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Front propagation: Precursors, cutoffs, and structural stability
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We discuss the problem of fronts propagating into metastable and unstable states. We examine the time
development of the leading edge, discovering a precursor which in the metastable case propagates out ahead of
the front at a velocity more than double that of the front and establishes the characteristic exponential behavior
of the steady-state leading edge. We also study the dependence of the velocity on the imposition of a cutoff in
the reaction term. These studies shed light on the problem of velocity selection in the case of propagation into
an unstable state. We also examine how discreteness in a particle simulation acts as an effective cutoff in this
case[S1063-651X%98)10706-1

PACS numbegps): 05.70.Ln, 02.50.Ey, 03.40.Kf, 47.54r

I. INTRODUCTION ity, which approaches a finite limit as the cutoff is removed.
This is indicative of a structural instability of the original
The study of front propagation is one of the most funda-problem, and indeed is the basis for the considerations of the
mental problems in nonequilibrium physics. As such, it hasstructural stability hypothesis of Refil6—7]. Moreover, the
received much attention over time, and indeed much is nowlependence of this selected velocity on the cutoff is quite
known about the phenomenon. For example, it is known thatiramatic, approaching its limiting value only as @n?.
there is a fundamental difference between propagation into a The purpose of this paper is to develop further the insights
metastable stat@a case we shall label MS in the following into front propagation afforded by the work of BD. The two
and that of propagation into an unstable std#€). Of the  issues raised by BD are of importance for all front propaga-
two, the MS case is the simpler and better understood. The&%n prob|ems] and not just for the US pr0b|em_ In particu|ar7
the front has a unique velocity which is determined by solv-joking at the buildup of the front in the MS case reveals the
ing for the unique traveling-wave solution of the field equa-pjtherto unnoticed existence of a “precursor” front. The role
tions. The US case is more subtle. There the same proceduge s “precursor,” which moves more than twice as fast as
produces a continuum of possible velocities and associateghe «py|k front itself, serves to build up the characteristic
steady-state solutions. Thus the velocity selection is not @xponential leading edge of the steady-state front. Turning

result simply of the steady-state equation as it is in the MSoack to US, we then see that in this case such a precursor is

case. The question of how a particular velocity is selected is . . .
then paramount. Much progress has been made on this que|rSr1pOSS|bIe, except for the special selected velocity. We thus
tion since the p.ioneering work of Kolmogorov, Petrovsky see that only this special velocity is realizable from localized
and Piscounoy1] in the 1930s and Aronson and,Weinberge,rinitial conditions. In addition, we can understand BD’s solu-

[2] some 20 years ago. Nevertheless, a good intuitive physf-ion as a special degenerate case of the general precursor.

cal picture has been lacking. Noteworthy attempts to supply Similarly, examining the effect of a cutoff in MS, we see
such a picture include the famed “marginal stability” hy- that the_ ||jdgced veloqty sh!ft is weak, and in fact superlin-
pothesis of Dee and co-workef8,4] and the “structural €ar. This is in contradistinction to the strong @n? behav-
stability” hypothesis of Chen and co-worke5—7]. ior seen by BD in the US case. Again, this difference can be
Most recently, the work of Brunet and DerridBD) [8] tied to the different structure of the linearized problems in
cast a most illuminating light on this problem. They focusedthe leading edge. The strorgdependence in the US case is
on two questions. The first is the time development of theseen to be a reflection of the structural instability of this
front. They solved the problem of how the steady-state fronproblem.
is developed starting from a typical initial condition. They In fact, we discover that both of BD's issues are inti-
showed that the front slowly builds itself up over time, somately related. The effect of the localized initial conditions
that the tail of the steady-state front extends farther and faracts as an effective cutoff for the steady-state dynamics. This
ther ahead of the bulk of the front as time goes on. This sloveutoff is time dependent, and vanishes as more and more of
buildup leads to a very slow approach of the front velocity tothe steady-state leading edge is built up. The difference be-
its steady-state value, with a correction that vanishes only asveen the familiar exponential relaxation of the velocity in
14 as the timet goes to infinity. The second question BD MS and the 1/ relaxation in US is, as we shall see, a result
addressed is the effect on the velocity of the front of a cutoffof the very different sensitivities to the cutoff in the two
€ on the reaction term far ahead of the frd®]. They cases. Thus we may alternatively understand the “weak”
showed that this effect is surprisingly strong. First of all, anyvelocity selection of the US case as being driven by the
cutoff, no matter how small, serves to select a unique velocinitial conditions, as opposed to the “strong” velocity selec-
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tion of MS, which results directly from the steady-state equa- N
tion. .
In addition, we examine in more detail the conjecture of 10° ~
BD that in a discrete system of reacting particles, the dis-
creteness acts as an effective cutoff. We find that, while
gualitatively correct, a deeper understanding is needed to
make this association quantitatively reliable. Finally, we  * 1
study the US case called “nonlinear” or “type II” marginal
stability, and show that it interpolates between the typical US
case and MS. We also find that an examination of the linear 107
stability of the steady-state solutions in this case sheds light
on the meaning of the “marginal stability” hypothesis.

107% :
1. PROPAGATION INTO A METASTABLE STATE: 0.0 20.0 40.0
GINZBURG-LANDAU EQUATION x=ct

The most classic example of front propagation into a dFI|DG—. 01'5‘15’;1 Vsyztx__OCt_ffr_gg equfti()tr'_s[lEg' (1)],18=0.1
metastable state is the Ginzburg-Land&L) equation andD=0.5 whereg(x,t=0)= (), fort=12,...,10.

S 2 frame moving with the asymptotic front velocity(a), for
¢=D¢"+(1-¢) (4 +a). @ different times. We see that, in the front regiont- ¢ ap-
proaches the pure exponential behavior noted above. How-
ever, far ahead of the moving front;+l¢ falls much faster
than exponentially. The transition region where the front
starts to deviate from the pure exponential is seen to move
steadily ahead, this in the comoving frame, leaving in its
wake more and more of the correct exponential front. There
is thus seen to be a “precursor” front, which acts to build up
the true steady-state front.

Motivated by the numerical evidence and the results of
BD, we assume the following ansatz fo#-1p in the leading

This equation possesses two locally stable states=att 1
with an unstable state = —a. When started with an ini-
tial condition, such that the system is in tidge= —1 state
except for some region at the left which is in the=1 state,
the ¢=1 state will propagate into theé=—1 state(for 0
<a<l). The propagating front quickly achieves a time-
independent shape which moves at a constant velaity
=c(a). This velocity and front shape are given by the
unique solution of the steady-state equation

D¢"+ce’ +(1— ¢?)(+a)=0, 2) edge, in terms of the moving frame varialyle
where now¢ is a function ofy=x—ct, and satisfies the 14 ¢~ Ae y—c*t 4
boundary conditiongp(y— F* )= *1. This velocity selec- a |’

tion can be simply understood from a classic mode counting

argument. Asy— —o, Eq. (2) for a givenc, linearized Since we are interested in the front region, whered is
around¢=1, possesses two exponential modes, one decagmall, we can linearize Eql) about¢=—1. Of course, the
ing and one growing. This is a direct result of the stability of linear equation does not know which(or equivalentlyc) to
the ¢=1 state. Thus there is one degree of freedom in thehoose, since this is fixed by the full nonlinear problem.
solution aty= — o, the fixing of which corresponds to break- Nevertheless, we know we must choose the steady ctate
ing the degeneracy induced by translation symmetry. Doingn Eq. (4) if we are to match on to the bulk steady-state
this leaves no freedom in the solutionyt —~. Now, as  solution. Substituting Eq(4) into the linearized version of
y—oo, since the¢p=—1 state is also stable, there are againEg. (1), and writingz=(y—c*t)/t*, we find

two exponential modes, one decaying and one growing. The ) _— )

requirement that the growing mode be absent from the solu- ' (=¢*/t*—az/t)=D(f"/t**—2qf'/t*) +ct'/t*. (5
tion fixes the velocity. This behavior of the linearized equa-

tion will be the crucial ingredient in all that follows. We see that we can eliminate the leading otdet terms, if

For the cubic reaction term in E¢L), the explicit form of we choose
the solution can be obtained, and is given by c*=2qD—c= ’—cz+8D(1—a) (6)
¢=—tanhia(y—yo)/2], 3 Then the other terms balance if we choaese 1/2, resulting
with c=ay2D, q=[c+c?+8D(1—a)]/2D, andy, arbi- " e following equation fof(z):
trary. However, as we have indicated, what is important for Df"=—zf"/2, (7)

us is the asymptotic behavior of the solution for large
which is ¢~ — 1+ A exp(—qy), with the constanA depen-  whose solution such thd{z— —»)=1 andf(z—»)=0 is
dent onyy.

The first of BD’s two questions we wish to address is how f(z)= 1 erfqz/2\D). (8)
this front develops itself. To begin, let us examine the result
of a simulation. We started with a step-function front, andIn Fig. 2 we show a plot of exp)[1+ ¢(y)], together with
integrated forward in time. In Fig. 1, we plot+l¢ in the  our analytical result. The agreement is clear.
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FIG. 2. expQy)(¢+1) vs y=x—ct for same simulation as in
Fig. 1. The theory curve isA erfd (y—c*t)/2yDt], with A

FIG. 3. sc=c(€) —c(e=0) vse for MS propagation in the GL

equation, Eq(1) with D=1/2 anda=1/2. The theoretical scaling

=1.8535 a fitting parameter, and the translation invariance is use@redictionscxe?, B=1+1/q=3/2 is also shown.

to suitably adjust the origin of both andt.

sufficient to note that, as in the=0 case, up to the transla-

Let us make a few observations regarding this result. Firsfion zero mode, there is no freedom of the steady-state solu-
equation, it is extremely general. Second, we see that thgs|ytion forward iny till the point y, when it reachesp=
precursor front indeed moves ahead of the front, with a con-_1 1 ¢ The first derivative of at this point must match the

stant velocity in the lab frame a+c*>2c. The precursor

front exhibits diffusional broadening, so that its width in-

creases as"2. For fixedy, larget, we find that
—(c*)2t/4D

c*\mt

1+ ¢p~Ae ¥Y—A\De V2P 9)

unigue solution of the steady-state equation in the nonreact-
ing region,y>y.:

¢=—1+eexg—cly—y.)/D]. (11

This requirement fixes the velocity.

We may calculateSc for small e as follows. For largey

This is directly related to the structure of the stability opera-<y. we may linearize the equation abafit — 1. The gen-
tor for the steady-state solution. The spectrum consists of aral solution is, to leading order,

discrete zero mode, and a continuum of states with decay
rates that extend fromct )2/4D. Thet ™2 results from the
integration over the continuum of states, which has the struc-
ture [dk exp(—k3). The factor exp¢cy/2D) is just the de- whereq is as above anti=[ —c+c2+8D(1—a)]/2D is
cay rate of these continuum states. We can also read off frofke spatial growth rate of the second, growing mode of the

1+ ¢p=Ae W+Bsce?, (12)

this result the approach of the velocity to its asymptoticjinearized equation. The coefficients and B are fixed by

value:
—(c*)2t/4D

\Q

e

c(t)—cx (10

The prefactor depends on the exact definition of the front
position, and in fact also varies in sign. If the front position
is defined by the point wherg crosses some particular

value, than if this value is chosen sufficiently close-ta (in

matching this to the solution of the steady-state equation,
treatingdc as a perturbation. What is important is tihaand

B are independent of. We have to match this solution gt

to the nonreacting solutiofEq. (11)] above. This implies
thatqy, is of order In(1£), and that therefore

Sc~ettla, (13

Note that 6<1/q<1, so thatsc vanishes faster than linearly,

particular, if it is close enough that the linear solution abovewith a power between 1 and 2. This result is corroborated by

is relevant to describe the front positjprihe coefficient is
always positive, so that the velocity approaches
asymptotic value from above.

a numerical solution of the cutoff steady-state equation, pre-

itssented in Fig. 3. The weakness of the effect of the cutoff on

the velocity is a result of thetructural stabilit§y5—7] of the

The second of BD’s two questions is the response of theelocity selection problem in this system. Both with and

system to the imposition of a cutoff in the reaction tEin
We modify the reaction term to (1¢?)(¢p+a)o(1+ ¢

— €) such that the reaction term is turned offfifis too close
to its metastable value of 1. In the presence of the cutoff,
there is still a unique selected velocity, which is nevde-
pendent, which we write as,=c+ 6c. To see this, it is

without e, the nature of the velocity selection problem is the

same: only a precise dialing of the velocity will achieve the

desired behavior in the front region. This is because in both
cases the dying exponential behavior of the frontristable

an infinitesimal change of the velocity will induce a different

dominant behavior of the front. Furthermore, since the dying
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exponential behavior of the=0 front is unstable, we can counting. As in MS, since the solution approaches the stable
make major, i.e., order 1, changes in it via relatively minorstate at large negative, there is one growing exponential
changes irc. mode and one dying exponential mode of the linearized op-
Before leaving the GL equation, we wish to make oneerator. Again, fixing the translation mode leaves us with no
additional remark. Above we noted the connection betweeffreedom of the solution ag— —. Now, however, in con-
the structure of the precursor front and the stability analysistradistinction to MS, the instability of theé=0 state at large
In particular, the GL stability operator had no discrete modegpositivey implies that both modes of the linear operator are
other than the translation zero mode. However, it is easy taying exponentials. There is then no growing mode to elimi-
modify the reaction term, so that the stability operator hasate, and all velocities are acceptable. Nevertheless, a step-
some finite number of discrete stable modes, without drafunction initial condition leads to a selected velocity of
matically changing the overall structure of the selection2/D. Understanding this “dynamical” selection of the cho-
problem. Clearly, the long-time behavior of the front regionsen velocity is a challenge, one that has been taken up by
is dominated by this mode, and it is important to understangnany different groups over the years.
how the front region develops in this case. In the case where Let us first discuss the time dependence of the front. If we
the stability operator has a single stable discrete mode withttempt to apply the technique we used in the GL case, we
decay rate(), for example, the generalization of E@) is  run into an immediate problem. The velocity of the precursor

given by front, in the comoving frame, is agairt =2Dg—c. How-
ever, nowq, the spatial decay rate of the front, is given by
_ o)~ Ae~ I y—c*t the slower of the two dying exponentials, and so is

b= ply==)~Ae q=(c—+/c>—4D)/2D. Thus c* = —/c?—4D is negative

which clearly makes no sense. Thus, there is in general no

y—ct way to build up the appropriate exponential front. The only
) ( way out is if c=2D, so that the precursor moves at the

same velocity as the front itself. This then is the origin of the
“dynamical” selection; fronts with faster velocities, and
hence slower spatial decay cannot build themselvegxp
nihilo, although they are perfectly stahl@ an infinite sys-
tem; a finite system will provide an effective cutoff; see be-
low) if they are present in the initial condition. Slower fronts
are linearly unstablg4], and are not dynamically relevant, as
can be seen directly from E@9), sincec* is imaginary in
this case and so the front grows exponentially in time.
The dynamics of the developing front is thus seen to be

+ Bemeqﬂyf(

whereq® is the spatial decay rate of the discrete marf&,
=20”D—c, andf is as above. This can be shown also to
satisfy the linearized dynamical equation f@¢r and goes
over at long times and fixey to a sum of the steady-state
(front) solution A exp(—qy) plus the decaying stable mode.
Again, the linear equation does not fix, which we choose
so as to match onto the solution of the full stability operator.
We see from Eq(14) that in this case there are two precur-
sors, one associated with the solution and one with the stabl . _ e
discrete mode. Agi®<q, the velocityc® of the latter is dcdenerate, and requires a slightly more sophisticated analy-
always slower than the velocit/ of the former. In fact, one sis, which is exactly th.at prowded by BD. They found that

- the front development is given by
can show that the stable mode precursor is always suffi-
ciently slow that the stable mode is cut off lfybefore its _
slower spatial decay rate allows it to overcome the steady- =Aze (P)4Dlg-2\D (16)
state front. Thus the finite propagation speed of the stable

mode is crucial in ensuring that the entire front is dominatethereZ:y_glz Int is the front position. Again, this func-

by the steady state and not by the perturbation. tion describes a spreading Gaussian far ahead of the front.
For fixed z, ast becomes large, the true steady front is re-
lll. PROPAGATION INTO AN UNSTABLE STATE: produced. Here, however, sinc® =0, the steady front is
FISHER EQUATION only achieved through diffusive spreading, and thus only for

We can now use the results of Sec. Il on the behavior oft distance of order’? ahead of the front. This is a reflection

the GL equation to give a broader context to, and thus bette?f the marginal stability of the=2D front. _
understand, the behavior of the Fisher equafibé]. The W& now turn to the effect of a cutoff on the Fisher equa-
Fisher equation(also referred to in some circles as the ion, now turning off the reaction term wheh<e. Here the
Fisher-Kolmogorov, or  Fisher-Kolmogorov-Petrovsky- cutoff changesjualitativelythe nature of the steady-state se-

Piscounov, equatioris lection problem. Whereas far=0 the steady-state equation
possessed solutions fall velocities, any finites implies that
d=D¢"+ d(1— o). (15  only a single velocity is possible. This is a result of the fact

that, whereas foe=0 the decaying nature of the solution is
Again, we have a stable state @t=1, but now there is no stable, with finitee it is not, as we saw in the GL equation.
second stable state, just an unstable statk=ad. If we start ~ This was first pointed out by Cheat al.[6], who also noted
out with a step-function initial condition interpolating be- thatc, approaches 7D ase is taken to 0. They also pre-
tween these two states, then the stable state propagates is@nted data to this effect, but did not investigate the nature of
the unstable state at a velocity=2\/D. The problem is that the approach, which was studied by BD. BD found that the
the steady-state equation possesses solutions for all veloaleviation from the asymptotic valuey® is anomalously
ties. As is the MS case, this follows from simple modelarge, vanishing only as (k2.
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Here we wish to emphasize the difference between the 0.10
Fisher case and that of GL discussed above. In the GL case, —_— 10
the instability of the decaying behavior implied thata small |} . e=10"
change in velocity allowed for a®(1) change ing'/¢. In ——= g=10""
the Fisher case, for velocities larger thagi, the decaying —— e=107"
behavior is stable, and so small changes in velocity modify - &=0; 8c/c=-3/4t
¢'l$ by a small amount from its unperturbed value of %
—(q. There is thus no way to bring it to the value of "?
—c/D, required by matching to the solution in the nonreact-
ing region. Forc<2+/D, however,¢ passes through zero,
and so¢'/ ¢ diverges. Thusp'/ ¢ crosses—c/D at some
point. The closer we are to=2.D, the more this crossing
is pushed out to larger, and the smaller the value gf is at
the crossing. But at the crossing is just, so we see why 0.00 L L
c approaches 2D from below whene is taken to zero. We 0 100 2?0 300 400
can understand in a simple way the origin of the large,
O(In €)~2 correction to the velocity. Due to the degeneracy FIG. 4. —sc(t)/c vs t, where Sc(t)=c(t)—c, c=c(t=)
of the decay rate of the two solutions of the linear operator=2D for the cutoff Fisher equation, with=1/2, ande=10"°,
for c= 2\/5, the steady-state solution behaves for laygpes 1078, 1071% 10712 and 0. The data foe=0 are indistinguishable
é~Ay exp(-y/\D). If we then examine the perturbative from the BD prediction ofdc/c=3/4t.
effect of a change it on this solution, the front region is

e s

described by converges exponentially to its long-time value. For small
cutoff, the velocity follows the zero-cutoff tLhehavior up to

_ y? some time, slowly increasing, and then sharply “breaks”

¢~Aye¥"P| 1+ ¢ sD%) (170 when it nears the velocity of the cutoff model. In terms of the

picture presented above, the dynamics is insensitive to the
cutoff as long as the “dynamic” cutoffe., is larger thare.
Eventually,e falls belowe, and the velocity exponentially
approaches its asymptotic value. This behavior is exhibited
Fig. 4. Also of interest is the time constant that governs

which immediately implies thaty.~ D In(1/€) and &c
~D(In €72 Thus sc is relatively large because the first
correction is not exponentially larger than the steady-stat

terrg_,llas ir]: Grll" but onl;(; power law IargeT Ehﬁs’ .jUStfaS thethe post-break time decay. The equation for the stability op-
stability of the pure dying exponential behavior far erator, transformed to a Scliiager-type representation by

>21D gives rise to the structurahstability of these solu- eliminating the first-derivative term via a similarity transfor-
tions to the introduction of the cutoff, so the very singular nation: reads

behavior of the velocity in the—0 limit arises from the
relatively weak instability of the front behavior of the
=2\/5 solution. —O8p=—(5¢)"+

There is an intriguing correlation between the two prop-
erties investigated by BD. In essence, we can argue that the
initigl cpndition.s, which are responsible for the velgcity se- — 8(do(y)—€) (o) (1— ¢0)} 5¢, (18)
lection in the Fisher equation, act as a sort of effective cutoff
beyond which the steady-state equation no longer holds.
However, this cutoff is time dependent, and goes to zero agherey, marks the cutoff pointgy(y.)=¢€ and Q is the
more and more of the steady-state front is establishediecay rate of the perturbation. For largeand smalle, this
Roughly speaking, since the front is close to the steady-stagecomes
front out to a distance, of ordert'?, the effective cutoff
€ 1S Of order expt-qy,). Then the velocity is expected to 2 D
be less than the steady-state velocity by an amount of order— () §¢p= —D(6¢)"+|—= — 0(y.—y)— — (Y —Y.) | 6.
(In e~ 2~y 2~ 1k, which is indeed what BD found. The 4D c
argument is not precise, as indicated by the fact that the (19
numerical prefactor in this relation does not come out cor-
rectly. Nevertheless, it does seem to capture the correct phy¥Ve see that the flat region of the “potential” term at large
ics. It is amusing to note that a similar argument can be madwith valuec?/4D — 1, which was responsible for the onset of
for the GL equation. Here the exponential approach withthe continuum af)=0, is now transformed by the addition
time of the velocity to its steady-state value is correctly re-of a step of height 1 ay=y,, in addition to as-function
produced, but the exponent comes out wrong by a factor gpotential at this point. Thus the continuum of modes is ren-
4. Thus, in both cases, it is as if the true effective cutoff isdered discrete with a spacing inversely proportional to the
some power of our naive.; estimated above. square of the width of the potential. This width is jystfor

We also note that the introduction of the cutoff has an-small e. Using the result from BD thag.= #/\D In(1/e),
other effect on the dynamics. Instead of theddnvergence we find a spacing proportional to (k) 2 Thus the time
of the velocity in the absence of the cutoff, the velocity nowconstant 10) diverges withe, but very slowly.

C2
ﬁ—ﬂ(yc—y)(l—wo)
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IV. STOCHASTIC FISHER MODEL

BD offered the conjecture that in a stochastic model of

US type, the discreteness of the particles gives rise to an

effective cutoff. The point here is since tlkeinduced cor-
rection to the velocity is so large, it should overwhelm any
other effect. It should be noted, however, that the point is no

completely obvious. It is true that each realization has some

point beyond which no interactions occur. However, if one
considers the ensemble average, there is no such sharp ¢

off. Since the average velocity is a function of the ensemble,

one might have cause to question BD'’s conjecture.
BD found support for their conjecture from simulations of

t

ut-

(-8c/c) (In cutoff)’

a model related to directed polymers. Due to the importance 1
of this point, we have sought further evidence via a simula-
tion whose mean-field limit is precisely the Fisher equation.

The model is a slight modification of an infection model
studied by Mai and co-workefd 1]. In our model, we intro-

At, they have a small probabilitigAt of interacting during
this time. If they do interact, the white particle is “infected

and turns black, and may go on to infect additional particles
at later times. If the black particle is introduced at one end OEh

the system, then a front is established which invades th

time. It is particularly convenient to work with a parallel

version of this algorithm, using a binomial random number
generator to determine the number of interactions and hop
at each site during each time step. This way we can take th

average number of particles per sité¢, to be huge, with
essentially no cost in performance. This form is also nice

since, if the binomial random number generator is replaceg

by the mean of the binomial distribution, we explicitly obtain
a discretized form of the Fisher equation.

We have performed extensive simulations of this model
measuring the average velocity of the front. The results ar
presented in Fig. 5. We see that they are consistent with
(In N)~2 behavior. The prefactor, however, differs signifi-

cantly from that of the mean-field version, supplemented by

a BD-type cutoff ofe=1/N. (The much smaller 10% dis-
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FIG. 5. (— éc/c)(In cutoff)? vs |log;(cutoff)| for the stochas-
tic Fisher model and its cutoff deterministimean-field counter-
duce an infectiougblack) particle into a sea of white par- part. For the stochastic Fisher model, the cutofNisthe average
ticles. All particles move randomly, with no constraint on the number of particles per site. For the deterministic counterpart, the
number of particles at any one site. When a black particleutoff is e=1/N. In both models, the parameters dee 0.1N,
and a white particle are on the same site in a given time stept=0.1, andD=0.5, and the lattice spacirix= 1.

expect.

.» Velocity iscloserto the Fisher result than one would naively

The question remains why BD’s conjecture works, given
e reservations expressed above. It is tempting to suggest

at the answer lies in a correct definition of the ensemble

r<l;1verage. If the ensemble average is taken in the lab frame, it

is clear that the ensemble-averaged reaction density has no

cutoff. Even if the average is taken relative to the bulk front
efining the front position where the concentration crosses
12, say, reactions still have a nonzero probability of occur-

ring arbitrarily far in front of the front. However, if the av-

rage is taken with respect to the frame defined by the lead
article position, then indeed the averaged concentration so

computed has a sharp cutoff, and no reactions occur beyond
this point. Such a definition was found to be crucial in study-
jang the ensemble average of a model @fansparent

a 0.10

0.08

crepancy between the mean-field prefactor and the BD pre-

diction of 7%/2 is the result of the finite lattice and time step
At.) This reiterates the findings of BD for their discrete

model where the prefactor also did not match the prediction.
Since any simple rescaling of the cutoff would not affect the

prefactor, this effect is not trivial. Evidently the effect of the

discreteness is more subtle, and similar to the effective cutoff

imposed by the initial condition, involves an effective cutoff

0.06
O

S

T

0.04

0.02

that is a power of the naive one. This point merits further

investigation.
Not only theN dependence of the velocity, but also its

0.00

time dependence, mirrors that of the cutoff Fisher equation.

As seen in Fig. 6, the velocity initially falls as in the=0

is past that of the model with the naive cutoffs 1/N. This

— Stochastic Model, N=10°
Deterministic, =10~
—-——- Deterministic, e=0

0

2000 3000

t

1000

4000

FIG. 6. — &c(t)/c] vst for the stochastic Fisher model and its
deterministic model, as *, but eventually breaks and con- deterministic(mean-field counterpart, with and without a cutoff,
verges exponentially to its asymptotic value. The break poinfvhere sc(t) is as in Fig. 4. For the stochastic Fisher modeél,
=10°. For the cutoff deterministic counterpart, the cutoff is
is consistent with what we found above, that the asymptotiec=1/N. The other parameters are as in Fig. 5.
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diffusion-limited aggregation in one dimensiofi2]. It 10°
would appear that here too a sensible description of the en-
semble average requires this kind of averaging procedure.

V. PROPAGATION INTO AN UNSTABLE STATE: 10°
GINZBURG-LANDAU EQUATION

O
Given that the GL equation has an unstable state, we can T
also consider propagation into the unstable state. For ease of 9
comparison to the Fisher equation, we will set the unstable 10 ¢
state to¢p=0 and the stable states#o=1 and¢= —1/a, SO
that the GL equation reads

b=D¢"+d(1— b)(1+ad). (20) 10,7 0° 0° 10°
€

Clearly, fora=0, this simply reduces to the Fisher equation FIG. 7. — c vs €, wheredc=c(€)— c(e=0) for US propaga-
with its asymptotic velocity ot=2D. In fact, for all a, tion in the GL equatiorfEq. (20)], with D=3, 2a=3. The theo-
the equation possesses steady-state propagating solutions iietical scaling predictiodcoc €?, = (a—2)/a=3, is also shown.
terpolating betweers=1 and 0O for all velocities, just as in

the Fisher equation, since tile=0 state is unstable. Further- constructed close t06. Settingc=¢+ &c, the dominant be-
more, since the linearization arouwd=0 is independent of havior for ¢ is, to leading order,

a, one would naively expect that the initial condition would

again select the degenerate 2/D solution for alla. How- ¢:Aef&y+ Bsce Y. (22)
ever, Ben-Jacoket al. (BJ) [4] noted that this expectation is

only met fora<2. Fora>2, on the other hand, the selected gyen though both modes are decaying exponentials, unlike
velocity is greater than this. As BJ noted, this is connected t¢he MS casdEq. (12)], nevertheless it is true that, as with
the existence of a special velocitya) = (a+2)yD/2a for  MS, and unlike Fisher, the correction term is exponentially
a>2. They show that, for this velocity, the solution does notjarger than the original solution. Working out the matching
have the spatial decay ratg=(c— +/c?—4D)/2D typical of  to the cutoff region, the correction to the velocity is seen to
all other velocities. Rather, the spatial decay rate is fastescale as
that of the typically subdominant solution of the linearized
steady-state equatiog= (c+ /cZ—4D)/2D. Of course, this S~ el U= ((a=2)la_ (22)
behavior is unstable, and so is associated with a unique
in general, a discrete set)ofelocity. This situation, which  This behavior is exemplified in Fig. 7. Again, as in MS, the
BJ called “nonlinear” or “type II” marginal stability, and  correction is power law ire, but now the power is always
we will label as US-II, is in a sense intermediate between th§ess than 1, and goes to 0 asapproaches 2. At the other
MS case discussed in Sec. Il, and the standard US case ggyreme, the power approaches 1a@s =, whereupon the
exemplified by the Fisher equation in Sec. IIl. metastable state @=— 1/o merges with the unstable state
BJ noted that for>2, &(a) is the selected velocity. We 4t 4=0, rendering it marginallymeta stable. This then
can understand this in light of our previous discussionspatyrally matches onto the limit of the MS case studied in
Since the decay rate for this solutiongsnotq, the velocity  Sec. Il, whena—0. In general, then, the cutoff dependence
of the precursor is positivéin the comoving framg with  for US-Il is more singular than MS but less singular than US.
valuec* = \Jc?— 4D = (a—2)\/D/2a. For all other solutions Finally, let us discuss the nature of the stability spectrum.
with ¢>2D, the precursor has negative velocity, and soBen-Jacolet al.in their discussions of stability, did not give
these solutions cannot be constructed dynamically. The the boundary conditions necessary to define the spectrum of
=2./D solution is ruled out, since, as pointed out by Ben-the stability operator. However, the appropriate definition in
Jacobet al, this solution is unstablgas are all solutions with ~ the cases we examined above seems clear. If we transform
c<&(a)]. Thus like the MS case, the precursor has positivethe problem into a Schainger form, as discussed above, we
velocity relative to the front. However, unlike the MS case,know what boundary conditions give rise to a complete set
where this relative velocity is always larger than the frontof states. This completeness is crucial if we wish to decom-
velocity ¢, here this relative velocity can be arbitrarily small. pose some initial condition via this set of states and thus
Thus, as in the MS case, the approach of the front velocity tétegrate the linear problem forward in time. In particular,
its asymptotic value is exponential, but the time constantwe must demand that any discrete state vanish exponentially
being inversely proportional tOC()Z, becomes arbitrarily at both £, This leads to the striking conclusion that the
long asa approaches 2. stability spectrum of the Fisher equation about any
We now turn to the effect of a cutoff on the selected >2\/5 solution does not include the translation zero mode.
velocity. As in the MS case, the instability of the large This mode, after the similarity transformation, diverges-at
behavior of the¢ solution with respect to a change o This fact in and of itself would lead one to suspect that these
indicates that a solution of the cutoff problem can only besolutions are illegitimate. Only at=2./D does the operator
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recover, at least in some weak sense, a zero mode, since aspects of front propagation. In particular, we have shown
this case the continuum starts at O. how the MS front develops through the propagation of a
The case of propagation into the unstable phase in the GHiffusively spreading precursor front which moves at least
equation is very illuminating in this context. Far<1, nu-  twice as fast as the front itself. Ahead of this precursor, the
merical work indicates that the spectrum consists solely ofield falls off in a Gaussian manner typical of a pure diffu-
the continuum modes, extending upward frd=c?4D  sjon problem. Behind, the exponential tail of a propagating
—1, with no discrete modes. Of course, this has to be, or thgont is established. This precursor is an essential element of
only realizable solution for this range af thec=2\D one,  propagating fronts, and its nonexistence in the US case ex-
would be unstable. However, fo>2, a discrete mode pjains the dynamical velocity selection seen therein.
emerges out of the continuum. This mode has a posfive e have also seen how the precursor follows immediately
for largec, and crosses 0 exactly &t This is guaranteed from the structure of the linear operator ahead of the front.
since the translation mode for titesolution is a legitimate  Tjs structure is also intimately connected with the structural
eigenmode of the Schdinger equation, due to the fast spa- gapiiity of the problem to the introduction of a cutoff, as
tial falloff of this solution. Forc<€, the mode has negative | q|| 45 tg the nature of the stability spectrum. This cutoff can

% atmd Sr?dlst‘hlimsitatbr:e' A,ﬁla'gi threttragslgt'or_:_r:n‘)dg] IS |II(|ag|tt|— ise from the finiteness of the system, from the discreteness
ate, a S IS Ihe only discrete mode. Thus e SEIeCcleg 4, underlying reacting system, or from the initial condi-

solution is the only one which has a legitimate tranSIationtions The two issues of cutoffs and the stability spectrum are
mode in its stability spectrum. This fact is related to the ' ysp

structural stability of the& solution in the presence of a cut- themselves interdependent, as we have seen, and in tum tie

off. When discussing the spectrum of a Sainger operator back to and _give a dc_e_eper understanding of the original pic-
in an infinite space, it is traditional to put the system in glure of marglna! stability.

finite box. This box is another kind of cutoff, and only the Note added in proofThe result, Eq(16), has also been
solution survives for a large but finite box. This may be aoPtained by Ebert and van Saarldds].

more appropriate way of understanding the “marginal stabil-

ity” of the selected solution, namely, the requirement that

the stability operator of a physically realizable solution pos- ACKNOWLEDGMENTS
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