively short times ¹42048 have
been considered in [161]. This is much smaller than the cuto! found in the lifetime of jams (see the
discussion above) and lies well in the region where an algebraic decay is found. Therefore the results
for the dynamical structure factor (92) and the lifetime measurements are consistent, but the
algebraic decay is not to be interpreted as an evidence for the existence of a critical point in the
NaSch model. In order to see the cuto!, times ¹'104 would have to be considered.

8.5. Exact solution of the NaSch model with v
.!9

"1 and open boundary conditions

The analytical methods presented in Section 8.3 are well suited for the investigation of transla-
tionally invariant stationary states which are achieved by imposing periodic boundary conditions.
For both practical and theoretical reasons sometimes di!erent boundary conditions are preferable.
Imagine a situation where a multilane road is reduced to one lane, e.g. due to road construction.
Such a bottleneck can be modeled by using a NaSch model with open boundaries. The multilane
part of the road acts as a particle reservoir. If the "rst cell of the one-lane part is empty a car is
inserted here with probability a. At the other end a car is removed from the last cell with
probability b (see Fig. 32). These boundary conditions break the translational invariance and
in general one can expect stationary states with a nontrivial density pro"le Sq

j
T. From a more

theoretical point of view such models have been studied intensively as prototypes of systems
exhibiting so-called boundary-induced phase transitions [162,163]. In contrast to what one expects
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Fig. 32. De"nition of the ASEP with open boundary conditions.

Fig. 33. Phase diagram of the ASEP for parallel dynamics. The inserts show typical density pro"les.

14Note that conventionally the hopping rate in the ASEP is denoted as p. Since in the NaSch model p is the braking
probability the hopping rate in the ASEP (for v

.!9
"1) becomes q"1!p.

from experience with equilibrium systems, one-dimensional driven nonequilibrium systems can
exhibit phase transitions, even when the interactions are short-ranged, just by `slightlya changing
the boundary conditions.

The probability distribution characterizing the steady state of the TASEP with parallel dynamics
(i.e., NaSch model with v

.!9
"1) and open boundary conditions has been obtained recently in

[164,165] using generalizations of techniques based on the matrix product ansatz (MPA) (see
Appendix F for a more technical introduction). By varying the boundary rates a and b one obtains
a surprisingly rich phase diagram (see Fig. 33) which is qualitatively the same for all types of
dynamics. Three phases can be distinguished by the functional dependence of the current through
the system on the system parameters. In the low-density phase A (a(b, a

#
(p)) the current is

independent of b. Here the current is limited by the rate a which then dominates the behaviour of
the system. In the high-density phase B (b(a,b

#
(p)) the behaviour is dominated by the output rate

b and the current is independent of a. In the maximum current phase C (a'a
#
(p) and b'b

#
(p)) the

limiting factor for the current is the bulk rate14 q"1!p. Here the current becomes independent
of both a and b.

High- and low-density phase can be subdivided into two phases AI, AII and BI and BII,
respectively. These subphases can be distinguished by the asymptotic behaviour of the density
pro"les at the boundaries.

The transitions between the phases can be characterized by the behaviour of two correlation
lengths ma and mb which only depend on p and a or b. These lengths can be obtained explicitly
from the exact solution. Apart from ma and mb also a third length m~1"Dm~1a !m~1b D plays an
important role.
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15 In the maximum current phase no real bulk density can be de"ned due to the algebraic behaviour of the density
pro"le. c

C
is therefore just Sq

L@2
T.

The transition from AII (BII) to C is continuous with diverging correlation length ma (mb). The
transition from the high- to the low-density phase is of "rst order. Here both ma and mb are "nite,
but m diverges. On the transition line one "nds a linear density pro"le created by the di!usion of
a domain wall between a low-density region at the left end of the chain and a high-density region at
the right end.

For the case of parallel dynamics, i.e., the NaSch model with v
.!9

"1, the currents in the three
phases are given by [164}166]

J
A
"

a(q!a)
q!a2

, J
B
"

b(q!b)
q!b2

, J
C
"

1
2
(1!Jp) . (93)

The corresponding bulk densities15 are

c
A
"

a(1!a)
q!a2

, c
B
"

q!b
q!b2

, c
C
"

1
2

. (94)

The phase boundaries are determined by the critical rates

a
#
(p)"b

#
(p)"1!Jp . (95)

In Fig. 33 also the special line (1!a)(1!b)"p is indicated. Here the density pro"le is #at (i.e.,
constant). On this line the exact solution can be obtained by the 2-cluster approach of Section 8.3.3
[166]. Since it goes through all three phase these results are su$cient to obtain exact analytic
expressions, e.g., for the currents, once the structure of the phase diagram is established (e.g., by
Monte Carlo simulations).

The stationary state of the ASEP can also be obtained for other types of updates (see Appendix
A), e.g., random-sequential [167,168], ordered-sequential [166,169,170] and sublattice-parallel
update [171}173,166]. One "nds that the phase diagram has the same basic structure for all
updates [166]. The functional dependence of the currents, density pro"les, etc., on the model
parameters di!ers, however. For the important case of random-sequential updating (93)}(95) have
to be replaced by [167,168]

J
A
"qa(1!a), J

B
"qb(1!b), J

C
"

q
4

, (96)

o
A
"a, o

B
"1!b, o

C
"

1
2

, (97)

a
#
(p)"b

#
(p)"

q
2

. (98)

Results for other updates can be found in [166]. For a discussion of the calculation of di!usion
constants and shock pro"les we refer to the reviews [22,174] and references therein.
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16A somewhat related approach has been used to obtain an approximate solution for the special case of parallel
dynamics with deterministic bulk dynamics (p"0) [176].

In [162] the behaviour of the ASEP for b"1 was explained by postulating a maximal-current
principle. According to this principle, independent of the details of the dynamics, the system tries to
maximize the stationary current J:

J" max
c|*0,c~+

J(c) (99)

Here J(c) is the fundamental diagram (for periodic boundary conditions) and c
~

is the density at
the left (input) boundary, i.e. c

~
"a in the case described above.

In [175] a nice physical picture has been developed which explains the structure of the phase
diagram not only qualitatively, but also (at least partially) quantitatively. It is determined by the
dynamics of domain walls.16 In nonequilibrium systems, a domain wall is an object connecting two
possible stationary states. The notion of domain walls in the ASEP can be illustrated in the limit
a¸;1 and b¸;1 of small boundary rates. At late times there will be a low-density region at the
left end of the chain and a high-density region at the right end, with a domain wall in between.
Schematically, this state can be depicted as 000011111. For general values of the rates the wall not
be sharp in general, but spread over a few lattice sites.

For late times the dynamics of the system can then be interpreted in terms of the motion of the
domain wall. A particle entering the system leads moves the wall one cell to left, and a particle
leaving the system moves it one cell to the right. Therefore the domain wall performs a biased
random walk with drift velocity v

D
"b!a and di!usion coe$cient D"(a#b)/2. For a(b the

domain wall moves to the right until it reaches the end of the system which is thereafter in the
low-density stationary state. For a'b the wall moves to the left until it reaches the left end and
the system goes into the high-density stationary state. In the case a"b there is no net drift in the
position of the wall. It #uctuates with its rms displacement increasing with time as (Dt)1@2, i.e., it can
be anywhere in the system resulting in a linear density pro"le.

In order to understand the case of general a and b one has to introduce a second kind of domain
wall separating a maximum current phase from the high-density phase. Since the maximal possible
#ow for periodic boundary conditions is J

.!9
"1/4 (for p"0 and random-sequential update) the

dynamics for a"1/2 is dominated by the overfeeding at the left boundary. The injection rate could
support a current larger than 1/4, but in the bulk it cannot exceed this value. Therefore at the left
boundary a maximum current state is formed. If the particles are not extracted fast enough at the
right boundary a high-density region will develop there. These two regions are separated by a new
kind of domain wall, the maximum current/high-density domain wall. Schematically it can be
represented as mmmm1111. Again this domain wall performs a biased random walk.

In order to obtain more quantitative predictions one goes to a coarse-grained picture. Then it is
useful to replace the boundary rates a and b by particle reservoirs with densities c

~
and c

`
. The

continuity equation Rc/Rt#RJ/Rx"0 in the continuum limit has traveling wave solutions of the
form c(x!v

D
t) with the domain wall velocity

v
D
"(J

`
!J

~
)/(c

`
!c

~
) (100)

which can be obtained by integration over the chain.
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17We assume p"0 and random-sequential dynamics.

For the low-density/high-density domain wall one has17 c
`
"1!b, J

`
"J(c

`
)"b(1!b)

and c
~
"a, J

~
"J(c

~
)"a(1!a). This gives indeed v

D
"b!a which should be valid for

a, b(1/2. For the maximum current/high-density domain wall c
~

takes the value c
~
"1/2

so that J
~
"1/4 and thus v

D
"b!1/2.

The arguments described above can be generalized to any process where the fundamental
diagram J(c) of the periodic system has only one maximum at a density cH. For all currents
J(J(cH) there exist two corresponding densities c

1
and c

2
with J(c

1
)"J"J(c

2
). For funda-

mental diagrams with more than one maximum, more than two densities might exist for a given
current J. This implies the existence of a larger number of domain wall types. The phase diagram of
the open system than exhibits a larger number of phases [177]. The maximal-current principle (99)
for the TASEP with b"1 is generalized to the extremal-current principle [177,15]

J"G
max

c|*c` ,c~+
J(c) for c

~
'c

`
,

min
c|*c~,c` +

J(c) for c
~
(c

`
.

(101)

Since the above phenomenological picture does not depend on the microscopic details of the
dynamics, it is plausible that the phase diagrams for di!erent updates are qualitatively the same.
Boundary-induced phase transitions have recently been observed [178] in measurements on
a German motorway [41]. One "nds a "rst-order nonequilibrium phase transition between
a free-#ow and a congested phase. This transition is induced by the interplay between density
waves induced by an on-ramp and a shock wave moving on the motorway [178].

9. Generalizations and extensions of the NaSch model

As stated earlier, the NaSch model is a minimal model. The "rst obvious possible generalization
would be to replace the acceleration stage of updating rule (U1) to

v
n
Pmin(v

n
#a

n
, v

.!9
) , (U1@)

where a
n
, acceleration assigned to the nth vehicle, need not be unity and, in general, may depend on

n. In the following subsections we consider more nontrivial generalizations and extensions of the
NaSch model.

9.1. Single-lane highways

In the next few subsubsections we shall demonstrate the rich variety of tra$c phenomena that
can be observed by appropriate modi"cations of the random braking. We have earlier mentioned
in the context of empirical results that tra$c #ow exhibits metastability and the related hysteresis
e!ects. Such phenomena have been observed in continuum formulations of `microscopicamodels,
i.e., in coupled-map lattice models [115]. However, the NaSch model is too simple to account for
these phenomena. We now brie#y describe a few generalizations of the NaSch model, each of which
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Fig. 34. Metastability and hysteresis.

is based on modi"cations of the braking rules of the original NaSch model; one common feature of
all of these generalized models is that they show metastability and hysteresis. Before we begin our
discussions on speci"c generalized versions of the NaSch model, which exhibit metastability, we
make some general remarks. In the schematic stationary fundamental diagram of Fig. 34, the
low-density branch corresponds to homogeneous free-#ow states, while the high-density branch
corresponds to con"gurations, where jammed states are present. Obviously, at densities
c
1
(c(c

2
, the #ow depends non-uniquely on the global density.

In order to establish the existence of meta-stable states one can follow two basic strategies. In
the "rst method, the density of vehicles is changed adiabatically by adding or removing
vehicles from the stationary state at a certain density. Starting in the jamming phase (large
densities) and removing vehicles, one obtains the lower branch of the hysteresis curve. On the other
hand, by adding vehicles to a free #owing state (low densities), one obtains the upper branch. This
method is closely related to the experimental situation, where the occupancy of the road varies
continuously.

The second method does not require changing the density. Instead one starts from two di!erent
initial conditions, the mega-jam and the homogeneous state. The mega-jam consists of one large,
compact cluster of standing vehicles. In the homogeneous state, vehicles are distributed period-
ically with same constant gap between successive vehicles (with one larger gap for incommensurate
densities). Then, for c'c

1
the homogeneous initialization leads to a free-#ow state, while the

mega-jam initialization leads to the jammed high-density states.

9.1.1. Cruise-control limit and self-organized criticality
In the cruise-control limit of the NaSch model [179] vehicles moving with their desired velocity

v
.!9

are not subject to noise. This is exactly the e!ect of a cruise-control which automatically keeps
the velocity constant at a desired value. In this model the acceleration, deceleration (due to other
vehicles) and movement stages of updating are identical to those in the general case of the NaSch
model; however, the randomization step is applied only to vehicles which have a velocity v(v

.!9
after step 2 of the update rule. We can express this more formally by recasting the randomization
stage of the update rules in the NaSch model as follows:

v
n
Pmax(0, v!1)
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Fig. 35. Fundamental diagram in the cruise-control limit of the NaSch model for v
.!9

"5 and p
v.!9

"0, p"0.5.

with probability

p"G
p
v.!9

if v"v
.!9

,

p if v(v
.!9

,
(102)

where v is the velocity of the vehicle at the end of step 2 of the update rule, i.e., after deceleration due
to blocking by other vehicles. In the original formulation of the NaSch model p

v.!9
"p. On the

other hand, the cruise-control limit corresponds to p
v.!9

P0, pO0.
For p

v.!9
;1, at su$ciently low densities, all the vehicles move deterministically with the velocity

v
.!9

; this deterministic motion is, however, interrupted by small perturbations at a vanishingly
small rate. Consequently, the system gets enough time to relax back to the state corresponding to
the deterministic algorithm before it is perturbed again. This e!ectively separates completely the
time scales for perturbing the system and the response of the system.

First, let us consider the periodic boundary conditions which is easier to treat than the open
boundary conditions. In this model, a sharp transition from the `free-#owinga dynamical phase to
the `congesteda phase takes place at a critical concentration c

H
(p, v

.!9
) which depends on p as well

as v
.!9

and, for all pO0, c
H
(p, v

.!9
) is smaller than c$%5

.
"1/(v

.!9
#1). For a given v

.!9
, c

H
(p)

increases with decreasing p and, in the deterministic limit pP0, c
H
(0, v

.!9
)Pc$%5

.
.

In this model a jam is de"ned to consist of vehicles all of which have their instantaneous
velocities smaller than v

.!9
. For all c(c

H
, jams present in the initial con"guration eventually

disappear and in the jam-free stationary state every vehicle moves with the velocity v
.!9

. Therefore,
in the density regime c(c

H
the #ux increases linearly with density following J"cv

.!9
, just like

that in the deterministic limit p"0 of the NaSch model (Fig. 35). But, unlike the deterministic limit
p"0, the cruise-control limit of the NaSch model exhibits metastability in the interval
c
H
(c(c$%5

.
. In this context, the metastability means that, in the interval c

H
(c(c$%5

.
, on

appropriate initialization, the system can reach apparently steady states where no jam appears and
where the #uxes are higher than J(c

H
); but, perturbations of such a `metastablea state creates

long-lived jams thereby reducing the #ux to a level consistent with the stable branch of the
fundamental diagram. At all c'c

H
jams present in the initial con"guration never disappear
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completely and, in this density regime, the stable steady-state is a mixture of laminar #ow regions
and jams. The long-lived jams lower the #ux beyond c

H
and the #ux decreases linearly with density

(Fig. 35).
Let us assume that at densities slightly above c

H
, only one jam of length ¸

+!.
containing

N
+!.

vehicles exists in the system. Then, because of the periodic boundary conditions, the total
number of vehicles N is conserved and, hence,

N"c
+!.

¸
+!.

#c
065

(¸!¸
+!.

) , (103)

where c
+!.

"N
+!.

/¸
+!.

and c
065

"(N!N
+!.

)/(¸!¸
+!.

) are the densities of the vehicles in the
jam and in the out#ow region, respectively. Dividing both sides of (103) by ¸ we get

c"c
+!.

¸
+!.
¸

#c
065A1!

¸
+!.
¸ B . (104)

Since in the cruise-control limit of the NaSch model ¸
+!.

must vanish as cPc
H
, we conclude [179]

that we must have c
065

"c
H
, i.e., the average density in the outyow region of a jam is equal to the

critical density c
H
.

In order to study the tra$c at the critical point of the cruise-control limit, Nagel and Paczuski
[179] used a special boundary condition which enables the system to select automatically the state
of maximum throughput, i.e., the system exhibits self-organized criticality. This special boundary
condition consists of an in"nite jam from !R to 0 (i.e., at the left boundary) while the right
boundary is open. Vehicles emerge from the in"nite jam in a jerky way, before attaining the velocity
v
.!9

. Far away from the in"nite jam all vehicles move with the same velocity v
.!9

. In order to show
that the state selected this way is `criticala [179] we perturb a vehicle, far downstream from the
in"nite jam, slightly by reducing its velocity from v

.!9
to v

.!9
!1. This particular vehicle initiates

a chain reaction and gives rise to a jam if the following vehicle is su$ciently close to it although it
itself accelerates and, eventually, attains v

.!9
. This phantom jam has a time-dependent size n(t),

measured by the number of vehicles n in this jam at time t and it has a lifetime q
-*&%

. The statistics of
these features of the phantom jam can be obtained by repeating the computer experiment
su$ciently large number of times; sometimes the phantom jam created is small and has a short
lifetime and sometimes it is large and has quite long lifetime. Interestingly, the characteristic
quantities like, for example, the distributions of the sizes of the jams, lifetimes of the jams, etc. do,
indeed, exhibit power-laws which are hall mark of the self-organized criticality [26,27]. E.g. the
branching behaviour of the jams gives rise to intermittent dynamics with a 1/f power law spectrum
[179]. 1/f noise in real tra$c has been discovered by Musha and Higuchi [180]. They recorded
transit times of vehicles passing underneath a bridge. The corresponding power spectral density of
the #ow #uctuations shows 1/f behaviour at low frequencies.

The exponents associated with the various power laws in the cruise-control limit of the NaSch
model can be calculated analytically, at least for v

.!9
"1, by utilizing a formal relation with

one-dimensional unbiased random walk. If v
.!9

"1, all the vehicles in the jams have velocity v"0.
Moreover, the jams are compact so that the number of vehicles in a jam is identical to its spatial
extent. The probability distribution P(n; t) for the number of vehicles n in such a jam, at time t, is
determined by the following equation:

P(n; t#1)"(1!r
*/
!r

065
)P(n; t)#r

*/
P(n!1; t)#r

065
P(n#1; t) , (105)
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where the phenomenological parameters r
*/

and r
065

are the rates of incoming and outgoing
vehicles. Of course, r

*/
depends on the density of the vehicles behind the jam. For large n and t,

taking the continuum limit of Eq. (105) and expanding we get

RP/Rt"(r
065

!r
*/

)
RP
Rn#

r
*/
#r

065
2

R2P
Rn2

. (106)

If r
*/
'r

065
the jams would grow for ever. On the other hand, the jams would shrink, and eventually

disappear, if r
*/
(r

065
. If r

*/
"r

065
, the "rst term on the right-hand side of Eq. (106) vanishes and

the resulting equation governing the time evolution of P(n; t) is identical to that of the probability of
"nding, at time t, an unbiased one-dimensional random walker at a distance n which was initially
at the origin. Thus, when r

*/
"r

065
, the jams exhibit large (`criticala) #uctuations which can be

characterized by critical exponents. Using this formal mapping onto unbiased random walk, we
"nd (a) that the mean size of jam at time t corresponds to the mean displacement of the random
walker from the origin after time interval t and (b) that the lifetime of a jam corresponds to the time
taken by the random walker to return to the origin for the "rst time. Hence, using the well-known
results from the theory of random walks [181,182], we get

n(t)Jt1@2 and P(q
-*&%

)Jq~3@2
-*&%

. (107)

It turns out that the power-law exhibited by the size of the jams, the distributions of the lifetimes,
etc., are not restricted merely to the special case v

.!9
"1 of the cruise-control limit but is also

shown by the corresponding computer simulation data also for arbitrary v
.!9

. The power-law
distributions of P(q

-*&%
) in the cruise-control limit of the NaSch model is in sharp contrast with the

exponential distribution observed in the NaSch model [151]. Thus, in the cruise-control limit of
the NaSch model, the large jams are fractal [183] in the sense that there are smaller sub-jams inside
larger jams, ad in"nitum. In other words, in between sub-jams, there are holes of all sizes.

9.1.2. Slow-to-start rules, metastability and hysteresis
The slow-to-start rules can lead not only to metastability and, consequently, hysteresis, but also

to phase separated states at high densities, as we now show.
Takayasu}Takayasu slow-to-start rule. Takayasu and Takayasu (TT) [184] were the "rst to

suggest a CA model with a slow-to-start rule. Here, we investigate the generalization, as suggested
in [185], of the original slow-to-start rule. According to this generalized version, a standing vehicle
(i.e., a vehicle with the instantaneous velocity v"0) with exactly one empty cell in front accelerates
with probability q

t
"1!p

t
, while all other vehicles accelerate deterministically. The other steps of

the update rule (U2-U4) of the NaSch model are kept unchanged.
As in the case of the NaSch model, it is instructive to consider "rst the deterministic limits of the

TT model [184,186]. The TT model reduces to the NaSch model in the limit p
t
"0. What happens

in the other deterministic limit, namely, p
t
"1? In the latter deterministic limit, a stopped vehicle

can move only if there are at least two empty cells in front [184]. Obviously, completely blocked
states exist for densities c50.5, where the number of empty cells in front of each vehicle is smaller
than two. However, in the region 0.54c[0.66 the number of blocked con"gurations is very small
compared to the total number of con"gurations and states with a "nite #ow exist. Precisely at
c"0.5, there are only two blocked states and the time to reach these states diverges exponentially
with the system size.
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Fig. 36. The fundamental diagram in the TT model (v
.!9

"5, p"0.01, p
t
"0.75, ¸"10 000) obtained using two

di!erent initial conditions, namely, a completely jammed state (jam) and a homogeneous state (hom) and averaging over
100 000 sweeps through the lattice.

Fig. 37. Typical space}time diagram of the TT model with v
.!9

"5 and c"0.20, p"0.01 and p
t
"0.75. Each

horizontal row of dots represents the instantaneous positions of the vehicles moving towards right while the successive
rows of dots represent the positions of the same vehicles at the successive time steps.

The fundamental diagram for the TT model with v
.!9

"1 has been derived analytically by
carrying out (approximate) 2-cluster calculations in the site-oriented approach [185]. But, the
fundamental diagrams of the TT model for all v

.!9
'1 have been obtained so far only numerically

by carrying out computer simulations (see Fig. 36).
Comparing these fundamental diagrams with the corresponding ones for the NaSch

model (p
t
"0), we "nd the following e!ects of the TT slow-to-start rule: (i) for a given density c, the

#ux J(c) is smaller in the TT model as compared to that in the NaSch model; (ii) the particle-hole
symmetry is not exhibited by the TT model for any v

.!9
(not even for v

.!9
"1) and (iii) the TT

model exhibits metastability and hysteresis which are absent in the NaSch model. Note that the
mechanism for meta-stability in the case p

t
"1 is di!erent from that for the metastability observed

for 0(p
t
(1.

Because of the slow-to-start rules, the separations between the vehicles coming out of a jam are
larger than those between the vehicles coming out a jam in the NaSch model. Since the density far
downstream is smaller than the density of maximum #ow, the vehicles can propagate freely in the
low density regions of the lattice where spontaneous formation of jams is highly unlikely, if the
parameter p is su$ciently small. Therefore, the phase-separated steady-states at high global
densities consist of a macroscopic jam and a macroscopic free-#ow regime both of which coexist
simultaneously (Fig. 37).
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Fig. 38. The fundamental diagram in the BJH model (v
.!9

"5, p"0.01,p
4
"0.75) obtained using two di!erent initial

conditions, namely, a completely jammed state (jam) and a homogeneous state (hom).

Fig. 39. Typical space}time diagram of the BJH model with v
.!9

"5 and c"0.20, p"0.01 and p
4
"0.75. Each

horizontal row of dots represents the instantaneous positions of the vehicles moving towards right while the successive
rows of dots represent the positions of the same vehicles at the successive time steps.

The BJH model of slow-to-start rule. Benjamin, Johnson and Hui (BJH) [187] modi"ed the updating
rules of the NaSch model by introducing an extra step where their `slow-to-starta rule is imple-
mented; this slow-to-start rule is di!erent from that introduced by TT [184]. According to the BJH
`slow-to-starta rule, the vehicles which had to brake due to the next vehicle ahead will move on the
next opportunity only with probability 1!p

4
. The steps of the update rules can be stated as follows:

Step 1: Acceleration. v
n
Pmin(v

n
#1, v

.!9
).

Step 2: Slow-to-start rule: If -ag"1, then v
n
P0 with probability p

4
.

Step 3: Blockage (due to other vehicles). v
n
Pmin(v

n
, d

n
!1) and, then, -ag"1 if v

n
"0, else

-ag"0.
Step 4: Randomization. v

n
Pmax(v

n
!1, 0) with probability p.

Step 5: Vehicle movement. x
n
Px

n
#v

n
.

Here -ag is a label distinguishing vehicles which have to obey the slow-to-start rule ( -ag"1)
from those which do not have to (-ag"0).

Obviously, for p
4
"0 the above rules reduce to those of the NaSch model. The slow-to-start rule

of the TT model is a &spatial' rule. In contrast, the BJH slow-to-start rule requires &memory', i.e. it is
a &temporal' rule depending on the number of trials and not on the free space available in front of
the vehicle. The fundamental diagram of the BJH model (Fig. 38) clearly shows the existence of
metastable states and, therefore, expected to exhibit hysteresis e!ects [155]. But, in the special case
of v

.!9
"1, for which approximate analytical calculations can be carried out [185], no meta-stable

states exist.
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Fig. 40. Distribution of gaps between jams in the BJH and the NaSch model for v
.!9

"5, p"0.05, p
4
"0.5 and density

c"0.5.

Since for all v
.!9

'1 in the BJH model, just as in the TT model, the out#ow from a jam is smaller
than the maximal #ow, the phase-separated steady-states at high global densities consist of
a macroscopic jam and a macroscopic free-#ow regime both of which coexist simultaneously
(Fig. 39) [155].

However, the macroscopic jam is not compact. The typical size of the macroscopic free-#ow
regime can be estimated by measuring the distribution of the gaps between the successive jams
[155]. A peak occurs in this distribution for headways of the order of the system size (see the inset of
the right part of Fig. 40). The position of the peak indicates the typical size of the macroscopic
free-#ow regime.

The NaSch model with a velocity-dependent slow-to-start rule. Although the NaSch model does not
exhibit metastable states and hysteresis, a simple generalization exists which is able to reproduce
these e!ects. It is the so-called velocity-dependent-randomization (VDR) model [188]. Here, in
contrast to the original NaSch model, the randomization parameter depends on the velocity of the
vehicle, p"p(v). The rules (see Section 8) are supplemented by a new rule,

Step 0: Determination of the randomization parameter. The randomization parameter used in step
3 for the nth vehicle is given by p"p(v

n
(t)).

This new step has to be carried out before the acceleration step 1. The randomization parameter
used in step 3 depends on the velocity v

n
(t) of the nth vehicle after the previous timestep. In order to

implement a simple slow-to-start rule one chooses [188]

p(v)"G
p
0

for v"0 ,

p for v'0 ,
(108)

with p
0
'p. This means that vehicles which have been standing in the previous timestep have

a higher probability p
0

of braking in the randomization step than moving vehicles.
The rules of the VDR model can be recast in a form similar to those of the BJH model. We de"ne

a label -ag which distinguishes between vehicles which have to obey the slow-to-start rule
(-ag"1) from those which do not have to (-ag"0). -ag"1 if v

n
"0 at the beginning of a time
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Fig. 41. The fundamental diagram in the NaSch model with a velocity-dependent slow-to-start rule (v
.!9

"5,
p
0
"0.75, p"1/64) obtained using two di!erent initial conditions, namely, a completely jammed state ( jam) and

a homogeneous state (hom).

Fig. 42. Typical space}time diagram of the VDR model with v
.!9

"5 and c"0.20, p"0.01 and p
0
"0.75. Each

horizontal row of dots represents the instantaneous positions of the vehicles moving towards right while the successive
rows of dots represent the positions of the same vehicles at the successive time steps.

step, else -ag"0. Explicitly, the update rules are as follows:
Step 1: Acceleration. v

n
Pmin(v

n
#1, v

.!9
).

Step 2: Blockage (due to other vehicles). v
n
Pmin(v

n
, d

n
!1),

Step 3: Randomization. v
n
Pmax(v

n
!1, 0) with probability p

0
if -ag"1. else, v

n
Pmax(v

n
!1, 0)

with probability p.
Step 4: Vehicle movement. x

n
Px

n
#v

n
.

Let us compare this VDR model with the cruise-control limit of the NaSch model. The vehicles
with velocity v"v

.!9
(at the end of step 2) are treated deterministically in the cruise-control limit

whereas in the VDR model velocities of all those with the velocity v'0 ( just before step 3) are
updated stochastically, but using di!erent values of the braking parameter.

Typical fundamental diagrams look like the one shown in Fig. 41 where, over a certain interval
of c, J(c) can take one of the two values depending on the initial state and, therefore, exhibit
metastability.

Moreover, typical space}time diagrams of the VDR model (see Fig. 42) clearly demonstrate that
metastable homogeneous states have a lifetime after which their decay leads to a phase separated
steady state. The microscopic structure of these phase-separated high-density states is qualitative
similar to those observed in the high-density regimes of the TT and BJH models but di!ers
drastically from those found in the NaSch model.

It is instructive to compare the fundamental diagram of the VDR model with those of the
corresponding NaSch models. We now present a simple derivation of the fundamental diagram of
the VDR model on the basis of heuristic arguments utilizing the observed structures of the steady
states. For small densities c;1 there are no slow vehicles in the VDR model since interactions
between vehicles are extremely rare. In this regime every vehicle can move with the free-#ow
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velocity v
&
"(1!p)v

.!9
#p(v

.!9
!1)"v

.!9
!p and, therefore, the #ux is given by

J
)0.

(c)"c(v
.!9

!p) (109)

which is identical to the NaSch model with randomization p. On the other hand, for densities close
to c"1, the vehicles are likely to have velocities v"0 or v"1 only and, therefore, the random
braking is dominated by p

0
, rather than p, while the #ow is determined by the movement of the

holes. Hence, for large densities, i.e., 1!c;1, the #ow is given by J(c)+(1!p
0
)(1!c) which

corresponds to the NaSch model with randomization p
0
. This expression for #ux in the high-

density regime can also be derived as follows. In the phase-separated state the vehicles are expected
to move with the velocity v

&
"v

.!9
!p in the free-#ow region. Neglecting interactions between

vehicles in the free-#owing region (which is justi"ed because of the corresponding low density),
the average distance of two consecutive vehicles in the free-#ow region is given by
*x"c~1

&
"¹

8
v
&
#1 where the average waiting time ¹

8
of the "rst vehicle at the head of the

megajam is given by ¹
8
"1/(1!p

0
). In other words, the density in the free-#ow regime c

&
is

determined by the average waiting time ¹
8

and v
&
. Now suppose that N

J
and N

F
are the number of

vehicles in the megajam and free-#owing regions, respectively. Using the normalization
¸"N

J
#N

F
*x we "nd that for the density c"(N

F
#N

J
)/¸, the #ux J

4%1
(c) is given by

J
4%1

(c)"(N
F
/¸)(v

.!9
!p) and, hence,

J
4%1

(c)"(1!p
0
)(1!c) . (110)

Obviously, c
&

is precisely the lower branching density c
1
, because for densities below c

&
the

jam-length is zero. It should be noted that the heuristic arguments presented above remain valid
for p

0
<p and v

.!9
'1. The condition p;1 guarantees that the jams are compact in that limit.

In the case v
.!9

"1, vehicles can stop spontaneously, even in the free-#ow regime and these
vehicles might initiate a jam. This is the basic reason why hysteresis is usually not observed for
v
.!9

"1.
Analogous to the BJH model phase separation can be directly identi"ed using the results of the

jam-gap distribution. Fig. 43 shows that the size of the free-#ow regime is proportional to the
system size.

The results for the slow-to-start models discussed above have been obtained by computer
simulations of periodic systems of "nite length. It was shown that the fundamental diagram which
is sketched in Fig. 34 is generic for all models under consideration. Now it is self-evident to ask
what kind of stationary states are realized in the thermodynamic limit ¸PR. The simulation
results indicate that *c"c

1
!c

2
decreases with larger system sizes and is expected to vanish for

¸PR, i.e., the jammed branch is stable in that limit. This is readily understood if one analyses
the typical con"gurations which lead to an emerging jam or, vice versa, the mechanism of the
dissolution of a jam. Jams emerge if overreactions of drivers lead to a chain reaction. This is
possible in dense regions of the free-#ow state where the gap between the vehicles is not larger than
v
.!9

. Obviously the probability to "nd large platoons of vehicles driving with small spatial
headways increases with the system size (for "xed density). In addition to that the jammed states
are phase separated, i.e., the size of the jam is of the order of the system size. During a simulation
run the size of the jam #uctuates due to the stochastic movement and acceleration of the vehicles.
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Fig. 43. Peaks of the jam-gap distribution at macroscopic distances.

Jams can dissolve if the amplitude of these #uctuations are of the order of the length of the jam,
which is impossible in the thermodynamic limit.

Therefore, the non-unique behaviour of the fundamental diagram is only observable if "nite
system sizes are considered or if the vehicles move deterministically in the free #ow regime.
Nevertheless, the results discussed above are highly relevant for practical purposes, because the
hysteresis e!ects have been observed at realistic system sizes (e.g. ¸"10 000 corresponds to
a highway of length 75 km).

9.1.3. Flow-optimization and meta-stable states
Hysteresis e!ects and meta-stable states are not only of theoretical interest, but also

have interesting applications. From the previous discussion of the slow-to-start models it is
evident, that one can optimize the maximum #ow, if the homogeneous state is stabilized
by controlling the density so that it never exceeds c

2
. This strategy was followed in minimizing

frequent jams in the Lincoln- and the Holland-Tunnels in New York. Before the tra$c lights were
installed at the entrance of the tunnels jams used to form spontaneously within the tunnel because
(a) the vehicle density used to be su$ciently high and (b) the drivers used to drive more carefully
inside the tunnel thereby giving rise to stronger #uctuations which caused the jams. But, the tra$c
lights installed at the entrance of the tunnels do not allow the density to exceed c

2
and,

consequently, jams are not formed spontaneously by the decay of any metastable high-density
state.

One can mimic the situation of Lincoln and Holland-tunnels within the framework of the CA
models in the following way [188}190]. The tunnel is considered as part of the road, where the
braking probabilities pt, pt

0
are higher compared to the remaining part of the lattice (p, p

0
, see

Fig. 44). Therefore, if one allows for an uncontrolled in#ow of the vehicles, jams typically appear
inside the `tunnela and the system capacity is governed by pt

0
.

The situation di!ers drastically if tra$c lights are implemented [188}190]. As shown in Fig. 45,
a considerable increase of the maximum capacity can be achieved for an optimal combination of
the red-/green-signal periods. The gain of capacity obtained for the optimal intervals of the signal is
of the same order as for the realistic examples [191].
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Fig. 44. A schematic representation of a tunnel on a highway. Larger values of the braking parameters are used for the
right part, which mimics the tunnel.

Fig. 45. Average #ow for di!erent combinations of red-/green-signal periods for a system of length ¸"1000 and
v
.!9

"5. Inside the tunnel pt"0.15, pt
0
"0.60 and outside p"0.01, p

0
"0.20 has been used.

9.2. Multi-lane highways

For a realistic description of tra$c on highways the idealized single-lane models must be
generalized to develop CA models of multi-lane tra$c; the main ingredient required for this
generalization being the lane-changing rules. Several attempts have been made so far in this
direction [192}199]. The lane changing rules for two-lane tra$c can be symmetric or asymmetric
with respect to the lanes. Similarly, if there are two (or more) di!erent types of vehicles (say, cars
and trucks) with two di!erent v

.!9
, the lane-changing rule can be symmetric or asymmetric with

respect to the vehicles.
In general, the update in the two-lane models is divided into two sub-steps: in one sub-step, the

vehicles may change lanes in parallel following the lane-changing rules and in the other sub-step
each vehicle may move forward e!ectively as in the single-lane NaSch model. Drivers must "nd
some incentive in changing the lane. Two obvious incentives are (a) the situation on the other lane
is more convenient for driving, and (b) the need to make a turn in near future. Two general
prerequisites have to be ful"lled in order to initiate a lane change: "rst, there must be an incentive
and second, the safety rules must be ful"lled [200]. Lane changing rules according to this
scheme have been introduced by Rickert et al. [193]. They suggested that vehicles are allowed to
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18The gap on the other lane is de"ned in the same way as the gap on the own lane by imagining that the vehicle
occupies the site parallel to its current position.

19This artifact of the parallel update was already pointed out by Nagatani [192], who simulated a two-lane system
with v

.!9
"1.

change the lane if the following four criteria are satis"ed:

(C1) gap(i)(l,
(C2) gap

o
(i)'l

o
,

(C3) gap
o,"!#,

(i)'l
o,"!#,

,
(C4) rand()(p

#
.

Here gap(i) and gap
o
(i) are the gaps in front of vehicle i on the own lane and the other lane,18

respectively. gap
o,"!#,

(i) is the gap on the other lane to the next vehicle behind. l, l
o
, l

o,"!#,
and p

#
are

parameters specifying the rule and rand() is a random number in the interval [0, 1].
The "rst rule C1 represents the incentive criterion, i.e. if the gap gap(i) in front of the vehicle is

not su$ciently large vehicles want to change the lane. Typical choices of the parameter l are
given by l"min(v#1, v

.!9
). This choice of the minimal headway ensures that vehicles driving

in a slow platoon try to change the lane if possible. In the next rule C2 it is checked if the situation
on the other lane is indeed more convenient. This motivates the choice l"l

o
. The third rule

C3 avoids too small distances to following vehicles on the other lane. Rickert and coworkers
suggested l

o,"!#,
"v

.!9
. It is also important to perform lane changing stochastically. Even if

the incentive and safety criteria are ful"lled a lane change is performed only with probability
p
#

(C4). This avoids, at least partially, so called ping-pong lane changes, i.e. multiple lane-
changes of vehicles in consecutive timesteps.19 Already implementations of the NaSch model using
the basic lane-changing rules revealed quite realistic results. Nevertheless several variants of
the basic rules have been developed in order to improve the realism. A large number of lane
changing rules considered in the literature have been tabulated and compared by Nagel et al. [196]
(see Fig. 46).

The lane changing rules for two-lane tra$c can be symmetric or asymmetric with respect to
the lanes [193]. If symmetric lane changing rules are applied the rules do not depend on
the direction of the lane changing maneuver. In contrast also asymmetric lane changing rules
have been considered. Lane changing rules can be asymmetric in two ways. First it is possible
that it is preferred to drive on the right lane at low densities. This behaviour can be implemented
simply by leaving out the "rst rule for a change from the left to the right lane. Second it is
also possible that it is even forbidden to overtake a vehicle on the right lane, e.g. on german
highways. Then the single lane dynamics on the right lane depends on the con"guration on the left
lane. These examples show the #exibility of the CA approaches. Moreover the simulations also
show that the details of the lane changing rules may lead to considerable changes of the model
results [194,196].

In multi-lane tra$c it is of particular interest to investigate systems with di!erent types of
vehicles. For CA models this has been done "rst by Chowdhury et al. [195], who simulated
a periodic two-lane system with slow and fast vehicles, i.e. vehicles with di!erent v

.!9
. The

simulation results have been shown that already for small densities the fast vehicles take on the
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Fig. 46. The table gives an overview over di!erent choices of the lane changing rules discussed in the literature. The
numbers of the references correspond to those in [196]. The "rst column shows different incentive criteria and the second
column denotes the corresponding minimal gap on the other lane. In general the incentive criteria can be di!erent for
a change from left to right (¸PR) and (RP¸) (from [196]).

average the free-#ow velocity of the slow vehicles, even if only a small fraction of slow vehicles
have been considered. Analogous results have been obtained by Helbing and Huberman [212] who
used a di!erent CA model for the in-lane update (see Section 11.3 for the de"nition of the model). In
addition to that Nagel et al. [196] have been shown that for a suitable choice of the lane changing
rules and di!erent types of vehicles even the phenomenon of `lane inversiona which has been
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20On German highways the left lane is considered for overtaking vehicles only. Therefore, at low densities, the right
lane is used more often. Surprisingly, at higher densities not simply a balancing of the lane usage has been observed, but
for densities close to the optimum #ow the left lane is even higher frequented.

observed at german highways can be reproduced.20 The results discussed so far show the strong
in#uence of slow vehicles in multi-lane systems. They "t fairly well the empirical results, which
show an alignment of the speeds on di!erent lanes and of di!erent types of vehicles. Nevertheless
recent simulation results of Knospe et al. [197] indicate that the in#uence of slow vehicles seems to
be overestimated by the multi-lane variants of the NaSch model. In particular for symmetric lane
changing rules even a single slow vehicle can dominate the dynamics close to the optimal value of
the #ow. In order to weaken the e!ect of slow vehicles they suggested to consider anticipation
e!ects, i.e. the driver estimates the velocity of the vehicle in the next timestep [197].

Another interesting quantity to look at is the frequency of lane changes at di!erent densities.
Here the simulation results show that close to the density of maximal #ow the number of lane
changing maneuvers drastically decreases if the small values of the braking noise are considered in
CA models where the velocities of vehicles are solely determined by the distance to the vehicle
ahead. This is due to the fact that for homogeneous states at high densities no su$ciently large gaps
exist. For larger values of the braking noise large density #uctuations are observable. Therefore the
local minimum of the lane-changing frequency is not found for larger values of p.

In general, the simulation results show that some generic multi-lane e!ects can be pointed out.
First of all the maximal performance of multi-lane systems is slightly increased compared to
corresponding single-lane network. In addition, slow vehicles lead to an alignment of velocities of
di!erent type of vehicles already at low densities which is con"rmed by empirical observation. This
e!ect is quite robust for di!erent choices of the CA model as well as for di!erent lane changing
rules. It can be weakened most e$ciently if anticipation e!ects are applied. The details of the lane
changing rules, however, may have strong in#uence on the lane usage characteristics.

9.3. Bidirectional trazc

Simon and Gutowitz [201] have introduced a two-lane CA model where the vehicles move in
opposite directions. Passing may be allowed on one or on both lanes. It is only attempted if there is
a chance to complete the pass. Therefore drivers measure the local density, i.e., the density of
vehicles in front that have to be passed. If it is su$ciently low, a pass will be attempted. This means
that at high global densities the lanes are e!ectively decoupled since only very few passes will occur.

In principle, three types of jams can occur on a bidirectional road: (1) spontaneous jamming and
start-and-stop waves on one of the lanes; (2) jams caused by drivers who try to pass but cannot
return to their home lane since there is not enough space and (3) `super-jamsa when an adjacent
pair of drivers tries to pass simultaneously. These super jams halt tra$c on both lanes and can be
prevented by breaking the symmetry between the lanes.

The precise rules of the CA are in the same spirit as the rules for multilane tra$c described in the
previous Section 9.2. First, the situation on the own lane is examined. If the motion is hindered by
another vehicle (moving in the same direction), a pass is attempted. This will only be initiated if the
safety criteria are satis"ed: (1) the gap on the other lane has to be su$ciently large, and (2) the
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number of vehicles to be passed has to be small. Even if these criteria are satis"ed a lane change
occurs only with probability p

#)!/'%
. After this lane changing step the vehicles move forward similar

to the dynamics of the NaSch model. There are, however, important di!erences. Passing vehicles
never decelerate randomly. In order to break the symmetry between the two lanes moving vehicles
which are on their home lane and see oncoming tra$c decelerate deterministically by one unit. This
rule prevents the occurrence of a super jam.

The results of [201] show the expected behaviour, namely that passing makes tra$c more #uid.
Start-stop waves are surpressed if the density is not too large. The improvement of the #ow on one
lane compared to the the one-lane model depends on the density of vehicles on the other lane. It is
maximal for very small densities (cP0) on the passing lane. If the density on the other lane is small
(c(0.25) the #ow may be lower than in the one-lane model since passing oncoming vehicles create
an additional hindrance. For large densities on at least on of the lanes there is little di!erence
between the one- and two-lane models.

Lee et al. [202] have proposed a toy model for bidirectional tra$c based on a multispecies
generalization of the ASEP. Here no passing is allowed. Instead oncoming tra$c on the opposite
lane reduces the hopping rates of the vehicles. The dynamics on each lane is given by that of the
ASEP with random-sequential update and v

.!9
"1, but the hopping rate from an occupied cell j to

an empty cell j#1 on lane 1 depends on the occupancy of cell j#1 on the opposite lane (lane 2).
When this cell is empty, vehicles hop with rate 1, otherwise with rate 1/b. On lane 2 vehicles move in
the opposite direction and the hopping rate from cell j#1 to cell j depends on the occupancy of cell
j on lane 1. It is given by c when this cell is empty and by c/b if it is occupied.

For c(1 the unin#uenced hopping rate on lane 2 is smaller than that of lane 1. The vehicles on
lane 2 might therefore be interpreted as trucks. The interlane interaction parameter b can be
interpreted as a kind of road narrowness. For b"1 vehicles are not slowed down by oncoming
tra$c. This corresponds to a highway with divider. The case bP0 corresponds to a narrow road
being completely blocked by the oncoming tra$c.

The behaviour of the model with only one truck is rather similar to that of the NaSch model with
quenched disorder (see Section 10). For b'b

#
the system segregates into two phases, a high-

density phase in front of the truck and a low-density phase behind it.
By forbidding trucks and cars to occupy parallel cell j simultaneously the model can be mapped

onto an exactly solvable 2-species variant of the ASEP. Using the matrix-product Ansatz (see
Appendix F) many steady-state properties for the single-truck case can be obtained exactly. Two
phase 5 can be distinguished: A low-density phase for cb(1 and a jammed phase for cb'1 where
c is the density of vehicles on lane 1. In contrast to the case of a "xed defect site (see Section 10.3)
only one critical density c

#3*5
"1/b exists since the particle-hole symmetry is broken.

Generalizations of this model to other updates and higher velocities can be found in [203].

10. E4ects of quenched disorder on tra7c

10.1. Randomness in the braking probability of drivers and Bose}Einstein-like condensation

We have seen how modi"cations of the random braking probability or the rule(s) for
random braking in the NaSch model can give rise to a rich variety of physical phenomena, e.g.,
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self-organized criticality, metastability and hysteresis, etc. Now we consider the e!ects of quenched
randomness in the random braking probability p, i.e., we study the e!ects of assigning randomly
di!erent time-independent braking probabilities p

i
to di!erent drivers i in the NaSch model. Such

`quencheda (i.e., time-independent) randomness in the random braking in the NaSch model can
lead to exotic phenomena [204,197] which are reminiscent of `Bose-Einstein-like condensationa in
the TASEP where particle-hopping rates are quenched random variables [205,206]. Various
aspects of these phenomena have been thoroughly reviewed by Krug [207] and, therefore, we'll
restrict our discussion to only the essential points.

Let us "rst consider the special case of the NaSch model with v
.!9

"1. As explained earlier, this
model reduces to the TASEP if the parallel updating is replaced by random sequential updating
scheme. If the same hopping probability q is assigned to every particle except one for which the
hopping probability is q@(q, then the single `impuritya particle is the slowest moving one. The
faster particles can be allowed to overtake the slow one at a nonzero rate [174,208]; however, if this
rate of overtaking vanishes the slow particle will give rise to a platoon of particles behind it. This
phenomenon is very similar to the formation of platoons of vehicles in a tra$c behind the slow
vehicles (e.g., trucks).

Here we are interested in a more general situation of quenched `disordera in the form
of a distribution of intrinsic hopping probabilities of the vehicles in the system rather than that
of the single `defecta particle. In such situations random initial conditions can lead to the
formation of platoons if (a) slow particles are su$ciently rare and (b) if the density of vehicles
is su$ciently low. Following their formation, starting from a random initial condition, the
platoons grow through coalescence. The coarsening of the platoons has been investigated in
the same spirit in which coarsening of domains (the so-called Oswald ripening) is monitored
while studying spinodal decomposition in, for example, binary alloys [28]. Suppose, m(t) is
the typical platoon size at time t. Starting from a homogeneous spatial distribution of the vehicles,
m(t) can be monitored as a function of time t to "nd out the law of `growtha of the size of the
platoons.

Before describing the e!ects of the quenched randomness in the hopping probabilities on the
steady states of the TASEP and the NaSch model, we consider an even simpler model of platoon
formation [209,210] which was developed using the language of aggregation phenomena. In this
model an initial velocity v

j
is assigned to each vehicle j, drawn randomly from a continuous

probability density f (v). The particles then move ballistically along a line and coalesce whenever
a faster vehicle catches up with a slower one in front. It has been found that m(t) increases
inde"nitely according to the power law

m(t)&t(n`1)@(n`2) , (111)

where the exponent n characterizes the behaviour of f (v) in the vicinity of the minimal velocity v
.*/

,
i.e., f (v)&A(v!v

.*/
)n as vPv

.*/
with some positive constant A. An attempt has been made to

develop a coarse-grained description of this phenomenon [211].
It has been shown [205,206] that if quenched random hopping probabilities are assigned to each

particle in the TASEP, there are small gaps between particles in the high-density congested phase
but in the inhomogeneous low-density phase there is a macroscopically large empty region in front
of the slowest particle (i.e., the particle with smallest hopping probability) behind which a platoon
is formed. The phase transition from the low-density inhomogeneous phase (which consists of
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a macroscopic free region and a platoon) to the high-density congested phase is, in many respects,
analogous to the Bose}Einstein transition.

In order to see this analogy, let us imagine that the empty sites are bosons and the state
of a boson is determined by which particle it is immediately in front of. In the language of the
ideal Bose gas, in the high-density phase the bosons are thinly spread over all the states. On the
other hand, in the low-density phase there is a "nite fraction of the empty sites are condensed in
front of the slowest particle in such `Bose}Einstein-like condenseda state. The steady-state velocity
of the particles is the analogue of the fugacity of the ideal Bose gas. What makes the system
interesting is the fact that the platoon appears at low-density rather than at high density of the
vehicles.

The Bose}Einstein-like-condensation in the TASEP with quenched random hopping probabilit-
ies of the individual particles survives when the random sequential updating is replaced by parallel
updating [206]. Finally, it is worth emphasizing that, the analogy with the ideal Bose gas is only
formal as the empty sites in the TASEP are not non-interacting quantum particles.

The qualitative features of the dynamical phases and phase transitions observed in the NaSch
model with random braking probabilities, for v

.!9
"1 as well as for larger v

.!9
, are very similar to

those described above for the TASEP with random hopping probabilities [204]. Typical snapshots
of the system at three di!erent stages of evolution from a random initial state are shown in Fig. 47.

The typical size of the platoons m(t) can be computed directly [204] by computing the correlation
function (80) and identifying the separation r"R

0
of the "rst zero-crossing of this correlation as

m(t). Following this procedure, it has been observed that m(t) follows the power law (111) when the
distribution of the random braking probabilities is given by P(p)"2n(n#1)(1

2
!p)n.

10.2. Random v
.!9

The two important parameters of the NaSch model are p and v
.!9

. In the preceding subsection
we have seen the e!ects of randomizing p assigning the same v

.!9
to all the vehicles. In this

subsection, on the other hand, we investigate the e!ects of randomizing v
.!9

, assigning a non-
random constant p to every driver.

The simplest possible model to investigate the e!ects of quenched randomness in v
.!9

is that
considered by Ben-Naim et al. [209] which was discussed to motivate the phenomenon of platoon
formation in the preceding subsection.

In order to model tra$c consisting of two di!erent types of vehicles, say, for example, cars and
trucks, of which a fraction f

&!45
are intrinsically fast (say, cars) while the remaining fraction 1!f

&!45
are intrinsically slow (say, trucks), Chowdhury et al. [195] assigned a higher v

.!9
(e.g., v

.!9
"5) to

a fraction f
&!45

of vehicles chosen randomly while the remaining fraction 1!f
&!45

were assigned
a lower v

.!9
(e.g., v

.!9
"3). As the density of the vehicles increases, the vehicles with higher

v
.!9
"nd it more di$cult to change lane in order to pass a vehicle with lower v

.!9
ahead of it in the

same lane. This leads to the formation of `coherent moving blocksa of vehicles each of which is led
by a vehicle of lower v

.!9
[212]. Two main causes of tra$c accidents, namely, di!erences in vehicles

speeds and lane changes, are reduced considerably in this state thereby making this state of tra$c
much safer. It is worth mentioning that even a small number of slow vehicles in 2-lane models,
where overtaking is possible, can have a drastic e!ect. For details we refer to [197] and the
discussion in Section 9.2.
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Fig. 47. Typical space}time diagram of the NaSch model with v
.!9

"2 and c"0.1 and random braking probabilities.
Each horizontal row of dots represents the instantaneous positions of the vehicles moving towards right while the
successive rows of dots represent the positions of the same vehicles at the successive timesteps.

10.3. Randomly placed bottlenecks on the roads and the maximum yux principle

So far we have investigated the e!ects of two di!erent types of quenched randomness both of
which were associated with the vehicles (i.e., particles). We now consider the e!ects of yet another
type of quenched randomness which is associated with the road (i.e., lattice).

In order to anticipate the e!ects of such randomness associated with the highway, let us begin
with the simplest possible caricature of tra$c with a `point defecta [213]: a single `impuritya
(or `defecta) site in the deterministic limit p"0 of the NaSch model with v

.!9
"1. In this model,

vehicles move forward, in parallel, by one lattice spacing if the corresponding site in front is empty;
each vehicle takes ¹

*.1
('1) timesteps to cross the `impuritya site but only one time step to cross

a normal site when the next site is empty. The impurity sites acts like a blockage for all ¹
*.1

'1. As
explained in Section 8.2.1, in the absence of the impurity, J"c for 0(c41/2 and J"1!c
for 1/2(c41. Note that, if the impurity is present, 1/¹

*.1
vehicle passes through the impurity

site per unit time. Therefore, the bottleneck created by the impurity introduces an upper
cut-o! of the #ux, viz., 1/¹

*.1
. Obviously, J"c(1/¹

*.1
so long as c(c

1
"1/¹

*.1
. Similarly,
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Fig. 48. Fundamental diagram of the NaSch model with v
.!9

"1 and a blockage site located at the site 1. The hopping
probability in the bulk is given by q"0.75 and at the defect by q"0.25.

J"1!c(1/¹
*.1

for c'c
2

where c
2
"1!c

1
. In the density interval c

1
(c(1!c

1
, the

bottleneck at the impurity is the #ow-limiting factor and, hence, in this regime, J"1/¹
*.1

is
independent of c. Thus, in the simple caricature of tra$c under consideration one would expect the
#ux to vary with density following the relation

J"G
c if 0(c4c

1
,

1/¹
*.1

if c
1
(c4c

2
,

1!c if c
2
(c41 ,

(112)

where

c
1
"

1
1#(*t)

*.1

and c
2
"

(*t)
*.1

1#(*t)
*.1

, (113)

and ¹
*.1

"1#(*t)
*.1

such that (*t)
*.1

"0 for the normal sites but (*t)
*.1

'0 for the impurity
site.

The fundamental diagram, obtained numerically through computer simulation of the NaSch
model with a single defect and non-zero p (Fig. 48) is in qualitative agreement with those of the
fundamental diagram (112). The qualitative features of the fundamental diagram in Fig. 48 are also
similar to those of the TASEP with a single defect [214] where the hopping probability q is smaller
than that at all the normal sites. Eq. (112) also indicates that the larger is (*t)

*.1
the lower is the

maximum #ux 1/[1#(*t)
*.1

] and the wider is the interval c
1
4c4c

2
over which the #ux remains

constant.
What makes the problem of a single `point defecta nontrivial is that, over the interval

c
1
4c4c

2
of the density of the vehicles, where the J is maximum and independent of c, the

localized blockage has global e!ects whereby the tra$c exhibits macroscopic phase segregation into
high-density and low-density regions. Evidence for such macroscopic phase segregation can be
obtained directly from the density pro"les (see Fig. 49). Fig. 49 implies that so long as c(c

1
the
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Fig. 49. Density pro"les for di!erent values of c in the NaSch model with v
.!9

"1 and a blockage site located at the site
1. The hopping probability in the bulk is given by q"0.75 and at the blockage site by q"0.25.

21A microscopic approach for deterministic dynamics can be found in [176].

particles will not pile up but a local increase of density will compensate for the reduced local
velocity at the blockage so that the #ux around the blockage is identical to that far from it.
However, if the global density exceeds c

1
, the particles pile up during the transient period leading to

the phase-segregated steady state. Because of the particle-hole symmetry the phase-segregation
does not take place if the particle density exceeds c

2
.

We now develop a semi-phenomenological theory21 for the NaSch model with v
.!9

"1,
non-zero p and a single `impuritya site assuming the steady state to be phase-segregated, as
demonstrated by computer simulation (Fig. 49). Naturally, this theory cannot explain the underly-
ing mechanism that gives rise to the phase-segregated structure of the steady state. But, as we shall
see soon, it provides a good estimate of the #ux in the phase-segregated regime. Our calculations
are based on arguments similar to those suggested originally by Janowsky and Lebowitz [214] in
the context of TASEP with a single defect.

Using Eq. (78), the #ux in the high- and low-density regions, far from their interface, are given by

J
)
"1

2
(1!J1!4qc

)
(1!c

)
)) and Jl"1

2
(1!J1!4qcl(1!cl)) and that across the defect bond

is given by J
$%&

K1
2
(1!J1!4q

$
c
)
(1!cl)). Since, in the steady state, the #ux is same across the

entire system, we must have qc
)
(1!c

)
)"qcl(1!cl) and, hence,

c
)
"cl or c

)
"1!cl . (114)

The condition c
)
"cl is satis"ed by the uniform density pro"les whereas the condition c

)
"1!cl

is satis"ed by the phase-segregated density pro"le (see Fig. 49). Moreover, using the condition
J
)
"J

$%&
"Jl we get

c
)
(1!c

)
)"cl(1!cl)Krc

)
(1!cl) , (115)
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where r"q
$
/q(1 may be interpreted as the `transmission probabilitya or `permeabilitya of the

blockage. From (approximate) Eqs. (115) we get

c
)
K

1
r#1

"

p
p#p

$

and clK
r

r#1
"

p
$

p#p
$

(116)

and, hence,

J"
1
2C1!S1!

4qr
(1#r)2D . (117)

The estimate (117) is in good agreement with the numerical data (Fig. 48) obtained from computer
simulation [190]. Moreover, the estimates cl and c

)
are also in good agreement with cl and c

)
,

respectively, in Fig. 49.
Note that cl and c

)
depend only on r and are independent of c. Moreover, the estimates (116) of

cl and c
)

are in excellent agreement with c
1

and c
2
, respectively, in Fig. 48. At "rst sight, these two

results may appear surprising and counter-intuitive. But, we will now show that these are related to
the mechanism of the phase segregation. Conservation of the vehicles demand that

c¸"c
)
h#cl"c

)
h#cl (¸!h) , (118)

where h and l"¸!h are the lengths of the high-density and low-density regions, respectively.
Thus,

h
¸

"

c!cl
c
)
!cl

"

c(1#r)!r
1!r

. (119)

Eq. (119) shows that h/¸P0 as cPcl and h/¸P1 as cPc
)
. Therefore, keeping r "xed as the

density is increased beyond c
1
"cl , the densities of the two regions remain "xed but the

high-density region grows thicker at the cost of the length of the low-density region as more and
more vehicles pile up and, eventually, at c"c

2
"c

)
the low-density region occupies a vanishingly

small fraction of the total length of the system signaling the disappearance of the phase segregation.
Interestingly, recasting the expressions for c

)
and cl as cl"1/[1#(*t)

*.1
] and c

)
"(*t)

*.1
/

[1#(*t)
*.1

], where (*t)
*.1

"1/r, we "nd close formal analogies with c
1

and c
2
, respectively, in

Eq. (113) [215].
SchuK tz [216] considered a TASEP with sublattice-parallel update (see Appendix A) where the

motion of the particles is deterministic (i.e., q"1) everywhere except at a defect site where they
move with the probability q

$
(1 (i.e., r"q

$
(1). Exact solution is possible through a mapping on

a 6-vertex model. Later, a solution using the matrix-product ansatz was presented in [217]. Except
for minor di!erences, the qualitative features of the results do not di!er from the corresponding
approximate results obtained for q

$
O1 [214]. Qualitatively similar phase segregation phenomena

have also been observed in a related model [202].
The qualitative features of the fundamental diagram do not change signi"cantly if the `point-

likea defect (or, impurity) is replaced by an `extendeda defect [190], i.e., a few consecutive defect
sites. However, with increasing length of the defect, the maximum value of the #ux decreases
monotonically and approaches the maximum #ow of the homogeneous system where the hopping
probability associated with each of the bonds is identical to that associated with the defects in our
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Fig. 50. Fundamental diagram for the NaSch model with v
.!9

"1 and defects of di!erent length ¸
$
. Again p"0.75 and

p
$
"0.25 is chosen. For comparison the fundamental diagram of the `fasta (p"0.75) and `slowa homogeneous systems

are shown.

Fig. 51. Density pro"les for di!erent lengths of the defect in the NaSch model with v
.!9

"1. Again p"0.75 and 0.25 are
used and the average density is given by c"0.50. The defect extended over the "rst ¸

$
sites of the system.

model (Fig. 50). From Figs. 50 and 51 we conclude that the monotonic decrease of the #ow with
increasing length of the extended defects, leads to a larger di!erence c

)
!cl between the densities of

the high-density and the low-density regions of the phase-segregated steady state.
Next, instead of a single point-like or extended `defecta, let us consider the more general case of

quenched `disordera in the NaSch model with v
.!9

"1 where the quenched random hopping
probabilities q

j,j`1
"1!p

j,j`1
are chosen independently from some probability distribution P(q),

for the hopping from the cell j to the cell j#1 ( j"1, 2,2,¸). For a given realization of the
disordered system, every vehicle hopping from a given cell i to the next cell i#1 must hop with the
same probability q

i,i`1
and a given vehicle hops across di!erent bonds, in general, with di!erent

probabilities assigned to these bonds as it moves forward with time. A similar generalization
of the TASEP has also been studied [137]. We shall refer to this model as disordered TASEP
(i.e., DTASEP).

Suppose, q are chosen from the binary distribution

P(q
j,j`1

"q
$
)"f, P(q

j,j`1
"q)"1!f , (120)

i.e., a fraction f of the bonds have a permeability r(1 while the remaining fraction 1!f have
unit permeability. A mean-"eld theory has been developed [137] (see Appendix G for details) for
computing the fundamental diagram of the DTASEP. The #ux in this model has interesting
symmetry properties under the operations of `charge conjugationa (which interchanges particles
and holes), `paritya (which interchanges forward and backward hopping rates on each bond and
`time reversala (which reverses the direction of the current) [137,218].

The quenched disorder in these `disordereda models can be viewed as `point-like impuritiesa
distributed randomly over the lattice. But, the qualitative features of the fundamental diagram of
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Fig. 52. Origin of phase separation in DTASEP. Shown are the fundamental diagrams of two reference non-disordered
TASEPs.

DTASEP are similar to those observed for a single point-like defect and those for a single extended
defect. Although the random distribution of the point-like impurities leads to a `rougha density
pro"le for all densities, in an intermediate regime of density, phase-segregated steady sates with
macroscopic high- and low-density regions have been identi"ed.

What is the underlying mechanism for the `macroscopica phase segregation in all the models
DTASEP [137] ? Let us denote the stretches of bonds with permeability 1 by X and the stretches of
bonds with permeability r by>. The two parabolas in Fig. 52 are the two steady-state fundamental
diagrams for the two pure reference systems consisting of all X and all >, respectively. Since the
#ux must be spatially constant in the steady-state, the possible densities are given by the four
intersections of the line J"J

0
with the two parabolas. If the average density is less (greater) than

1/2 then the two possible densities are c
1

and c
2

(c
3

and c
4
). The variation of density between

c
1

and c
2

(or c
3

and c
4
) in the X and > stretches is merely micro phase-segregation while, on

a macroscopic scale, the density remains uniform. For simplicity, we assume that the density in
each stretch of like bonds is uniform. The global density of the system is approximately
cK(1!f )c

1,4
(J

0
)#fc

2,3
(J

0
) where f is given by Eq. (120). However, as the density increases the

#ux also increases till it attains the maximum allowed #ux of the pure system consisting of all
> (this happens at a global density smaller than 1/2). What happens when the density increases
further? According to the `maximum current principlea [162], no further increase of the #ux is
possible and the excess density is taken care of by increasing the density in some of the X stretches
from c

1
to c

4
(or, vice versa if c'1/2). This conversion takes place adjacent to the largest stretch of

> bonds where the density also changes from c
2

to c
3

(or, vice versa if c'1/2) to accommodate
the additional particles added to the system. This leads to the macroscopic phase segregation as the
system consists of two macroscopic regions of two di!erent mean densities- one with lower densities
c
1
, c

2
in the X and> stretches and the other with the higher densities c

3
, c

4
in the X and> stretches.

It is not di$cult to generalize the DTASEP to disordered NaSch (DNaSch) model by replacing
the random sequential updating by parallel updating. However, we face subtle conceptual
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di$culties in extending DNaSch model further to arbitrary v
.!9

; if the position of a vehicle at time
t#1 is decided by q at its current position at time t, it may be forced to move v sites downstream by
hopping over sites of even smaller q if v'1.

Some alternative parameterization of the defect (or, disordered) sites in the NaSch model for
arbitrary v

.!9
have also been suggested. In [219,190] localized defects have been investigated where

the randomization parameter p
d

is larger than in the rest of the system. Csahok and Vicsek [220]
have considered the blockages as sites with a `permeabilitya smaller than unity whereas the
permeability of all the other sites is unity. This e!ectively reduces v

.!9
while the vehicle is at

a blockage. On the other hand, Emmerich and Rank [221,154] considered a model of where the
velocity of every vehicle in the region occupied by the blockage (or, more appropriately, hindrance)
at the time step t#1 is half of that at time t, i.e., v

n
(t#1)"v

n
(t)/2 is the nth vehicle is located

within the hindrance region. Some e!ects of static hindrances on vehicular tra$c have also been
investigated following alternative approaches, e.g., car-following theory [222]. From a practical
point of view, ramps have e!ects very similar to those of a static defect. For the NaSch model this
has been investigated in [223].

11. Other CA models of highway tra7c

All the CA models of highway tra$c described so far are basically generalizations of the minimal
CA model proposed originally by Nagel and Schreckenberg [20]. We now describe a few other
alternative minimal CA models and the interesting features of the corresponding results.

11.1. Fukui}Ishibashi model

The update rules of the Fukui and Ishibashi (FI) [120] model of single-lane highway tra$c are as
follows:

If v
.!9

or more sites in front of the nth vehicle is empty at the time step t, then it has a probability
1!p to move forward by v

.!9
sites and a probability p to move forward by v

.!9
!1 sites in the

time step t#1. However, if only d sites (d(v
.!9

) in front of the nth vehicle are empty at time t then
it moves by d sites in the next time step. Since no site can be occupied simultaneously by more than
one vehicle, a vehicle must not move forward in the time step t#1 if the site immediately in front of
it is occupied by a vehicle at the time step t. The model becomes deterministic in both the limits
p"0 and 1.

The FI model di!ers from the NaSch model in two respects: (a) the increase of speed of the
vehicles is not necessarily gradual and (b) the stochastic delay applies only to high-speed vehicles.
The FI model, obviously, reduces to the NaSch model if v

.!9
"1. A site-oriented mean-"eld theory

[224] and a car-oriented mean-"eld theory [225,226] for the FI model have been developed for
arbitrary v

.!9
and p. Note that the FI model is equivalent to the deterministic CA rule 184 (in the

notation of Wolfram [18]) in the limit v
.!9

"1, p"0. Generalizations of the deterministic limit
p"0 of the FI model have also been proposed [227,228].

According to the classi"cation of Section 7.3, the FI model belongs to class I, i.e., the high-
acceleration limit where no spontaneous jamming exists. In [156] an alternative high-acceleration
variant has been proposed. Here only the acceleration step (;1) of the NaSch model is changed to
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vPv
.!9

, i.e., all vehicles accelerate immediately to the maximal possible velocity. The other update
steps of the NaSch model are left unchanged. In contrast to the FI model, all vehicles are subject to
the randomization step. The behaviour of this variant is therefore similar to that of the NaSch
model, e.g. one "nds spontaneous jam formation.

11.2. Galilei-invariant vehicle}vehicle interaction and metastability

In the NaSch model it is postulated that the gap between a pair of successive vehicles is adjusted
according to the velocity of the leading vehicle alone. In contrast, often in real tra$c, drivers tend
to adjust the gap in front taking into account the diwerence between the velocity of their own
vehicle and that of the leading vehicle. The latter aspect of real tra$c is captured by a recent model
developed by Werth, Froese and Wolf (WFW) [229,230].

If both the following vehicle and the leading vehicle move with constant acceleration b, then
a collision between the two can be avoided provided

gap#l(v
LV

)5v
FV

q
r
#l(v

FV
) , (121)

where v
LV

and v
FV

are the velocities of the leading vehicle and the following vehicle, respectively,
q
3

is the reaction time of the following vehicle and

l(v)"v2/2b (122)

is the distance covered by a vehicle with initial velocity v before it comes to a stop by moving
with a constant deceleration b. Using Eq. (122) the condition (121) for avoiding collision can be
written as

gap5v
FV

q
3
#(v6 /b)(v

FV
!v

LV
) , (123)

where v6 "(v
FV

#v
LV

)/2 if the average velocity of the pair of vehicles under consideration.
Therefore, a suzcient condition for avoiding a collision is

gap5G
v
FV

q
3

for v
FV

4v
LV

,

v
FV

q
3
#

v
.!9
b

(v
FV

!v
LV

) for v
FV

'v
LV

.
(124)

In the limiting case bPR the su$cient condition (124) reduces to gap5v
FV

q
3
which is identical

to the form of vehicle}vehicle interaction in the NaSch model if one chooses q
3
as the unit of time.

In the opposite limit q"0, the su$cient condition (124) reduces to

gap5G
0 for v

FV
4v

LV
,

v
.!9
b

(v
FV

!v
LV

) for v
FV

'v
LV

.
(125)

Since this type of vehicle}vehicle interaction involves the di!erence of the velocities v
FV
}v

LV
, it is

clearly invariant under a Galilean transformation and, hence, the name. The vehicle}vehicle
interactions in real tra$c may be somewhere in between the two limiting cases of NaSch model and
the Galilei-invariant model.

Suppose the indices n!1 and n label the leading vehicle and the following vehicle, respectively,
of a pair. The update rules suggested by WFW [230] for implementing the Galilei-invariant
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vehicle}vehicle interaction are as follows:
Step 1: Acceleration,

v(1)
n
"min(v

n
#1, v

.!9
) .

Step 2: Deceleration (due to other vehicles),

v(2)
n
"min(v(1)

n
, d

n
!1#v

n~1
) .

Step 3: Randomization

v(3)
n

p
" max(v(2)

n
!1, 0) with probability p .

Step 4: Deceleration (due to other vehicles),

v(4)
n
"min(v(3)

n
, d

n
!1#v(4)

n~1
) .

Step 5: Vehicle movement,

x
n
"x

n
#v(4)

n
, v

n
"v(4)

n
.

Thus, the rule for deceleration (due to other vehicles) is applied twice. Step 4 makes sure collisions
are avoided. Since also the new velocity v(4)

n~1
of the preceding car enters, this step cannot be

performed in parallel for all cars. Instead it is performed sequentially, but the "nal con"guration is
independent of the starting point of this sequential updating. Step 4 has then to be applied twice in
order to determine all velocities v(4)

n
consistently.

The rules as given above de"ne the retarded version of the Galilei-invariant model. In the
non-retarded version, in step 2 v

n~1
is replaced by the new velocity v(2)

n~1
. To determine v(2)

n
consistently for all cars, step 2 has then to be iterated v

.!9
!1 times.

The most interesting feature of the Galilei-invariant model is that its fundamental diagram has
a metastable branch although its update scheme involve neither cruise-control nor slow-to-start
rules. The mechanism leading to the existence of metastable states is di!erent from the models with
slow-to-start rules (see Section 9.1.2). The out#ow from jams is the same as in the NaSch model
since it is independent of the interaction between vehicles. However, due to the inclusion of
anticipation e!ects (i.e., the driver knows the velocity of the preceding vehicle) the free-#ow is less
sensitive to #uctuations.

11.3. CA versions of the optimal-velocity model

The tra$c jams appear spontaneously in both the OV models and the CA models. However, in
the OV models spontaneous formation of the jams are caused by the non-linearity of the dynamical
equations whereas in the CA models it is triggered primarily by the stochasticity of the update
`rulesa. The mechanism for the spontaneous formation of jams in real tra$c may be a combination
of these two.

In the OV model, the control of velocity is given by the control of acceleration through the OV
function which gives the optimal velocity for the current distance-headway. Thus, unlike the CA
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models like the NaSch model, the vehicles in the OV models get an opportunity to avoid crash
without any need to exert unphysically large deceleration. In fact, collision of vehicles may take
place in naive discretization of the dynamical equations for the OV models unless special care is
taken in the discretization process (see below).

In the following we present several CA model analogues of the OV model that have been
proposed by di!erent authors. In principle, the NaSch model is also an OV model, but with a linear
OV function, v(d)"min[d!1, v

.!9
]. The "rst attempt to generalize this relation is due to

Emmerich and Rank [231]. The update rules of their model are as follows:
Step 1: Find largest gap. Find the vehicle with the largest gap to the next vehicle ahead.
Step 2: Acceleration,

v
n
Pmin(v

.!9
, v

n
#1) .

Step 3: Deceleration due to other vehicles,

v
n
PM

dn~1,vn
if d

n
!14v

.!9
,

i.e., a vehicle with velocity j and i empty cells in of it (i.e., a gap d
n
"i#1) reduces its velocity to

M
i,j

(04i, j4v
.!9

).
Step 4: Randomization,

v
n
Pmax(v

n
!1, 0) with probability p .

Step 5: Vehicle movement,

x
n
Px

n
#v

n
.

Step 6: Next vehicle. Repeat steps 2}5 for the next vehicle behind, i.e., proceed in the direction
opposite to the motion of the vehicles.

For the NaSch model with v
.!9

"5 the matrix M
i, j

is given by

M(N!S#))
i, j

"A
0 0 0 0 0 0

0 1 1 1 1 1

0 1 2 2 2 2

0 1 2 3 3 3

0 1 2 3 4 4

0 1 2 3 4 5
B . (126)

A general matrix M
i,j

has to satisfy certain conditions (e.g. M
i,j
4min(i, j) and M

i,j
4M

i,k
for

j4k) to guarantee, e.g. the absence of collisions in the model. In order to model the fact that faster
vehicles keep a relatively larger headway to the preceding vehicle, Emmerich and Rank suggested
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the following matrix:

M(ER)
i, j

"A
0 0 0 0 0 0

0 1 1 1 1 1

0 1 2 2 2 2

0 1 2 2 3 3

0 1 2 3 3 4

0 1 2 3 4 4
B . (127)

Using a parallel update scheme, the model shows unrealistic behaviour in the free-#ow regime,
especially in the deterministic limit p;1. Here the fundamental diagram is non-monotonic [232],
as can be seen from a simple example for p"0. At density c"1/7, the stationary state is of the
form 525252 where numbers denote the velocity of vehicles and &.' an empty cell. At density
c"1/6, on the other hand, the stationary state is 424242 . Comparing the corresponding
#ows, one "nds J(c"1/7)"5/7'J(c"1/6)"2/3. At density c"1/5, the stationary state is
42.42.42 . with #ow J(c"1/5)"4/5 which is again larger than the #ow at c"1/6 and
corresponds to the maximal possible #ow. This kind of behaviour persists even in the presence of
randomness (p'0) [232]. In order to circumvent this problem, Emmerich and Rank had to
introduce a special kind of ordered-sequential update, where "rst the vehicle with the largest gap
ahead is updated. Then, the position of the next vehicle upstream is updated, and so on, using
periodic boundary conditions.

Emmerich and Rank also investigated more general rules where even for gaps larger than
v
.!9

the velocity of the vehicles is reduced to a value v(v
.!9

.
Later, a similar model has been proposed by Helbing and Schreckenberg [233]. It is closer to the

spirit of the original optimal-velocity model (see Section 6.2).
Step 1: Vehicle movement,

x
n
Px

n
#v

n
(t) .

Step 2: Acceleration,

v@
n
(t#1)"v

n
(t)#xj[<

015
(d

n
(t))!v

n
(t)]y ,

Step 3: Randomization,

v
n
(t#1)"v@

n
(t#1)!G

1 with probability p (if v@
n
(t#1)'0) ,

0 otherwise .

Here xyy denotes the #oor function, i.e., the largest integer i4y. In [233] various optimal velocity
functions <

015
(d) have been used in order to "t experimental data. The simplest, but unrealistic,

choice was <
015

(d)"min(d, v
.!9

) where d is the distance-headway. The parameter j corresponds
formally to the sensitivity parameter in the OV model where it determines the timescale of
relaxation towards the stationary fundamental diagram. Such an interpretation is not possible for
discrete time models. Here the main e!ect of the parameter j is a rescaling of the OV function.

The naive discretization of the OV function produces some undesirable features of the model, e.g.
the #ow corresponding to the OV function is non-monotonic in the free-#ow region. Furthermore,
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one "nds } for certain initial conditions } a breakdown of the #ow at a "nite density c
H
(1. This

indicates a lack of robustness of model against small modi"cations of the rules.
For j(1 the model is not intrinsically collision-free [234], in contrast to most other models

discussed in this review. Problems occur, e.g. when fast vehicles approach the end of a jam. For the
<

015
(d)"min(d, v

.!9
) and the `realistica choice j"0.77 [233] collisions can occur for v

.!9
55

[234]. For j'1, on the other hand, a backward motion of vehicles is possible. For a given OV
function it is possible to derive conditions for the parameter j which ensure the absence of
collisions and backward motion [234].

Nagatani [235] has suggested a CA model which combines the OV idea with the TASEP. It is
the discrete analogue of the simpli"ed OV model (51) presented in Section 6.2. Here the nth vehicle
moves ahead with probability v

n
(t) where v

n
(t) is interpreted as velocity. This velocity is obtained by

integration of the OV function

xK
n
(t)"G

a for *x
n
(t)5*x

#
,

!a for *x
n
(t)(*x

#
,

(128)

where a'0, *x
n
(t)"x

n`1
(t)!x

n
(t) and *x

#
is a safety distance. Furthermore, the velocity is

restricted to the interval 04v
n
(t)4v

.!9
41.

11.4. CA from ultra-discretization

Several CA which can be interpreted as tra$c models have been derived using the so-called
ultra-discretization method (UDM) [236]. This approach allows to establish a direct connection
between certain di!erential equations and CA. The problem in the derivation of CA from
di!erential equations lies in the discretization of the &state' (or dependent) variable. E.g. in
a numerical treatment, only space and time variables are discretized.

The basic procedure of the UDM is as follows: (1) start from a non-linear wave equation, e.g.
the KdV equation or Burgers' equation; (2) discretize space- and time-variables in a standard
way to obtain the discrete analogue of the wave equation which is still continuous in the state
variable u

j
(t); (3) the discrete analogue is now ultra-discretized. De"ning ;

j
(t)"e ln(u

j
(t)) (where

e depends on the discretization *x and *t of space and time) one can use the identity
lime?0

e log(eA@e#eB@e#2)"max[A,B,2] to derive the CA analogue of the non-linear wave
equation.

By applying the UDM to Burgers' equation v
t
"2vv

x
#v

xx
one obtains the (¸#1)-state,

deterministic CA [237,238],

n
j
(t#1)"n

j
(t)#min[M,n

j~1
(t),¸!n

j
(t)]!min[M,n

j
(t),¸!n

j`1
(t)] . (129)

n
j
(t) is the occupation number of cell j at time t. In contrast to most other CA discussed in this

review multiple occupations of cells are allowed. The maximum number of particles which can
occupy the same cell is given by ¸, i.e. 04n

j
(t)4¸. The model de"ned by (129) might therefore

be interpreted as a simple model for a highway with ¸ lanes where the e!ects of lane changes
are completely neglected. In [238] it has also been suggested to interpret n

j
(t)/¸ for large ¸ as

a coarse-grained density. The parameter M denotes the maximum number of vehicles that can
move from cell j to cell j#1.
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For M5¸"1 the model reduces to the rule-184 CA, i.e., the NaSch model with v
.!9

"1 and
p"0. In the case ¸42M the fundamental diagram looks similar to that of rule-184 CA, but it is
&degenerate' in the sense that qualitative di!erent stationary states with the same #ow exist. For
¸'2M the fundamental diagram resembles that of rule-184 CA with a blockage site (see Section
10.3, especially Fig. 48). In the region M/¸4c4(¸!M)/¸ the #ow takes the constant value M/¸,
i.e., the parameter M can be interpreted as a #ow limiter.

In [238] also a generalization of (129) to higher velocities v
.!9

'1 has been suggested. For
v
.!9

"2 the generalized update rule is given by

n
j
(t#1)"n

j
(t)#a

j~2
(t)!a

j
(t)#min[b

j~1
(t)!a

j~1
(t),¸!n

j
(t)!a

j~2
(t)]

!min[b
j
(t)!a

j
(t),¸!n

j`1
(t)!a

j~1
(t)] . (130)

Here b
j
(t)"min[n

j
(t),¸!n

j`1
(t)] is the maximum number of vehicles at site j that can move and

a
j
(t)"min[n

j
(t),¸!n

j`1
(t),¸!n

j`2
(t)] is the number of vehicles that move two cells forward.

The idea behind this dynamics is that "rst the vehicles try to move two cells forward. This is only
possible if the two cells ahead are not fully occupied, i.e., ¸!n

j`1
(t)'0 and ¸!n

j`2
(t)'0.

Then min[b
j
(t)!a

j
(t),¸!n

j`1
(t)!a

j~1
(t)] vehicles move forward one cell.

The model de"ned by (130) can be considered as a generalization of the Fukui}Ishibashi model
(see Section 11.1) to which it reduces for ¸"1. Note that the #ow limiter M has been dropped in
the extended model.

The fundamental diagram of the model (130) has a structure similar to that shown in Fig. 34,
i.e., states of high #ow exist. Due to the higher velocity the degeneracy found in the model (129) is
lifted. In the case ¸"2, the c"1/2 states 211112 and 220202 are degenerate in the simple
model. In the v

.!9
"2 case, however, in the state 211112 the vehicles can increase their velocity,

while in the state 220202 they cannot due to the presence of the fully occupied cells `2a. The
high-#ow states are unstable against local perturbations.

Another CA model obtained by ultra-discretization of the modi"ed KdV-equation has been
suggested in [239]. It is a second-order CA since the con"guration at time t#1 does not only
depend on the con"guration at time t, but also on the previous one at time t!1. The update rule
for the position x

j
(t) of vehicle j is given by

x
j
(t#2)"x

j
(t)#*x

j
(t)#max[0,*x

j
(t#1)!M]!max[0,*x

j
(t#1)!¸] , (131)

where *x
j
(t)"x

j`1
(t)!x

j
(t) is the gap and M and ¸ are constants.

Although this model is deterministic it exhibits start-stop waves similar to those found in the
NaSch model [239]. It seems that a second-order deterministic CA might produce e!ects similar to
those of noise in a "rst-order stochastic CA. One should note, however, that the rules allow vehicles
to move backwards. Other models obtained using the UDM have been discussed in [240].

12. Cellular automata models of city tra7c and road networks

12.1. Biham}Middleton}Levine model and its generalizations

In the BML model [21], each of the sites of a square lattice represent the crossing of a east}west
street and a north}south street. All the streets parallel to the x( -direction of a Cartesian coordinate

293D. Chowdhury et al. / Physics Reports 329 (2000) 199}329



system are assumed to allow only single-lane east-bound tra$c while all those parallel to the
y( -direction allow only single-lane north-bound tra$c. Let us represent the east-bound (north-
bound) vehicles by an arrow pointing towards east (north). In the initial state of the system, vehicles
are randomly distributed among the streets. The states of east-bound vehicles are updated in
parallel at every odd discrete time step whereas those of the north-bound vehicles are updated in
parallel at every even discrete time step following a rule which is a simple extension of the TASEP:
a vehicle moves forward by one lattice spacing if and only if the site in front is empty, otherwise the
vehicle does not move at that time step.

Thus, the BML model is also a driven lattice gas model where each of the sites can be in one of
the three possible states: either empty or occupied by an arrow C or P. Note that the parallel
update rules of the BML model is fully deterministic and, therefore, it may also be regarded as
a deterministic CA. The randomness arises in this model only from the random initial conditions
[241]. Suppose, N

?
and N

t
are the numbers of the east-bound and north-bound vehicles,

respectively, in the initial state of the system. If periodic boundary conditions are imposed in all
directions, the number of vehicles in every street is conserved since no turning of the vehicles are
allowed by the updating rules. In a "nite ¸]¸ system the densities of the east-bound and
north-bound vehicles are given by c

?
"N

?
/¸2 and c

t
"N

t
/¸2, respectively, while the global

density of the vehicles is c"c
?
#c
t
.

Computer simulations of the BML model with periodic boundary conditions demonstrate that
a xrst order phase transition takes place at a "nite non-vanishing density c

H
, where the average

velocity of the vehicles vanishes discontinuously signaling complete jamming; this jamming arises
from the mutual blocking (`grid-lockinga) of the #ows of east-bound and north-bound tra$c at
various di!erent crossings (see [242] for the corresponding results of the BML model with open
boundary conditions).

At concentrations just above c
H
, in the jammed phase, all the vehicles together form a single

cluster which is stretched along the diagonal connecting the south}west to the north}east of the
system. In other words, the lowest-density jammed con"gurations consist of a single diagonal band
where the P and C occupy nearest-neighbour sites on the band in a zigzag manner. With further
increase of density more and more vehicles get attached to the band in the form of o!-diagonal
branches and the in"nite cluster of the jammed vehicles looks more and more random. Thus, in
general, a typical in"nite cluster of the jammed vehicles consists of a `backbonea and `dangling
vehiclesa which are the analogs of the `backbonea and the `dangling endsa of the in"nite
percolation clusters in the usual site/bond percolation [243]. However, in contrast to the in"nite
percolation cluster in the usual random site/bond percolation, the in"nite spanning cluster of
vehicles in the BML model emerges from the self-organization of the system. Nevertheless,
concepts borrowed from percolation theory have been used to characterize the structure of the
in"nite cluster of jammed vehicles in the BML model at c'c

H
[244,245]. The distribution of the

waiting times of the vehicles at the signals (i.e., at the lattice sites) has also been investigated
through computer simulations [246,247].

12.1.1. Poor man's mean-xeld estimates for the BML model
If one is not interested in detailed information on the `structurea of the dynamical phases, one

can get a mean-"eld estimate of c
H

by carrying out a back-of-the-envelope calculation. Suppose,
c
?

and c
t

denote the average densities while v
?

and v
t

denote the average speeds of the east-bound
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22 Ishibashi and Fukui [250] claimed that complete jamming can occur in the BML model only for c"1. However,
a plausible #aw in their arguments was pointed out by Chau et al. [251]. In [252] it has been argued that c

H
J¸~0.14,

i.e., c
H
"0 in the thermodynamic limit.

and north-bound vehicles, respectively. In order to estimate c
H

one has to take into account
interaction of the east-bound (north-bound) vehicles not only with the north-bound (east-bound)
vehicles [248] but also, in a self-consistent manner, with other east-bound (north-bound) vehicles
[249]. Following the arguments of Appendix I, one can show that in the symmetric case
c
?
"c
t
"c, a self-consistency equation for the speed is

v
?
"v
t
"v"

1
2C1#

c
2
#SA1#

c
2B

2
!4cD (132)

for c(c
H
. The critical density c

H
is determined by the condition that at c5c

H
the equation (132)

does not give a real solution. Hence we get c"c
H
"6!J32K0.343 which, in spite of the

approximations made, is surprisingly close to the corresponding numerical estimate obtained from
computer simulation [21]. Moreover, the mean-"eld estimate c

H
K0.343 is also consistent with

the more rigorous result22 [251,253] that c
H

is strictly less than 1/2. The BML model in three
dimension, although not relevant for vehicular tra$c, has also been studied [254].

12.1.2. Mean-xeld theory of the BML model
Recall that the occupation variables n(i; t) in the NaSch model describe the state of occupation of

the sites i (i"1, 2,2) by the vehicles on the one-dimensional highway. A scheme for a truly
microscopic analysis of the BML model begins [255] by introducing the corresponding generalized
occupation variables n

t
(x, y; t) and n

?
(x, y; t), which describe the state of occupation of the sites

(x, y) by the north-bound and east-bound vehicles, respectively, on the two-dimensional street-
network. The analogs of Eqs. (64) and (65) (see Appendix I for details) have analogous physical
interpretations. As usual, in the naive SOMF approximation one neglects the correlations between
the occupations of di!erent sites [255]. Since none of the sites is allowed to be occupied by more
than one particle at a time, Pauli operators may be used to develop an analytical theory of
vehicular tra$c [256] but one should keep in mind that the particles representing the vehicles are
purely classical and the system does not have any quantum mechanical characteristics.

12.1.3. Generalizations and extensions of the BML model
The BML model has been generalized and extended to take into account several realistic features

of tra$c in cities.
Asymmetric distribution of the vehicles: Suppose the vehicles are distributed asymmetrically

among the east-bound and north-bound streets [248], i.e., c
?
Oc
t
. For convenience, let us write

c
t
"cf

a
and c

?
"c(1!f

a
) where f

a
is the fraction of the vehicles moving towards north. Clearly

f
a
"1/2 corresponds to the symmetric case c

?
"c
t
"c/2. On the other hand, f

a
"0 ( f

a
"1)

correspond to the extreme asymmetric case where all the vehicles are east-bound (north-bound).
Obviously, the absence of grid-locking in the extreme limits f

a
"0 and f

a
"1 rules out the

possibility of BML-like complete jamming transition, i.e., c
H
"1 for both f

a
"0 and f

a
"1.

Moreover, c
H

decreases with decreasing asymmetry in the distribution of the vehicles; c
H

is the
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smallest for f
a
"1/2, i.e., symmetric distribution of the vehicles. These results can be presented

graphically by plotting the curve c
H
( f

a
) in the phase diagram on the c}f

a
plane [248].

Unequal maximum velocities: In the BML model both east-bound and north-bound vehicles can
move by a maximum of one lattice spacing at a time and, therefore, the average speeds of both types
of vehicles can never exceed unity. On the other hand, recall that in the Fukui}Ishibashi model
[120] of highway tra$c vehicles can move up to a maximum of M lattice sites at a time and, hence,
have average velocities larger than unity. Incorporating similar high-speed vehicles Fukui et al.
[257] generalized the BML model where the east-bound vehicles are allowed tom ove by M sites at
a single time step while the north-bound vehicles can move by only one lattice spacing.

Overpasses or two-level crossings: The BML model has been extended to take into account the
e!ects of overpasses (or two-level crossings) [258]. A fraction f

0
of the lattice sites in the BML

model are randomly identi"ed as overpasses each of which can accommodate up to a maximum of
two vehicles simultaneously. The overpasses weaken the grid-locking in the BML model. There-
fore, c

H
is expected to increase with increasing f

0
. Besides, c

H
is expected to be unity if f

0
"1.

Naturally, we address the question: does jamming disappear (i.e., c
H

is unity) only at f
0
"1 or for

even smaller values of f
0
? In order to answer this question we extend the self-consistent mean-"eld

arguments, which led to Eq. (132), incorporating the e!ects of the overpasses thereby getting the
generalized self-consistency equation [259]

v
?
"v
t
"v"

1
2C1#

1!f
0

2
c#SA1#

1!f
0

2
cB

2
!4(1!f

0
)cD (133)

in the symmetric case c
?
"c
t
"c. Eq. (133) reduces to the equation (132) in the limit f

0
"0. It

predicts that, if f
0
O0, a moving phase exists in the BML model with overpasses for vehicle

densities c4c
H
"(6!J32)/(1!f

0
) and that the jammed phase disappears altogether (i.e.,

c
H

becomes unity) for f
0
51!0.343"0.657, an underestimate when compared with the corre-

sponding computer simulations. These results can be presented graphically by drawing the curve
c
H
( f

0
) in the mean-"eld phase diagram on the c!f

0
plane not only for the symmetric distribution

(i.e., for f"1/2) but also for asymmetric distributions of the vehicles among the east-bound and
north-bound streets [259].

Faulty trazc lights: The e!ects of faulty tra$c lights have been modeled by generalizing the BML
as follows [260]: a fraction f

5-
of the sites are identi"ed randomly as the locations of the faulty tra$c

lights. Both the north-bound vehicles currently south of the faulty tra$c lights and the east-bound
vehicles currently west of a faulty tra$c light are allowed to hop onto the empty crossings where the
faulty tra$c lights are located, irrespective of whether the corresponding time step of updating is
odd or even. If an east-bound vehicle and a north-bound vehicle simultaneously attempt to enter
the same crossing, where the faulty tra$c light is located, then only one of then is allowed to enter
that crossing by selecting randomly.

Since a north-bound (east-bound) vehicle will be able to move forward although only east-bound
(north-bound) vehicles would have moved forward had f

5-
been zero, the average velocity of the

vehicles is expected to increase with increasing f
5-
. However, with the increase of f

5-
there is an

increasing likelihood that an east-bound (north-bound) vehicle would be blocked by a north-
bound (east-bound) vehicle at a faulty tra$c light. Thus, the increasing density of faulty tra$c
lights increases the e!ect of grid-locking thereby decreasing c

H
.
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Static hindrances: The BML model has been extended to incorporate the e!ects of static
hindrances or road blocks (e.g., vehicles crashed in tra$c accident), i.e., stagnant points [261,262].
A vehicle, which stays at a normal site for only one time step before attempting to move out of it,
stays at a point-like blockage for ¹

1
time steps before attempting to move out of it. Obviously, the

longer is ¹
1
, the lower is the corresponding c

H
. The time-dependent phenomenon of spreading of

the jam from the blockage site during the approach of the system to its jammed steady-state
con"gurations has also been investigated [261,263].

Stagnant street: Let us consider the e!ects of a stagnant street, where the local density c
4

of the
vehicles is initially higher than that in the other streets [264], on the tra$c #ow in the BML model.
The stagnant street, e!ectively, acts like a `line-defecta, rather than a `point-defecta. However, in
contrast to the static roadblocks, a stagnant street o!ers a time-dependent hindrance to the vehicles
moving in the perpendicular streets. As intuitively expected, the jamming transition has been found
to occur at a lower global density when the local density in the stagnant street is higher.

Independent turning of the vehicles: Let us now generalize the BML model by assigning a trend or
preferred direction of motion, =

n
(x, y), to each vehicle n (n"1, 2,2) located at the site x, y.

According to this de"nition, the vehicle n, located at x, y jumps to the next site towards east with
probability=

n
(x, y) while 1!=

n
(x, y) is the corresponding probability that it hops to the next site

towards north [265]. In this generalized model vehicles can take a turn but the processes of turning
from east-bound (north-bound) to north-bound (east-bound) streets is stochastic. For simplicity,
suppose, N/2 vehicles are assigned =

n
(x, y)"c while the remaining N/2 vehicles are assigned

=
n
(x, y)"1!c where 04c41/2; this implies that N/2 vehicles move preferentially east-ward

whereas the remaining N/2 vehicles move preferentially towards north. In the limit c"0 no vehicle
can turn and we recover the original BML model with deterministic update rules. The most
dramatic e!ect of the stochastic turning is that the discontinuous jump DSvT of the average velocity
SvT decreases with increasing c and, eventually, the "rst order jamming transition ends at a critical
point where DSvT just vanishes.

Jam-avoiding turn and drive: In the model of turning considered in Refs. [265] a vehicle turns
stochastically independently of the other vehicles. In real tra$c, however, a vehicle is likely to turn
if its forward movement is blocked by other vehicles ahead of it in the same street. Therefore, let us
now consider a model [266] where an east-bound (north-bound) vehicle turns north (east) with
probability p

563/
if blocked by another vehicle in front of it. Computer simulations of this model

shows that c
H
(p

563/
) increases with increasing p

563/
. In a slightly di!erent model [267], on being

blocked by a vehicle in front, an east-bound (north-bound) vehicle hops with probability p
ja

to the
next east-bound (north-bound) street towards north (east).

A single north-bound street cutting across east-bound streets: Let us now consider a special
situation where only one north-bound street exists which cuts all of the ¸ equispaced mutually
parallel east-bound streets of length ¸ [268]. This situation can be modelled as a ¸]¸ square
lattice and each cell on the north-bound street can be in one of the three allowed states, namely,
either empty or occupied by a P or a C. But, in contrast to the BML model, there are two allowed
states for each cell (outside the crossings) on the east-bound street; these can be either empty or
occupied by only P. Since no grid-locking is possible with only one north-bound street, complete
jamming occurs trivially in this case only if each of the cells either on the east-bound streets or on
the north-bound street or on all the streets are occupied simultaneously by vehicles. Nevertheless,
at any "nite non-vanishing density, the crossings of the east-bound and north-bound streets act like
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Fig. 53. Comparison of the update procedure in the BML model (left) and the GW model (right) (from [270]).

hindrances with "nite non-vanishing permeability for the #ow of the east-bound tra$c. Obviously,
the higher is the density of the north-bound vehicles, the lower is the permeability and the stronger
is the rate-limiting factor of the bottleneck. A comparison of this problem with that of highway
tra$c in the presence of static hindrances [214,137] explains not only why the #ux along the
east-bound streets exhibits a #at plateau over an intermediate density regime but also why the
plateau appears at lower values of the #ux with increasing density of the north-bound vehicles [268].
A mean-"eld theory for the macroscopic phase segregation in this model has been developed by
appropriately modifying that for the similar phenomenon in the one-dimensional models of highway
tra$c in the presence of static hindrances. It is worth emphasizing here that in [268] each site on the
east-bound streets has been interpreted as a cell, which can accommodate one vehicle at a time, rather
than as a crossing of the east-bound street with a north-bound street. Conceptually, this is an
extension of the BML model. Finally, we brie#y mention that in [269] the phase diagram of a system
consisting of one east-bound and one north-bound street with one crossing has been investigated.

Green-wave synchronization: Often the tra$c lights along the main streets in cities are synchro-
nized to allow continuous #ow; this is usually referred to as `green-wavea synchronization.
A green-wave (GW) model has been developed [270] by replacing the parallel updating scheme of
the BML model by an updating scheme which is partly backward-ordered sequential (see Appen-
dix A for a general explanation of this update scheme). At odd time steps, an east-bound vehicle
moves by one lattice spacing if the target site was empty at the end of the previous time step or has
become empty in the current time step (this is possible because of the backward-ordered sequential
updating at every time-step). Similarly the positions of the north-bound vehicles are updated at
every even time step. The main di!erence between the BML model and the GW model (see Fig. 53),
arising from the di!erent updating schemes, is that in the GW model vehicles move as `convoysa
(a cluster of vehicles with no empty cell between them) thereby mimicking the e!ects of green-wave
synchronization of the tra$c lights in real tra$c. The jamming transition in the GW model has
been investigated by a combination of a mean-"eld argument and numerical input from computer
simulations [270].
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More realistic description of streets and junctions: At "rst sight the BML model may appear very
unrealistic because the vehicles seem to hop from one crossing to the next. However, it may not
appear so unrealistic if each unit of discrete time interval in the BML model is interpreted as the
time for which the tra$c lights remain green (or red) before switching red (or green) simultaneously
in a synchronized manner, and over that time scale each vehicle, which faces a green signal, gets an
opportunity to move from jth crossing to the ( j#1)th (or, more generally [257], to the ( j#r)th
where r'1).

In the original version of the BML model the vehicles are located on the lattice sites which are
identi"ed as the crossings. Brunnet and Goncalves [271] considered a modi"ed version where,
instead, the vehicles are located on the bonds and, therefore, never block the #ow of vehicles in
the transverse direction. Consequently, in this version of the CA model of city tra$c jams of only
xnite sizes can form and these jams have xnite lifetime after which they disappear while new jams
may appear elsewhere in the system; an in"nitely long-lived jam spanning the entire system is possible
only in the trivial limit c"1. In contrast, Horiguchi and Sakakibara [272] generalized the BML by
replacing each of the bonds connecting the nearest-neighbour lattice sites by a bond decorated with
an extra lattice site in between. In [273] a generalization to s extra lattice sites between crossings has
been presented. However, the vehicles are still allowed to hop forward by only one lattice spacing in
the model of Horiguchi and Sakakibara. Moreover, generalizing the rules for turning of the vehicles
in Ref. [265], Horiguchi and Sakakibara also allowed probabilistic turning of the vehicles in their
model. The model exhibits a transition from the #owing phase to a completely jammed phase.

The streets in the original BML model were assumed to allow only one-way tra$c. This
restriction was relaxed in a more realistic model proposed by Freund and PoK schel [274] which
allows both-way tra$c on all the streets. Thus, each east}west (north}south) street is implicitly
assumed to consist of two lanes one of which allows east-bound (north-bound) tra$c while
the other allows west-bound (south-bound) tra$c. Moreover, each site is assumed to represent
a crossing of a east}west street and a north}south street where four numbers associated with the
site denote the number of vehicles coming from the four nearest-neighbour crossings (i.e., from
north, south, east and west) and queued up at the crossing under consideration. So, in this extended
version of the BML model, each site can accommodate at most 4Q particles if each of the four
queues of vehicles associated with it is allowed to grow to a maximum length Q.

In the model proposed by Freund and PoK schel [274], initially, each of the vehicles is assigned
a site selected at random, the queue to which it belongs (i.e., whether it is approaching the
crossing from north, south, east or west) and the desired direction (i.e., left, right or straight) for
its intended motion at the next time step. At each discrete time step a vehicle is allowed to
move forward in its desired direction of motion by one lattice spacing provided (a) it is at the front
of the queue in its present location and (b) there are fewer than Q vehicles queued up at the next
crossing in the same desired direction of motion. Once a vehicle moves to the next crossing it "nds
a place at the end of the corresponding queue at the new crossing while the vehicles in the queue is
left behind are moved `closer to the crossinga by one position (by mere relabelling as no physical
movement of the vehicles in the queue takes place explicitly). Various reasonable choices for the
rule which determines the desired direction of each vehicle at every time step have also been
considered.

The "nite space of the streets in between successive crossings do not appear explicitly in the
extension of the BML model suggested by Freund and PoK schel [274] although it is more realistic
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than the BML model because it implicitly takes into account the possibility of formation of queues
by vehicles approaching one crossing from another. Chopard et al. [275] have developed a
more realistic CA model of city tra$c where the stretches of the streets in between successive
crossings appear explicitly. In this model also each of the streets consist of two lanes which
allow oppositely directed tra$c. The rule for implementing the motion of the vehicles at the
crossing is formulated assuming a rotary to be located at each crossing. Depending on the details of
the rules to be followed by the vehicles at the rotary, the system can exhibit a variety of phenomena.
For example, the #ow can be metastable at all densities if each of the vehicles on the rotary is
required to stop till the destination cell becomes available for occupation [275]. Moreover, the
bottleneck created by the vehicles on the rotaries at the junctions can lead to a plateau in the
fundamental diagram which is analogous to that caused by a static hindrances on a highway
[214,137].

12.2. Marriage of the NaSch model and the BML model; a `unixed a CA model of city trazc

If one wants to develop a more detailed `"ne-graineda description of city tra$c than that
provided by the BML model then one must "rst decorate each bond [268,272] with D!1 (D'1)
sites to represent D!1 cells in between each pair of successive crossings [268,275] thereby
modeling each segment of the streets in between successive crossings in the same manner in
which the entire highway is modelled in the NaSch model. Then, one can follow the prescriptions
of the NaSch model for describing the positions, speeds and accelerations of the vehicles [275,276]
as well as for taking into account the interactions among the vehicles moving along the same
street. Moreover, one should #ip the color of the signal periodically at regular interval of ¹ (¹<1)
time steps where, during each unit of the discrete time interval every vehicle facing green
signal should get an opportunity to move forward from one cell to the next. Such a CA model
of tra$c in cities has, indeed, been proposed very recently [277,278] where the rules of updating
have been formulated in such a way that, (a) a vehicle approaching a crossing can keep moving,
even when the signal is red, until it reaches a site immediately in front of which there is either
a halting vehicle or a crossing; and (b) no grid-locking would occur in the absence of random
braking.

Let us model the network of the streets as a N]N square lattice. For simplicity, let us assume
that the streets parallel to x( and y( axes allow only single-lane east-bound and north-bound tra$c,
respectively, as in the original formulation of the BML model. Next, we install a signal at every site
of this N]N square lattice where each of the sites represents a crossing of two mutually
perpendicular streets. We assume that the separation between any two successive crossings on
every street consists of D cells so that the total number of cells on every street is ¸"N]D. Each of
these cells can be either empty or occupied by at most one single vehicle at a time. Because of these
cells, the network of the streets can be viewed as a decorated lattice. However, unlike the BML
model [21], which corresponds to D"1, and the model of Horiguchi and Sakakibara [272], which
corresponds to D"2, D((¸) in this model is to be treated as a parameter. Note that D introduces
a new length scale into the problem.

The signals are synchronized in such a way that all the signals remain green for the east-bound
vehicles (and simultaneously, red for the north-bound vehicles) for a time interval ¹ and then,
simultaneously, all the signals turn red for the east-bound vehicles (and, green for the north-bound
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Fig. 54. A segment of a east}west street, where the nth and the (n#1)th vehicles are located, is shown schematically
together with one of the nearest signals.

vehicles) for the next ¹ timesteps. Clearly, the parameter ¹ introduces a new time scale into the
problem. Thus, in contrast to the BML model, the forward movement of the individual vehicles
over smaller distances during shorter time intervals are described explicitly in this `uni"edamodel.

If no turning of the vehicles is allowed, as in the original BML model, the total number of
vehicles on each street is determined by the initial condition, and does not change with time
because of the periodic boundary conditions. Following the prescription of the NaSch model, we
allow the speed v of each vehicle to take one of the v

.!9
#1 integer values v"0, 1,2, v

.!9
.

Suppose, v
n

is the speed of the nth vehicle at time t while moving either towards east or towards
north. At each discrete time step tPt#1, the arrangement of N vehicles is updated in parallel
according to the following `rulesa:

Step 1: Acceleration

v
n
Pmin(v

n
#1, v

.!9
) .

Step 2: Deceleration (due to other vehicles or signal).
Suppose, d

n
is the gap in between the nth vehicle and the vehicle in front of it, and s

n
is the

distance between the same nth vehicle and the closest signal in front of it (see Fig. 54).
Case I: The signal is red for the nth vehicle under consideration: v

n
Pmin(v

n
, d

n
!1, s

n
!1).

Case II: The signal is green for the nth vehicle under consideration:
Suppose, q is the number of the remaining time steps before the signal turns red. Now there are

two possibilities in this case:
(i) When d

n
4s

n
, then v

n
Pmin(v

n
, d

n
!1). The motivation for this choice comes from the fact

that, when d
n
4s

n
, the hindrance e!ect comes from the leading vehicle.

(ii) When d
n
's

n
, then v

n
Pmin(v

n
, d

n
!1) if min(v

n
, d

n
!1)]q's

n
; else v

n
Pmin(v

n
, s

n
!1).

The motivation for this choice comes from the fact that, when d
n
's

n
, the speed of the nth vehicle

at the next time step depends on whether or not the vehicle can cross the crossing in front before the
signal for it turns red.

Step 3: Randomization. v
n
Pmax(v

n
!1, 0) with probability p (04p41); p, the random deceler-

ation probability, is identical for all the vehicles and does not change during the updating.
Step 4: Vehicle movement. For the east-bound vehicles, x

n
Px

n
#v

n
while for the north-bound

vehicles, y
n
Py

n
#v

n
.

The rule in case II of step 2 can be simpli"ed without changing the overall behaviour of the
model [278]:

Case II@: If the signal turns to red in the next timestep (q"1):

v
n
Pmin(v

n
, s

n
!1, d

n
!1)
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else

v
n
Pmin(v

n
, d

n
!1) .

These rules are not merely a combination of the rules proposed by Biham et al. [21] and those
introduced by Nagel and Schreckenberg [20] but also involve some modi"cations. For example,
unlike all the earlier BML-type models, a vehicle approaching a crossing can keep moving, even
when the signal is red, until it reaches a site immediately in front of which there is either a halting
vehicle or a crossing. Moreover, if p"0 every east-bound (north-bound) vehicle can adjust speed
in the deceleration stage so as not to block the north-bound (east-bound) tra$c when the signal is
red for the east-bound (north-bound) vehicles.

Initially, we put N
?

and N
t

vehicles at random positions on the east-bound and north-
bound streets, respectively. We update the positions and velocities of the vehicles in parallel
following the rules mentioned above. After the initial transients die down, at every time step t, we
compute the average velocities Sv

x
(t)T and Sv

y
(t)T of the east-bound and north-bound vehicles,

respectively.
A phase transition from the `free-#owinga dynamical phase to the completely `jammeda phase

takes place in this model at a vehicle density c
H
(D). The dependence on the dynamical parameters p,

v
.!9

and ¹ is not clear yet [278]. The data obtained so far from computer simulations do not
conclusively rule out the possibility that the transition density only depends on the structure of the
underlying lattice, similar to the percolation transition [243], and is independent of the dynamical
parameters. The intrinsic stochasticity of the dynamics, which triggers the onset of jamming, is
similar to that in the NaSch model, while the phenomenon of complete jamming through
self-organization as well as the "nal jammed con"gurations (see Fig. 55) are similar to those in the
BML model. The variations of Sv

x
T and Sv

y
T with time (see Fig. 56) as well as with c, D, ¹ and p in

the #owing phase are certainly more realistic that in the BML model [277].
The `uni"edamodel has been formulated intentionally to keep it as simple as possible and at the

same time capture some of interesting features of the NaSch model as well as the BML model. We
believe that this model can be generalized (i) to allow tra$c #ow both ways on each street which
may consist of more than one lane, (ii) to make more realistic rules for the right-of-the-way at the
crossings and turning of the vehicles, (iii) to implement di!erent types of synchronization or
staggering of tra$c lights [276] (including green-wave), etc.

12.3. Practical applications of the models of vehicular trazc; on-line simulation of trazc networks

A large fraction of the available resources are spent by the governments, particularly in the
industrialized developed countries, to construct more highways and other infrastructural facilities
related to transportation. The car-following models, the coupled-map lattice models as well as the
CA models have been used for computer simulation with a hope to utilize the results for on-line
tra$c control. For planning and design of the transportation network [19], for example, in
a metropolitan area [279}281], one needs much more than just micro-simulation of how vehicles
move on an idealized linear or square lattice under a speci"ed set of vehicle}vehicle and
road}vehicle interactions. For such a simulation, to begin with, one needs to specify the roads
(including the number of lanes, ramps, bottlenecks, etc.) and their intersections. Then, times
and places of the activities, e.g., working, shopping, etc., of individual drivers are planned.
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Fig. 55. A typical jammed con"guration of the vehicles (N"5, D"8). The east-bound and north-bound vehicles are
represented by the symbols P and C, respectively.

Fig. 56. Time-dependence of average speeds of vehicles. The symbols #, ], * and h correspond, respectively, to Sv
x
T,

Sv
y
T, and the fractions of vehicles with instantaneous speed v"0, f

x0
and f

y0
, respectively. The common parameters are

v
.!9

"5, p"0.1,D"100, ¹"100 and c"0.1. The continuous line has been obtained from heuristic arguments given
in [277].

Micro-simulations are carried out for all possible di!erent routes to execute these plans; the results
give informations on the e$ciency of the di!erent routes and these informations are utilized in the
designing of the transportation network [19]. Some socio-economic questions as well as questions
on the environmental impacts of the planned transportation infrastructure also need to be
addressed during such planning and design. For a thorough discussion of these aspects we refer to
the recent review by Nagel et al. [19].

13. Some related systems, models and phenomena

In this section we will brie#y present some stochastic models and phenomena which are
somehow related to the main topic of this review. For some models the relation to tra$c #ow is
rather obvious, e.g. there are toy models which share some features with tra$c models, but which
can be solved exactly. We also point out similarities in the description of other phenomena, e.g.
granular #ow or surface growth. Similarities also exist to systems from solid state physics, namely
ionic conductors. This point will not discussed here, instead we refer to Refs. [282,283]. Finally we
like to mention that there are some resemblances between the CA models of vehicular tra$c and
the CA models of driven di!usive Frenkel}Kontorova-type systems [284].
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13.1. Generalizations of the TASEP

The TASEP is probably one of the best studied models in non-equilibrium physics. Using powerful
methods like MPA or Bethe ansatz recently it became possible to calculate not only simple
expectation values in the stationary states, but also more complicated quantities like di!usion
constants or the large-deviation function. For a more detailed discussion and a list of references we
refer to the recent reviews on the TASEP [22,174] (see also [15]). Several variants of the TASEP have
been proposed. Most of those preserve the exact solvability. In the following we will discuss brie#y
some of the variants and generalizations of the TASEP discussed so far in the literature.

Partially asymmetric exclusion process. An obvious generalization of the TASEP is to allow
hopping processes in both directions [285]. Here only results for the random-sequential update
exist, since for parallel dynamics ambiguities in the updating appear when two particles attempt to
hop onto the same site. One "nds that the phase diagram looks essentially like that of the TASEP
with three di!erent phases (see Section 8.5). Recently it has been shown [286], however, that the
high- and low-density phases can be divided into three subphases (AI, AII, AIII and BI, BII, BIII)
instead of two in the TASEP case. Again the phase boundaries of these subphases are determined
by the behaviour of the density pro"les and the corresponding correlation lengths.

Multispecies models I. Karimipour and collaborators [287] have developed a multispecies
generalization of the TASEP which retains the solvability by MPA. It is similar to the disordered
model discussed in Section 10.1 where each particle is characterized by a hopping rate (also called
`velocitya in this context) v

j
( j"1,2, N

4
), i.e., there are N

4
di!erent `speciesa of particles. In

contrast to the models with quenched disorder discussed in Section 10, however, overtaking of
particles is possible, i.e., the ordering of the particles is not "xed.

More speci"cally the dynamics of the model is de"ned as follows: A particle is chosen at random
(random-sequential update). If the particle is of species j and the cell to its right is empty, it hops
there with rate v

j
. If the cell is occupied by a particle of species l and v

l
(v

j
, then they interchange

there positions with rate v
j
!v

l
. This means that a fast particle can overtake a slower one with

a rate proportional to their velocity di!erence.
Multispecies models II. In several papers multispecies generalizations of the ASEP have been

suggested which exhibit phase separation and spontaneous symmetry breaking.
Arndt et al. [288] considered a system of positive and negative charged particles di!using on

a ring in opposite directions. Positive particles move to an empty right neighbour and negative
particles move to an empty left neighbour with the same rate j. Furthermore, positive and negative
particles on neighbouring sites can exchange their positions. The process !#P#! occurs
with rate 1, and the inverse process #!P!# with a di!erent rate q. For equal densities of
positive and negative particles the system exhibits three phases. For q(1 in the thermodynamic
limit, the system organizes itself into con"gurations consisting of blocks of the type
0002###2*2. The dynamics out of theses states is extremely slow. Translational
invariance is broken and the current vanishes. This phase is called &pure phase'. For 1(q(q

#
the

system is in the &mixed phase' which consists of two coexisting phase, the dense phase and the #uid
phase. The dense phase where no vacancies exist covers a macroscopic region which shrinks to 0 for
qPq

#
. It is remarkable that the current for 1(q(q

#
takes the value J"(q!1)/4 independent of

the total density and the rate j. For q'q
#
the #uid phase extends through the whole system. There

is no charge separation and density pro"les are uniform.
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23One species may be interpreted as a vacant site.
24 I.e., a "xed number N of particles.

Similar results have been found by Evans et al. [289] in a slightly di!erent model. The dynamics
of their 3-species model23 is given by

AB
qP
Q

1
BA, BC

qP
Q

1
CB, CA

qP
Q

1
AC , (134)

i.e. the rates are cyclic in A, B and C and the numbers N
A
, N

B
and N

C
of particles of each species is

conserved.
In the case N

A
"N

B
"N

C
the dynamics satis"es the detailed balance condition with respect to

a Hamiltonian with long-range asymmetric interactions. Stationary states are of the form
A2AB2BC2C and exhibit phase separation, i.e., for large separations r the two-point function
satis"es lim

L?=
[SA

1
A

r
T!SA

1
TSA

r
T]'0.

13.2. Surface growth, KPZ equation and Bethe Ansatz

In Section 8.1.2 we have explained how the NaSch model with v
.!9

"1 can be mapped onto
a stochastic surface growth model. This connection can be employed to calculate several properties
of the noisy Burgers and KPZ equation exactly.

Gwa and Spohn [290] used the Bethe ansatz (see e.g. [291]) to determine the spectrum of the
stochastic Hamiltionian (see Appendix F)

H"!

1
4

L
+
j/1

[r
j
)r

j`1
!1#ie(px

j
py
j`1

!py
j
px
j`1

)] (135)

corresponding to the ASEP with random-sequential updating and periodic boundary conditions.
r
j
"(px

j
, py

j
, pz

j
) are the standard Pauli matrices at site j and e is the asymmetry of the hopping rates,

q
3*')5

"1
2
(1#e) and q

-%&5
"1

2
(1!e).

The `ground statea of H has eigenvalue 0 and is ¸-fold degenerate. For a "xed number N of
up-spins24 every con"guration has equal weight in the ground state. In order to determine the
dynamical scaling exponent of the noisy Burgers and KPZ equations, Gwa and Spohn investigated
the "nite-size behaviour of the energy gap ofH. SinceH is non-Hermitian its spectrum is complex.
The "rst excited state is then de"ned as the eigenvalue with the smallest (positive) real part E

'!1
. In

[290] it was shown that E
'!1

J¸~3@2 for e"1 and N"¸/2. This implies that the dynamical
exponent z for the stationary correlations of the KPZ equation is given by z"3/2. The dynamical
exponent relates temporal and spatial scaling behaviour on large scale. Generalizations and related
results can be found in [292].

By an extension of the Bethe ansatz method of Gwa and Spohn, Derrida and Lebowitz [293]
calculated the large deviation function (LDF) of the time-averaged current of the TASEP. The
LDF is related to the total displacement >(t), i.e., the total number of hops to the right minus the
total number of hops to the left between time 0 and time t. In the corresponding growth model>(t)
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is the total number of particles deposited until time t. The LDF is then de"ned as

f (y)"lim
t?=

1
t
lnCProbA

>(t)
t

"v6 #yBD (136)

where v6 "lim
t?=

S>(t)/tT"ec(1!c)¸2/(¸!1) is the mean current for a ring of "nite size ¸ and
density c"N/¸. The results of [293] have been extended and generalized in [294].

Apart from the treatment of "nite systems, the BA can also be used to solve the master equation
for an in"nite system with a "nite number of particles [295]. This allows e.g. to study the collective
di!usion of two single particles.

13.3. Protein synthesis

You must have noticed in the earlier sections that some of the models of tra$c are non-trivial
generalizations or extensions of the TASEP, the simplest of the driven-dissipative systems which are
of current interest in non-equilibrium statistical mechanics [14,15,17]. Some similarities between
these systems and a dynamical model of protein synthesis have been pointed out [296,15].

In a simpli"ed picture of the mechanism of biopolymerisation ribosomes read the genetic
information encoded in triplets of base pairs. They attach to one end of a messenger-RNA and then
move along the chain after adding a monomer to a biopolymer attached to the ribosome. The type
of monomer added depends on the genetic information read by the ribosome. When the ribosome
reaches the other end of the m-RNA the biopolymer is fully synthesized and the ribosome is
released.

MacDonald et al. [297] have described the kinetics of this process using an ASEP-type model.
The m-RNA is represented by a chain of ¸ sites where each site corresponds to one triplet of base
pairs. The ribosome is given by a hard-core particle covering r neighbouring sites (r+20}30) which
moves forward by one site with rate q. At the beginning of the chain particles are added with rate aq
and at the end they are released with rate bq. In the idealized case r"1 this is exactly the TASEP of
Sections 8.1.1 and 8.5. The relevant case for the experiments is a"b(1/2. The exact solution of
the TASEP allowed for an explanation of many aspects of the experiments [296].

13.4. Granular yow

Another quasi-one-dimensional driven-dissipative system, which is also receiving wide attention
of physicists in recent years, is the granular material #owing through a pipe [3,4]. Since the
fascinating phenomena (e.g. size segregation, convection, standing waves, localized excitations)
found in granular materials have been subject of several excellent reviews [298] we discuss only
brie#y the similarities between the clustering of vehicles on a highway and particle}particle (and
particle-cluster) aggregation process [299,300,209].

Obviously both highway tra$c and granular #ow through a pipe may be described as quasi-
one-dimensional systems consisting of discrete elements (vehicles, grains). The dynamics of these
elements is determined by an intricate interplay between a driving force (driver, gravitation) and
dissipation (braking, inelastic scattering processes). These similarities already show that both
systems can be described by similar approaches. One important di!erence between tra$c #ow
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Fig. 57. The bus-route model (from [302]).

and granular #ow exist, however. In granular #ow density waves can move both in and against the
direction of the #ow whereas in tra$c #ow they only move backwards.

An important success of a description of granular #ow using the optimal velocity model (Section
6.2) is the explanation of the experimentally observed f~4@3-behaviour of the power spectrum
[301].

13.5. The bus route model

The bus route model (BRM) [302] has been formulated as a one-dimensional lattice with
periodic boundary conditions. The sites represent cells, each of which may be thought of as a bus
stop and are labeled by an index i (i"1, 2,2,¸) [302]. Two binary variables p

i
and q

i
are assigned

to each cell i: (i) If the cell i is occupied by a bus then p
i
"1; otherwise p

i
"0. (ii) If cell i has

passengers waiting for a bus then q
i
"1; otherwise q

i
"0. Since a cell cannot have simultaneously

a bus and waiting passengers, let us impose the condition that a cell cannot have both p
i
"1 and

q
i
"1 simultaneously. Each bus is assumed to hop from one stop to the next.
Next, let us specify the update rules (see Fig. 57): a cell i is picked up at random. Then, (i) if p

i
"0

and q
i
"0 (i.e., cell i contains neither a bus nor waiting passengers), then qP1 with probability j,

where j is the probability of arrival of passenger(s) at the bus stop. (ii) If p
i
"1 (i.e., there is a bus at

the cell i) and p
i`1

"0, then the hopping rate k of the bus is de"ned as follows: (a) if q
i`1

"0, then
k"a

b
but (b) if q

i`1
"1, then k"b

b
, where a

b
is the hopping rate of a bus onto a stop which has

no waiting passengers and b
b

is the hopping rate onto a stop with waiting passenger(s). Generally,
b
b
(a

b
, which re#ects the fact that a bus has to slow down when it has to pick up passengers. We

can set a
b
"1 without loss of generality. When a bus hops onto a stop i with waiting passengers

q
i
is reset to zero as the bus takes all the passengers. Note that the density of buses c"N/¸ in

a conserved quantity whereas that of the passengers is not.
An ideal situation in this bus-route model would be one where the buses are evenly distributed

over the route so that each bus picks up roughly the same number of passengers. However, because
of some #uctuation, a bus may be delayed and, consequently, the gap between it and its predecessor
will be larger than the average gap. Therefore, this bus has to pick up more passengers than what
a bus would do on the average, because during the period of delay more passengers would be
waiting for it and, as a result, it would get further delayed. On the other hand, the following bus has
to pick up fewer passengers than what a bus would do on the average and, therefore, it would catch
up with the delayed bus from behind. The slowly moving delayed bus would slow down the buses
behind it thereby, eventually, creating a jam. In other words, once a larger-than-average gap opens
up between two successive buses, the gap is likely grow further and the steady state in a "nite
system would consist of a single jam of buses and one large gap. This is very similar to the
Bose}Einstein-condensation-like phenomenon we have observed earlier in particle-hopping
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Fig. 58. (a) The translationally invariant Toroczkai}Zia model without any defect bond. (b) The translational invariance
is broken by the defect bond (represented by the kink denoted by the dashed line).

models with slow impurities. On the basis of heuristic arguments and mean-"eld approximation it
has been argued [302] that this model exhibits a true phase transition from an inhomogeneous
low-density phase to a homogeneous (but congested) high-density phase only in the limit jP0.
Finally, we mention that the BRM with parallel dynamics has been recently been studied in [303]
where also its connection with the NaSch model has been elucidated.

13.6. Mobile directional impurities

We have considered the e!ects of random hopping probabilities, assigned either to the
lattice sites [214,137,190] or to the particles [204}206] in the TASEP and in the NaSch-type
models of vehicular tra$c, on the nature of the corresponding steady states as well as
their approach to the steady states starting from random initial conditions. Toroczkai and Zia
[304] solved analytically a model with one `mobile directional impuritya; this model is also an
extension of the ASEP. In this model, N particles, labeled by integers 1 to N (from left to right),
occupy the sites of a one-dimensional lattice of length N#1 where periodic boundary conditions
are applied. Thus, there is a single `holea (i.e., empty site) in this model. The shifting of the hole from
the site in between the particles n and n#1 to the site in between particles n#1 and n#2 is
described by the statement `hole jump from position n to n#1a. In the absence of any impurity, the
hole at position n can exchange position with either the particle on its left (with probability=

n~1,n
)

or the particle on its right (with probability =
n`1,n

). These probabilities are arbitrary and
direction-dependent (i.e., in general,=

n~1, n
O=

n`1,n
) but time-independent. Note that the hop-

ping probabilities of the hole is determined by the particles (rather than the lattice sites) in front and
behind it. The general case, where =

n~1,n
O=

n`1,n
and the probabilities =

n~1,n
as well as

=
n`1,n

for di!erent n are chosen randomly, is referred to as the random asymmetric case. As the hole
wanders, the string of particles also shifts as a whole. However, this system is translationally
invariant in the sense that the jump rate of any particular particle}hole pair is independent of its
location on the lattice.

The `directional impuritya is introduced by identifying a speci"c bond (whose position is "xed
with respect to the lattice) as a defect bond such that the time-independent rates of particle}hole
exchanges across it are "xed at, say, q and q@ irrespective of the particle}hole pair involved. In other
words, when the hole is in between the particles n and n#1, the hopping probability to the right
(left) is always =

n`1, n
(=

n~1, n
), except when the defect bond is involved. This model can be

represented as in Fig. 58 where the defect bond is shown as a kink; the motivation for such a kink
came from an earlier model [305] of gel electrophoresis [306].
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More speci"cally, suppose, the probabilities for the exchange of the hole with a particle across
the defect bond are q if the hole moved upward and q@ if the hole moved downward, independent
of the particle involved. In the so-called pure limit, we have, for all n, =

n`1, n
"=

?
and

=
n~1, n

"=0 . In this limit, the hole can also be regarded as a particle undergoing biased di!usion
(if=

?
O=0) everywhere except across a speci"c defect bond. If we make the further assumption

that no backward motion of any particle is allowed, then this model reduces to the model of
TASEP with a single blockage [214].

13.7. Computer networks

Inspired by the recent success of the methods of statistical mechanics outside the traditional
domain of physics, tools of statistical mechanics have also been applied to analyze fundamental
properties of information tra$c on the international network of computers (Internet) [307}310].
Messages in the form of information packets are continuously being emitted from the hundreds of
millions of host computers and transported to their destination computers through this network.
Each of these packets is relayed through the so-called routers on its way. The routers can deal with
the packets one by one. Each router has a "nite bu!er where the arriving packets get queued up
and forwarded one by one from the head of the remaining queue to their respective next
destinations. Since packets run with the velocity of light through the cables, information congestion
does not take place inside the cables. It is the routers which give rise to the information congestion
on the internet. Measuring the #uctuations in the round-trip time taken by a message on the
internet (using the ping command of the UNIX operating system), 1/f-like power spectrum has been
observed [307,308].

In the square lattice model of a computer network developed by Ohira and Sawatari [310]
information packets are generated at the sites on the boundary at a rate j with the corresponding
destination addresses chosen randomly from among the boundary sites. The packets can form
queues of unlimited length at the inner nodes, which act as routers of the network. At every time
step, the packets from the heads of the queues at the routers are forwarded to the tail ends of the
queues at the next router. Both deterministic and probabilistic strategies have been considered for
selecting the next router to which the individual packets are to be forwarded. On reaching their
individual destinations the packets die. The average number of time steps between the birth and
death of a packet is referred to as the average lifetime of a packet. Computing the average lifetime
as a function of the birth rate j of the packets, Ohira and Sawatari [310] observed a transition from
a low-congestion phase to a high-congestion phase at a nonzero "nite value j

H
.

14. Summary and conclusion

In this section we summarize our conclusions regarding the current status of understanding
of the statistical physics of vehicular tra$c. We also speculate on the future trends of research in
this area.

As we stated in the beginning, one of the main aims of basic research on vehicular tra$c, from
the point of view of statistical physics, is to understand the nature of the steady states of the system.
We have summarized the empirical evidences available at present in support of the occurrence of

309D. Chowdhury et al. / Physics Reports 329 (2000) 199}329



three distinct dynamical phases, namely, those corresponding to free-yow, synchronized yow and
stop-and-go tra$c. Our critical review of the theoretical works has made it clear that, at present,
the physical mechanisms at the `microscopica level, which give rise to the synchronized tra$c,
are not as well understood as those responsible for the free-#ow and stop-and-go tra$c. There are,
however, strong indications that for a complete theory, which would account for all these three
phases, one must take into account not only the vehicles on a given stretch of the highway but also
on the on- and o!-ramps.

We have explored the possibility of transitions from one dynamical phase to another in the
NaSch model (and TASEP) with periodic boundary conditions. Moreover, we have also presented
the generic phase diagram of the TASEP with open boundary conditions and explained the notion
of boundary-induced phase transitions in such one-dimensional driven-di!usive lattice gases which
are far from equilibrium. Furthermore, we have found that while some models exhibit "rst-order
phase transitions, some others exhibit second-order phase transitions and the signatures of
`criticalitya while in some rare situations, e.g., in the cruise-control limit of the NaSch model, the
system is found to exhibit even `self-organizeda criticality.

In the beginning, we stated that one of the aims of basic research on vehicular tra$c is to
understand the nature of the dynamical #uctuations around the steady states. The time-dependent
correlations functions and the distributions of the relaxation times have been computed for the
NaSch model and some other models but the general questions of the validity of dynamic scaling
and dynamic universality classes have not been addressed. Another aim of the statistical mechan-
ical approach to vehicular tra$c, as we stated also in the beginning, is to investigate how the
system evolves from initial states which are far from the corresponding steady state. The phenom-
enon of `coarseninga of the platoons of vehicles during evolution from random initial states have
been studied in some models. But, the questions of `universalitya, if any, of the growth exponents
have not been addressed so far. Metastable states have been observed in several CA models. But, to
our knowledge, the mechanisms of spontaneous decay of such states (analogue of homogeneous
nucleation) has not been investigated so far. Besides, to our knowledge, so far it has not been
possible to develop any powerful analytical technique for calculating the dynamical properties of
the tra$c models.

While stating the aims of basic research on vehicular tra$c, we also mentioned the need to
understand the e!ects of quenched disorder on the steady-states as well as on the dynamical
properties of the systems. We have seen that the randomization of the hopping probability of the
vehicles can lead to some exotic platooning phenomena which are close analogs of the
`Bose}Einstein-condensationa. An alternative prescription for introducing quenched disorder into
the tra$c models is to install random bottlenecks on the road and assign a time-independent
hopping probability (or, equivalently, a `permeabilitya) for hopping across bonds in such locations.
It has been found that such localized bottlenecks can lead to global phase-segregation.

The NaSch model is the most extensively studied minimal CA model of vehicular tra$c on
idealized single-lane highways. We have explained the conceptual framework, and illustrated the use
of the mathematical formalism, of the cluster-theoretic analytical calculations for the NaSch model.
This formalism, which yields exact results for the NaSch model with v

.!9
"1, gives quite accurate

estimates of various quantities of interest as long as v
.!9

is not too large. It would be desirable to
develope a new formalism to carry out exact analytical calculations for higher velocities too. Here
also the limit v

.!9
"R is interesting since it shows a rather peculiar behaviour.
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In addition to the detailed discussions on the NaSch model and its various generalizations, we
have also mentioned brie#y some other alternative CA models of single-lane highway tra$c, e.g.,
the VDR model, the Fukui}Ishibashi model, the Werth}Froese}Wolf model, etc., so that one can
appreciate the ongoing e!orts to formulate the most satisfactory minimal model.

From the point of view of practical applications, modelling vehicular tra$c on multi-lane
highways are more relevant than that on idealized single-lane highways which are, nevertheless,
interesting from the point of fundamental understanding of truly non-equilibrium phenomena in
driven-di!usive lattice gases. At present, there are several di!erent alternative prescriptions for
formulating the CA rules for lane-changing of the vehicles on multi-lane highways. But, in order
to pick out the most appropriate one from among these CA models theorists would require input
from careful further observations of the phenomenon of lane-changing on real multi-lane highways.
Empirical observations may also indicate modi"cations or extensions of the CA rules necessary for
more realistic modelling of the multi-lane tra$c.

The generalizations of the CA models of tra$c on idealized single-lane highways to those on
multi-lane highways may be regarded as extensions of one-dimensional model chains to one-
dimensional strips. The BML model of vehicular tra$c in cities may be regarded as a further
generalizations of these models from one-dimensional chains to two-dimensional lattices, or
further, to decorated lattices. A few di!erent CA rules have been considered so far for taking
into account the e!ects of the tra$c lights at the crossings of streets in such idealized street
networks. We have emphasized the intrinsic di!erences between percolation clusters and the
cluster of jammed vehicles in the BML (and similar) models in spite of some apparent similarities
between them.

We have focused attention mainly on the progress made in the recent years using `particle-
hoppinga models, formulated in terms of cellular automata, and compared these with several other
similar systems. Although this may be a slightly biased overview (as all reviews usually are) of the
theory of vehicular tra$c, we have also discussed the main ideas behind all the major approaches
including the #uid-dynamical, gas-kinetic and car-following theories of vehicular tra$c. At present
the relationships between di!erent approaches of modelling have not explored in great detail.
It would be very useful if the phenomenological parameters of the macroscopic theories can be
estimated by utilizing the mathematical formulae relating these with those of the `microscopica
models.

It is now quite clear that, in order to make signi"cant further progress, we not only need more
realistic models and better techniques of calculation but we also need more detailed and accurate
empirical data from real tra$c on highways as well as more careful re-analysis of the existing data
in the light of recently developed concepts. So far as the observation of the real tra$c is concerned,
a lot can be learnt from a systematic analysis of aereal pictures or video photographs. Alternatively,
as the second best choice, a series of counting loops along the highway can give more insight, by
providing detailed information on, for example, time-headways (#ux), velocity and local density.

If you are a critical thinker (or a pragmatist) you may ask: `armed with the theoretical tools at
our disposal now, can we predict the occurrence of a tra$c jam at a speci"c place on a given
highway (or street) at a particular instant of timea? This question sounds similar to questions often
asked in the context of some other interdisciplinary topics of current research in the area of
complex systems, e.g., `can we predict an earthquakea, or, `can we predict a stock market crasha?
Of course, we know that, at present, the best we can hope for is to predict (if at all possible)
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probabilities of occurrences of all these phenomena. But, we must admit that, we have a long way to
go before we come even close to this goal. Nevertheless, we hope you have enjoyed the fascinating
twists and turns of the way we have covered so far. Our endeveour will be more successful if your
interest has been stimulated by the intellectual challenges posed by the open problems and if you
are willing to uncover the current mysteries as well as anticipating new surprises that may lie ahead.
We are just at the beginning of a long road!

The volume of vehicular tra$c in the past several years has rapidly outstripped the capacities
of the nation's highways. It has become increasingly necessary to understand the dynamics of
tra$c #ow and obtain a mathematical description of the process } H. Greenberg (1959)
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Appendix A. De5nition of update orders

A dynamical model is not fully de"ned just by its local transition rules. In addition one has to
specify the order in which the rules are applied to the di!erent particles, i.e., the update ordering
(sometimes also called &dynamics'). This is an essential part of the de"nition of the model since the
transient and even the stationary state may di!er dramatically [311,312].

For the NaSch model one uses a parallel update scheme [140] where the rules are applied to all
particles (i.e., vehicles) at the same time. This kind of ordering is sometimes also called synchronous
updating.

Among the various types of asynchronous update schemes most frequently the so-called random-
sequential update is used. Here one picks one particle at random and applies the transition rules to
it. Then one makes another random choice (which can also be the same particle again) and so on.
This update is sometimes called continuous since it can be described by a master equation in
continuous time.

Apart from the parallel update there are other updates which are discrete in time. We just
mention the ordered-sequential updates. Here one starts by applying the transition rules to one
particle. After that the rules are applied to the other particles in a "xed order, e.g. one might
continue with the next particle ahead of the "rst one ( forward-ordered ) or the next particle behind
it (backward-ordered ). We would like to point out that, in principle, one has to distinguish two
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di!erent types of ordered-sequential updates which one could name site-ordered-sequential and
particle-ordered-sequential, respectively. In contrast to the particle-ordered-sequential update de-
scribed above, in the site-ordered-sequential update the rules are applied to all sites consecutively.
This might have a strong e!ect, since a particle might move to next cell ahead which then is
updated next (for the forward-particle-ordered-sequential update). Then this particle might move
again and so on. This is di!erent from the particle-ordered-sequential case where a particle at most
moves once during a sweep through the lattice. As an example consider the extreme case of the
NaSch mode with v

.!9
"1 where only one particle is present which moves with probability q"1 to

an empty cell in front. This particle will move through the whole lattice during one sweep! By looking
at a lattice with two particles, one can already see that the two di!erent updates might introduce
rather di!erent correlations. Starting with particles separated by d empty sites, in the site-ordered-
sequential update the left particle will move to the right until it reaches the right particle, which
then starts to move. On the other hand, in the case of particle-ordered-sequential update the
particles will stay always d or d!1 sites apart. For general values of q the situation is similar.

There are several other updates which can be de"ned. We refer to the literature (see e.g.
[166,311}315]) for a comparison of di!erent update procedures. The parallel update usually
produces the strongest correlations and is used for tra$c simulations [140]. Note that the forward-
particle-ordered-sequential update is almost identical to the parallel update. In the case of periodic
boundary conditions a di!erence only occurs during the update of the last particle. In the forward-
ordered case the particle in front of it (i.e. the "rst particle) might already have moved since it has
been updated earlier. Although this di!erence appears to be minor it can have a large e!ect. The
di!erence between parallel and forward-particle-ordered update can be viewed as a dynamical
defect.

Appendix B. TASEP

This simple model of driven systems of interacting particles is one of the most exhaustively
studied prototype models in non-equilibrium statistical mechanics [14}16,316,317]. This model
can be divided into four classes on the basis of the boundary conditions and the update scheme for
the implementation of the dynamics. In this appendix we consider the TASEP with only random-
sequential dynamics.

Let us consider the TASEP with periodic boundary conditions and random-sequential dynam-
ics. Since only two states, namely empty and occupied, are allowed for each site we can use
a two-state variable n

i
to denote the state of the ith site where n

i
"0 if the ith site is empty and

n
i
"1 if the ith site is occupied. For any given initial con"guration Mn

i
(0)N, we can write the

equations governing the time evolution of Sn
i
(t)T (and all the correlation functions) by taking into

account all the processes during the elementary time interval dt. It is not di$cult to establish that

n
i
(t#dt)"G

n
i
(t) with probability 1!2dt ,

n
i~1

(t)#n
i
(t)!n

i~1
(t)n

i
(t) with probability dt ,

n
i
(t)n

i`1
(t) with probability dt ,

(B.1)

dn
i
/dt"n

i~1
(1!n

i
)!n

i
(1!n

i`1
) (B.2)
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which, upon averaging over the history between times 0 and t, leads to the equation

dSn
i
T/dt"Sn

i~1
T!Sn

i
T!Sn

i~1
n
i
T#Sn

i
n
i`1

T (B.3)

for Sn
i
T, the average occupation of the ith site. Note that the equation for Sn

i
T involves two-site

correlations. Similarly, it is straightforward to see that the equations for the two-site correlations
involve three-site correlations and so on. Thus, the problem is an intrinsically N-body problem!
The probability distribution for this system in the steady state is given by [22]

P
45%!$:v45!5%

(Mn
i
N)"N!(¸!N)!/¸! , (B.4)

where ¸ and N refer to the total number of sites and the total number of particles, respectively.
From this distribution it follows that Sn

i
T"N/¸ and SvT"(¸!N)/(¸!1) which lead to

Sn
i
T"c and SvT"(1!c) in the thermodynamic limit.

The stationary state of the TASEP with open boundary conditions and random-sequential
dynamics has been determined exactly using the so-called matrix product ansatz (MPA) (see
Appendix F for a more technical introduction) in [167,168] using recursion relations. This solution
has been generalized to di!erent types of discrete dynamics in [172,173,166]. The solution for
parallel dynamics was obtained recently in [164] and [165] using generalizations of the MPA
technique.

Appendix C. Naive site-oriented mean-5eld treatment of the NaSch model

Suppose, c
v
(i, t), Probability that there is a vehicle with speed v (v"0, 1, 2,2, v

.!9
) at the site

i at the time step t. Then, obviously, c(i, t)"+v.!9

j/0
c
j
(i, t), Probability that the site i is occupied

by a vehicle at the time step t and d(i, t)"1!c(i, t) is the corresponding probability that the site
i is empty at the time step t. Using the de"nition

J(c,p)"
v.!9

+
v/1

vc
v

.

for the #ux J(c, p) one can get the mean-"eld fundamental diagram for the given p provided one can
get c

v
in the mean-"eld approximation.

Step I. Acceleration stage (tPt
1
):

c
0
(i, t

1
)"0 , (C.1)

c
v
(i, t

1
)"c

v~1
(i, t), (0(v(v

.!9
) (C.2)

c
v.!9

(i, t
1
)"c

v.!9
(i, t)#c

v.!9~1
(i, t) (C.3)

Step II. Deceleration stage (t
1
Pt

2
):

c
0
(i, t

2
)"c

0
(i, t

1
)#c(i#1, t

1
)
v.!9

+
v/1

c
v
(i, t

1
) , (C.4)
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c
v
(i, t

2
)"c(i#v#1, t

1
)

v
<
j/1

d(i#j, t
1
)

v.!9

+
v{/v`1

c
v{
(i, t

1
)

# c
v
(i, t

1
)

v
<
j/1

d(i#j, t
1
) (0(v(v

.!9
) , (C.5)

c
v.!9

(i, t
2
)"

v.!9

<
j/1

d(i#j, t
1
)c

v.!9
(i, t

1
) . (C.6)

Step III. Randomization stage (t
2
Pt

3
):

c
0
(i, t

3
)"c

0
(i, t

2
)#pc

1
(i, t

2
) , (C.7)

c
v
(i, t

3
)"qc

v
(i, t

2
)#pc

v`1
(i, t

2
) (0(v(v

.!9
) , (C.8)

c
v.!9

(i, t
3
)"qc

v.!9
(i, t

2
) . (C.9)

Step IV. Movement stage (t
3
Pt#1):

c
v
(i, t#1)"c

v
(i!v, t

3
) (04v4v

.!9
) . (C.10)

In the special case v
.!9

"1, Eqs. (C.1)}(C.10) get simpli"ed and, hence, we get

c
0
(i, t#1)"c(i, t)c(i#1, t)#pc(i, t)d(i#1, t) , (C.11)

c
1
(i, t#1)"qc(i!1, t)d(i, t) . (C.12)

Similarly, in the case of v
.!9

"2, one gets

c
0
(i, t#1)"[c(i, t)#pd(i, t)]c

0
(i, t)#[1#pd(i, t)]c(i, t)[c

1
(i, t)#c

2
(i, t)] , (C.13)

c
1
(i, t#1)"d(i, t)qc

0
(i, t)#d(i, t)[qc(i, t)#pd(i, t)][c

1
(i, t)#c

2
(i, t)] , (C.14)

c
2
(i, t#1)"qd2(i, t)[c

1
(i, t)#c

2
(i, t)] . (C.15)

Appendix D. Paradisical mean-5eld theory

For v
.!9

"1 the question, whether a state is a GoE state or not, can be decided locally by
investigating just nearest-neighbour con"gurations. By analysing the update rules one "nds that all
states containing the local con"gurations (0, 1) or (1, 1), i.e., con"gurations where a moving vehicle
is directly followed by another car, are GoE states. This is not possible as can be seen by looking
at the previous con"gurations. The momentary velocity gives the number of cells that the car
moved in the previous timestep. In both con"gurations the "rst car moved one cell. Therefore it is
immediately clear that (0, 1) is a GoE state since otherwise there would have been a doubly
occupied cell before the last timestep. The con"guration (1, 1) is also not possible since both cars
must have occupied neighbouring cells before the last timestep too. Therefore, according to step 2,
the second car could not move.

The MFT equations (64) and (65) have to be modi"ed to take into account the existence of GoE
states. In general, one has to follow the procedure outlined in Appendix C. A quicker way to derive
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the paradisical mean-"eld (pMF) equations is to analyse the MF equations (64) and (65). In (64) the
contribution c(i; t)c(i#1; t) appears. Since we know that site i#1 can never be occupied by a car
with velocity 1 if site i is not empty, this contribution has to be modi"ed to c(i; t)c

0
(i#1; t) in

pMFT. All other contributions are left unchanged compared to MFT.
Due to this modi"cation and the corresponding reduction of the con"guration space the

normalization c
0
#c

1
"c is no longer satis"ed automatically. Therefore a normalization constant

N has to be introduced. The "nal equations for a homogeneous stationary state are than given by

c
0
"N(c

0
#pd)c , (D.1)

c
1
"Nqcd , (D.2)

with the normalization

N"1/(c
0
#d) . (D.3)

Since c
0
#c

1
"c we have only one independent variable for "xed density c, e.g. c

1
. Solving (D.1),

(D.2) for c
1

we obtain

c
1
"1

2
(1!J1!4q(1!c)c) . (D.4)

The #ow is given by f (c)"c
1

and we recover the exact solution for the case v
.!9

"1.
In the case v

.!9
"2 more GoE states exist. In order to identify these it is helpful to note that the

rule steps 1}4 imply d
j
(t)"d

j
(t!1)#v

j`1
(t)!v

j
(t) and therefore

d
j
(t)5v

j`1
(t)!v

j
(t) , (D.5)

v
j
(t)4d

j
(t!1) . (D.6)

The second inequality (D.6) is a consequence of step 2.
In the following we list the elementary GoE states, i.e., the local con"gurations which are

dynamically forbidden (cars move from left to right):

(0, 1), (0, 2), (1, 2), (0, v, 2) , (D.7)

(1, 1), (2, 1), (2, 2), (1, v, 2), (2, v, 2) , (D.8)

(0, v, v, 2) . (D.9)

The numbers give the velocity of a vehicle in an occupied cell and v denotes an empty cell.
The elementary GoE states in (D.7) violate the inequality (D.5), and the con"gurations in (D.8)

violate (D.6). The state in (D.9) is a second order GoE state. Going one step back in time leads to
a "rst order GoE state since (0, v, v, 2) must have evolved from (0, v) (with v"1 or v"2).

Again we can derive the pMF equations by modifying the method for the derivation of the MFT.
Taking into account only the "rst order GoE states (D.7) and (D.8) one obtains the following pMF
equations:

c
0
"N[c

0
c#pd(c

0
#c

1
c)] , (D.10)

c
1
"N[pd2(c

1
#c

2
)#qd(c

0
#c

1
c)] , (D.11)

c
2
"Nqd2(c

1
#c

2
) . (D.12)
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The normalization N ensures c
0
#c

1
#c

2
"c and is given explicitly by

N"

1
c
0
#dc

1
#d2c

2

"

1
c
0
#d(1!c

2
)

. (D.13)

These equations have been analysed in [142]. After expressing c
2

through c
0

and c by

c
2
"(1/2d)(c

0
#d!J(c

0
#d)2!4qd3(c!c

0
)) . (D.14)

Inserting this result into (D.10) we obtain a cubic equation which determines c
0

in terms of the
parameters c and p [142]. Results for di!erent values of p are shown in Fig. 19. These results are
only slightly modi"ed when also the second order GoE state is taken into account [142].

Appendix E. Equations of car-oriented theory of NaSch model and COMF approximation

In terms of p, q, g and g6 (t)"1!g(t), the equations describing the time evolution of the
probabilities P

n
(t) for the NaSch model with v

.!9
"1 are given by

P
0
(t#1)"g6 (t)[P

0
(t)#qP

1
(t)] , (E.1)

P
1
(t#1)"g(t)P

0
(t)#[qg(t)#pg6 (t)]P

1
(t)#qg6 (t)P

2
(t) , (E.2)

P
n
(t#1)"pg(t)P

n~1
(t)#[qg(t)#pg6 (t)]P

n
(t)#qg6 (t)P

n`1
(t) (n52) . (E.3)

It is worth mentioning here that, for the NaSch model with v
.!9

"1, the 2-cluster probabilities
P
2
(p

i
, p

j
) of the SOMF theory are related to the probabilities P

n
of the COMF theory through

P
2
(1, 1)"cP

0
, (E.4)

P
2
(1, 0)"c(1!c)P

1
, (E.5)

P
2
(0, 0)"(1!c)

P
n`1
P

n

(n51) . (E.6)

Appendix F. The matrix-product Ansatz for stochastic systems

For the stochastic systems considered here the time-evolution of the probability P(s, t) to "nd the
system in the con"guration s"(q

1
,2,q

L
) is determined by the master equation. For random-

sequential dynamics it has the form

RP(s, t)/Rt"+
s8

w(s8 Ps)P(s8 , t)!+
s8

w(sPs8 )P(s, t) , (F.1)

with transition rates w(s8 Ps) from state s8 to state s. Eq. (F.1) can be rewritten in the form of
a SchroK dinger equation in imaginary time [318],

(R/Rt)DP(t)T"!HDP(t)T , (F.2)
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with the state vector DP(t)T"+sP(s, t)DsT. The vectors DsT"Dq
1
,2, q

L
T corresponding to the

con"gurations s form an orthonormal basis of the con"guration space. The stochastic Hamiltonian
H is de"ned through its matrix elements

SsDHDs8 T"!w(s8 Ps), SsDHDsT"+
sEs8

w(sPs8 ) (sOs8 ) . (F.3)

The stationary state of the stochastic process corresponds to the eigenvector DP
0
T of H with

eigenvalue 0.
For discrete-time dynamics the master equation takes the form

P(s, t#1)"+
s8

=(s8 Ps)P(s8 , t) , (F.4)

where=(s8 Ps)"w(s8 Ps) )*t are transition probabilities. This can be rewritten as

DP(t#1)T"TDP(t)T . (F.5)

Here the stationary state corresponds to the eigenvector DP
0
T of the transfer matrix T with

eigenvalue 1.
A very powerful method for the determination of stationary solutions of the master equation is

the so-called matrix-product ansatz (MPA). For a system with open boundaries the weights P(s) in
the stationary state can be written in the form

P(q
1
,2, q

L
)"

1
Z

L
T=K

L
<
j/1

[q
j
D#(1!q

j
)E]K<U . (F.6)

For periodic boundary condition the MPA takes the form

P(q
1
,2, q

L
)"TrA

L
<
j/1

[q
j
D#(1!q

j
)E]B . (F.7)

For simplicity, we have assumed a two-state system where e.g. q
j
"0 corresponds to an empty cell

j and q
j
"1 to an occupied cell. Z

L
is a normalization constant that can be calculated as

Z
L
"S=DCLD<T. In (F.6), (F.7) E and D are matrices and S=D and D<T are vectors characterizing

the boundary conditions. The explicit form of these quantities has to be determined from the
condition that (F.6) or (F.7) solves the master equation. This leads in general to a algebraic
relations between the matrices E and D and the boundary vectors S=D and D<T. Once one these
have been determined one has a simple recipe for determining P(q

1
,2, q

L
): First, translate the

con"guration q
1
,2, q

L
into a product of matrices by identifying each empty cell (q

j
"0) with

a factor E and each occupied cell (q
j
"1) with D. In that way the con"guration 0110012

corresponds to the product EDDEED2"ED2E2D2. The weight of the con"guration is then
just the matrix element with the vectors SwD and DvT. A simple example is the ASEP discussed in
Section 8.1.1. Here these quantities have to satisfy

pDE"D#E , (F.8)

aS=DE"S=D , (F.9)

bDD<T"D<T . (F.10)
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25This can be seen easily from (F.8)}(F.10).
26We have to mention here that these results up to now do not include the case of parallel dynamics.

If one is able to "nd explicit representations for this algebra one can determine in principle all
expectation values in the stationary state exactly. For (F.8)}(F.10) one can show that all representa-
tions are in"nite-dimensional [167]. Only on the line a#b"p one-dimensional representations
(with E,D and S=D, D<T being real numbers) are possible.25

At this point it might appear that the MPA works only in very special cases. However, it can be
shown that the stationary state of one-dimensional stochastic processes is generically of matrix-
product form [319}321].26 Even if it is not straightforward to "nd general representations of the
resulting algebras, one can at least search systematically for "nite-dimensional representations on
special lines in the parameter space of the model. Furthermore, since the mathematical structure of
the stationary state is known it is sometimes possible to derive rather general results. As an example
in [320] interesting relations between expectation values for ordered-sequential and sublattice-
parallel dynamics have been derived.

For a more detailed description of the MPA for di!erent types of dynamics and its relation with
the MPA technique for quantum-mechanical spin systems [322] we refer to [166]. A review of the
treatment of the ASEP using the MPA is given in [22]. The MPA has also been extended to treat
the full dynamics, not only the stationary state [323]. Using time-dependent matrices D(t) and E(t)
one obtains the Bethe ansatz equations for the corresponding stochastic Hamiltonian [323}325].

Appendix G. Two schemes for solving the mean-5eld approximation of the DTASEP

A mean-"eld approximation scheme for this model has also been developed [137]. The time-
averaged steady-state current J

j,j`1
in the bond ( j, j#1) is given by J

j,j`1
"q

j,j`1
Sn

j
(1!n

j`1
)T.

In the mean-"eld approximation, Sn
j
(1!n

j`1
)T"Sn

j
TS(1!n

j`1
)T and, hence,

J"J
j,j`1

"q
j,j`1

c
j
(1!c

j`1
) , (G.1)

where c
j
"Sn

j
T. In order to calculate the steady-state #ux J as a function of the mean density c of

the particles, Tripathy and Barma [137] used two di!erent iteration schemes based on Eq. (G.1).
(i) Constant-current iteration scheme: In this scheme, for a given system length ¸ and a "xed #ux

J"J
0
, one starts with some value of c

1
and, computes all the other c

j
( j'1) using Eq. (G.1), i.e.,

c
j`1

"1!
J
0

q
j,j`1

c
j

, j"1, 2,2,¸ (G.2)

together with the periodic boundary condition c
j`L

"c
j
. If the iteration converges, i.e., one gets all

the site densities in the physically acceptable range [0, 1], one accepts the average of these "nal site
densities to be the global mean density of the particles corresponding to the #ux J

0
. (ii) Constant-

density iteration scheme: In this scheme, for a given system length ¸ and "xed global average density
c, one begins by assigning the site densities 04c

j
(0)41 to the lattice sites subject to the global
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constraint (1/¸)+
j
c
j
(0)"c. Then, the site densities are updated in parallel according to

c
j
(t#1)"c

j
(t)#J

j~1,j
(t)!J

j,j`1
(t), j"1, 2,2,¸ (G.3)

which follows from Eq. (G.1). It is straightforward to verify that the this iteration scheme keeps the
average global density c unchanged at every step of updating and hence the name. After su$cient
number of iterations the set of densities converge to a set Mc

j
N and the #ux on each bond converge

to the steady-state #ux J
0
.

Appendix H. Self-consistent equations for *x and *y in the mean-5eld approximation
of the BML model

Suppose, v
x

and v
y

denote the average speeds of east-bound and north-bound vehicles, respec-
tively. Then, on the average, an east-bound vehicle spends a time 1/v

x
at a site whereas a north-

bound vehicle spends a time 1/v
y

at a site. The north-bound vehicles lead to a reduction of the
speed of the east-bound vehicles by n

y
/v

y
. Moreover, because of the hindrance of the east-bound

vehicles by other east-bound vehicles ahead of it there will be further reduction of the speed of the
east-bound vehicles by n

x
[(1/v

x
)!1]. Furthermore, if the density of the overpasses is f

0
, then

v
x
"1!(1!f

0
)C

n
y

v
y

#n
xA

1
v
x

!1BD . (H.1)

Similarly, the corresponding equation for v
y

is given by

v
y
"1!(1!f

0
)C

n
x

v
x

#n
yA

1
v
y

!1BD . (H.2)

In the special case n
x
"n

y
"n/2 both Eqs. (H.1) and (H.2) reduce to the form

v"1!(1!f
0
)C

1
v
!

1
2Dn , (H.3)

where v
x
"v

y
"v. The solution of the quadratic equation (H.3) for v is

v"
1
2C1#

1!f
0

2
n#SA1#

1!f
0

2
nB

2
!4(1!f

0
)nD . (H.4)

Appendix I. Derivation of the equations in the microscopic theory of the BML model

By de"nition, n
t
(x, y; t) (n

?
(x, y : t)) is unity if the site (x, y) is occupied at time t by a north-bound

(east-bound) vehicle and zero if the site (x, y) is not occupied by a north-bound (east-bound) vehicle.
Normalization requires n

t
(x, y; t)#n

?
(x, y; t)"1!n

%.15:
(x, y; t) where the two-state variable

n
%.15:

(x, y; t) is unity if, at time t, the site (x, y) is empty and zero if the site (x, y) is not empty. In
order to describe the state of the signals at time t, one also de"nes a two-state variable S(t):
S(t)"1(0) if the signal is green (red) for the vehicles under consideration. The space average of
n
t
(x, y; t) and n

?
(x, y; t) are c

?
(t) and c

t
(t), respectively. Besides, the time average of S(t) is 1/2.
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The updating rules of the BML model lead to the equations

n
?

(x, y; t#1)"n
?

(x, y; t)[n
t
(x#1, y; t)#n

?
(x#1, y; t)]S(t) ,

#n
?

(x!1, y; t)[1!n
t
(x, y; t)!n

?
(x, y; t)]S(t)#n

?
(x, y; t)[1!S(t)] . (I.1)

The "rst term on the right-hand side of Eq. (I.1) describes the situation when the east-bound
vehicle, which was at the site (x, y) at time t, "nds a green signal but cannot move because the next
site towards east is occupied by another vehicle. The second term on the right-hand side of (I.1)
corresponds to the situation where the east-bound vehicle, which was at the site (x!1, y) at time t,
"nds a green signal and moves to the next site towards east, which was empty. The last term on the
right-hand side of Eq. (I.1) arises from the possibility that the east-bound vehicle, which was at (x, y)
at time t, could not move because of a red signal, irrespective of the state of occupation of the next
site towards east. Following the similar arguments, one can also write down the corresponding
equation for the north-bound vehicles.
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