
PHYSICAL REVIEW E 69, 016118 ~2004!
Steady-state solutions of hydrodynamic traffic models
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We investigate steady-state solutions of hydrodynamic traffic models in the absence of any intrinsic inho-
mogeneity on roads such as on-ramps. It is shown that typical hydrodynamic models possess seven different
types of inhomogeneous steady-state solutions. The seven solutions include those that have been reported
previously only for microscopic models. The characteristic properties of wide jam such as moving velocity of
its spatiotemporal pattern and/or out-flux from wide jam are shown to be uniquely determined and thus
independent of initial conditions of dynamic evolution. Topological considerations suggest that all of the
solutions should be common to a wide class of traffic models. The results are discussed in connection with the
universality conjecture for traffic models. Also the prevalence of the limit-cycle solution in a recent study of a
microscopic model is explained in this approach.
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I. INTRODUCTION

Vehicles on roads interact with other and various tra
phenomena can be regarded as collective behaviors of i
acting vehicles@1–3#. Analyses of highway traffic data re
vealed that there exist qualitatively different states of tra
flow @4–8#. Transition between different traffic states w
also reported@5#. Some empirical findings, such as the s
called synchronized traffic flow phase@5#, have become sub
jects of considerable concern and ignited intense theore
investigations of traffic flow. Comprehensive reviews can
found, for example, in Ref.@9#.

Many traffic flow models have been put forward and an
lyzed @10–21#. Quite often, the analysis aims to find o
possible steady-states, or dynamic phases, of the models
investigate their properties. A criterion for good and reliab
traffic models is good agreement between steady state
models and traffic states revealed via real traffic data an
sis. Thus an important first step in the analysis of traffic fl
models is to find out all possible steady states.

In this paper, we consider hydrodynamic models for tr
fic without bottlenecks such as ramps and present a sys
atic search for their steady-state solutions which are tim
independent in a proper moving reference frame:

r~x,t !5 r̃~x1vgt !, v~x,t !5 ṽ~x1vgt !, ~1!

wherer and v are density and velocity fields, respective
and 2vg is the constant velocity of the moving referen
frame with respect to the stationary reference frame. T
well-known steady solutions of this type are free flow a
traffic jam solutions@22–24#. Surprisingly, we find that hy-
drodynamic models possess not only these two but alsosev-
eral other steady-state solutions. Some of the newly rec
nized steady-state solutions, including limit-cycle solutio
have been reported previously only for microscopic tra
models@16,18,25# and not been reported for hydrodynam
models, which led to the widespread view that free flow a
traffic jam are the only possible steady-state solutions of
drodynamic models in the absence of bottlenecks such
1063-651X/2004/69~1!/016118~8!/$22.50 69 0161
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ramps. Our result shows that such view is incorrect and
the physics contained in hydrodynamic models may be m
richer than previously recognized.

In Sec. II, we first review the mapping to the singl
particle motion and introduce the concept of the flow d
gram in the single-particle phase space. It is demonstrate
Sec. III that the flow diagram can have various topologica
different structures, which are directly linked to the existen
of certain types of steady-state solutions~Sec. IV!. Section V
discusses implications of our results. Section VI conclud
the paper.

II. MAPPING TO SINGLE-PARTICLE MOTION

We consider a hydrodynamic model that consists of
following two equations, an equation for local vehicle num
ber conservation,

]

]t
r~x,t !1

]

]x
@r~x,t !v~x,t !#50, ~2!

and an equation of motion,

]v
]t

1v
]v
]x

5R@Vop~r21!2v#2A]r

]x
1D]2v

]x2 , ~3!

where Vop(r
21) is the so-called optimal velocity function

and the coefficients (R for the relaxation term,A for the
anticipation term, andD for the diffusion term! are positive
definite and depend in general on the density and velo
fields, i.e.,R(r,v), A(r,v), andD(r,v).0.

To find out steady-state solutions of the type in Eq.~1!, it
is useful to map the problem into a single-particle moti
problem by using the method in Refs.@22,24#. For the map-
ping, one first integrates out Eq.~2!. The resulting constan
of motion

qg5r~v1vg! ~4!

relates two dynamic fieldsr and v, and can be used to re
duce the number of independent dynamic fields from two
©2004 The American Physical Society18-1
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one ~we choosev in this work!. Then Eq.~3! can be trans-
formed into anordinary differential equation for the single
dynamic field v that depends on a single parameterz[x
1vgt,

d2v
dz2 1C~v;vg ,qg!

dv
dz

1F~v;vg ,qg!50, ~5!

where

C~v;vg ,qg![
1

D F Aqg

~v1vg!2
2~v1vg!G , ~6!

F~v;vg ,qg![
R
D~Vop2v !.

Here the fieldr in the arguments ofR, A, D, and Vop
should be understood asqg /(v1vg). Then the search fo
steady-state solutions reduces to the analysis of Eq.~5! under
the physically meaningful boundary condition that solutio
should be bounded asz→6`.

To gain insights into implications of Eq.~5!, it is useful to
make an analogy with a classical mechanics of a particle
regardingz as a time variable andv as acoordinateof a
particle with unit mass moving in a one-dimensional syste
Then Eq.~5! describes the time evolution of a particle und
the influence of a potential energyU(v;vg ,qg)
5*vdv8F(v8;vg ,qg) and of a damping force with the
coordinate-dependent damping coefficientC(v;vg ,qg). For a
physical choice ofVop(r

21), which decreases asr increases,
goes to zero for larger, and saturates at a finite value fo
small r, the potential energyU becomescamelback shaped
for wide ranges ofvg andqg ~solid curve in Fig. 1!. Thus the
potential energy profile is of very typical shape. Below w
focus onU of this shape only and ignore the possibility
more exotic shapedU ’s, such asU ’s with three peaks, since
we do not know of any reason to expect such exotic po
bilities. Furthermore, we will not address the trivial case o
curring when the range ofvg and qg allows less than two
peaks inU.

An unusual feature in this mechanical analogy is that
damping coefficientC is not necessarily positive, and in

FIG. 1. A typical shape of the potential energyU(v;vg ,qg)
~solid line!. Three examples of the particle motion are also sho
~dotted, dashed, and dash-dotted lines!.
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those ranges ofv whereC is negative, the particle maygain
energy due to the damping. The possibility of the negat
damping is crucial for the existence of certain steady-s
solutions presented in the following section.

Before we close this section, we remark that the stabi
of a solution in the single-particle problem should not
identified with the stability in the real traffic problem. W
demonstrate this point with trivialz-independent solutions
For the camelback-shaped potential in Fig. 1, extremal po
of the potential become solutions. Thus there are th
z-independent solutions,v5v i ( i 50,1,2 and 0<v1,v0
,v2), wherev0 is the coordinate of the local minimum an
v1 , v2 are coordinates of the two local maxima or sadd
points. All v i ’s satisfyVop((v1vg)/qg)5v and thus depend
on vg andqg . Thesez-independent solutions correspond
the homogeneous traffic statesv(x,t)5v0,1,2. From the
shape of the potential energy, it is clear that in the sing
particle problem, the two solutionsv(z)5v1,2 are unstable
with respect to small deviations and the other solutionv(z)
5v0 is stable~if C is positive nearv0). For the real traffic
problem@described by Eqs.~2! and ~3!#, however, the solu-
tions v(x,t)5v1,2 are ~usually! stablewith respect to small
deviations andv(x,t)5v0 is linearly unstable.

III. FLOW DIAGRAMS

Besides the trivial static (z-independent! solutions, there
also exist dynamic (z-dependent! solutions, some example
of which are shown in Fig. 1~dotted, dashed, and dash
dotted lines!. In the language of traffic flow, these dynam
solutions correspond tosteady but inhomogeneoustraffic
flow states. For a systematic study of dynamic solutions,
useful to introduce a two-dimensional phase space (v,w
[dv/dz), where each trajectory in the phase space co
sponds to a dynamic solution. Then finding all solutions
givenvg andqg is equivalent to constructing a flow diagra
in the phase space for the givenvg andqg .

To gain an insight into flow diagram structures, it is use
to examine the flow near the three fixed points (v5v i ,w
50)’s. Figure 2 show flows near the three fixed points. T
fixed points (v1,2,0) are saddle points regardless of the si
of C nearv5v1,2 since the damping force alone@the second
term in Eq.~5!# cannot reverse the direction of the partic

n

FIG. 2. A schematic diagram of the flow near the three fix
points (v0,1,2,0). C is assumed to be positive nearv5v0 in this
figure.
8-2
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motion ~that is, the sign ofdv/dz) even if the damping co-
efficient is negative. On the other hand, the fixed po
(v0,0) is a stable~unstable! fixed point of the flow diagram
when theC is positive~negative! nearv5v0 (C is assumed to
be positive in Fig. 2!. Flows running out of or into the fixed
points can be mutually interconnected and the way they
interconnected will in general depend on the values ofvg and
qg and affect the structure of the flow diagram.

To make our discussion concrete, we choose here a
ticular hydrodynamic model. We choose the coefficients
Eq. ~3! as follows:

R5l, A5
lh

2r3 , D5
l

6r2 , ~7!

whereh[dVop/d(r21). As demonstrated in Ref.@26#, this
choice provides a macro-micro link between the hydro
namic model@Eqs.~2! and~3!# and the microscopic optima
velocity model@3#,

ÿn5l@Vop~Dyn!2 ẏn#, ~8!

whereyn(t) represents the coordinate of thenth vehicle in a
one-dimensional road andDyn is the distance to the preced
ing vehicle,yn112yn . But we remark that as far as stead
state solutions are concerned, the choice~7! is just onepar-
ticular option, and most results presented below are
sensitively dependent on it. Results which are dependen
the choice will be stated so. For the parameters, value
Ref. @27# are used:l52 sec21,

Vop~y!5
vmag

2 F tanh
2~y2yref!

ywidth
1crefG , ~9!

vmag533.6 m/sec, yref525.0 m, ywidth523.3 m, and cref
50.913. For thiscref , the maximum value ofVop is @(1
10.913)/2#vmag, which is slightly different fromvmag.

For this hydrodynamic model, the resulting flow diagra
is shown for various values ofvg andqg in Fig. 3. Note that
depending onvg andqg , trajectories departing from the tw
saddle points (v1,2,0) behave in different ways and thus th
flow diagrams acquiretopologically different structures.
Since the structure of the flow diagram is closely linked
characters of nonhomogeneous steady-state solutions, it
be meaningful to divide the plane (vg ,qg) according to the
flow diagram structures, which is given in Fig. 4. Thevg-qg
plane is divided into six regions~regions I, II, . . . , VI!. The
flow diagramwithin each region is labeled accordingly
Fig. 3. On the boundary between two neighboring regio
~e.g., boundaryBI,II between the region I and II! the flow
diagram acquires structures topologically different fro
those within the regions, and on the special point (vg* ,qg* ),
where all six boundaries join together, the flow diagram
quires a special structure still different from all othe
Steady-state solutions contained in the flow diagrams
presented in the following section.
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IV. STEADY-STATE SOLUTIONS

Out of all flow trajectories contained in the flow diagram
~Fig. 3!, only those trajectories that remain bounded both
z→` and2` constitute physically meaningful steady-sta
solutions. Below we focus on those bounded trajectories

A. Saddle-minimum solution

For each (vg ,qq) in the regions I and II, there exists
single trajectory starting from the saddle point (v2,0) and
converging to the potential minimum point (v0,0) @see Figs.
3~I,II !#. This trajectory represents the steady-state solutio
Fig. 5~a!. Similarly for each (vg ,qg) in the regions II and III,
there exists a single trajectory starting from the other sad
point (v1,0) and converging to the potential minimum poi
(v0,0) @see Figs. 3~II,III !#. The steady-state solution for thi
trajectory is similar to that in Fig. 5~a! except that the spatia
profile approachesv1 instead ofv2 asz→2`. We call this
type of steady-state solutions saddle-minimum solutions.

FIG. 3. Schematic drawings of the flow diagram in the pha
space (v,w). Depending on the values ofvg and qg , the flows
running out of or into the fixed points are connected in differe
ways and as a result, the flow diagram acquires different topolog
structures. In each flow diagram, the fixed points (v0,1,2,0) are
marked by black circles. Emphasis is given to the flows running
of or into the fixed points in the rangev1,v,v2.

FIG. 4. The division of the parameter space (vg ,qg) based on
the topological structure of the flow diagram.
8-3
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remark that the oscillation nearv0 may or may not appea
depending on the parameter choice, which can be easily
derstood in the particle analogy; if the particle motion ne
v0 is underdamped/overdamped, the convergence tov0 in
the saddle-minimum solution is oscillatory/nonoscillato
Expansion of Eq.~5! near (v0,0) shows that the motion nea
v0 is overdamped ifl.2 and underdamped ifl,2.

A study @25# on the optimal velocity model revealed th
the microscopic model possesses so-called oscillatory tra
ing wave solutions and monotonic wave solution. These
lutions are identical in their character to the saddle-minim
solution with the underdamped and overdamped converge
to v0.

B. Limit-cycle solution

For each (vg ,qg) in the region IV, V, or VI, there exists a
single trajectory, which encircles the potential minimu
point (v0,0) and makes a loop@see dashed curves in Fig
3~IV,V,VI !#. In the language of nonlinear dynamics, this ty
of flow is usually referred to as a limit cycle. For traffic flo
language, the limit cycle corresponds to a steady-state s
tion with periodic wave@Fig. 5~b!#. The ‘‘wavelength’’ of the
limit-cycle solution increases and approaches infinity
(vg ,qg) approaches (vg* ,qg* ). We remark that for the exis
tence of the limit-cycle solution, it is crucial to have sig
alternation ofC with v. If C were always positive~negative!,
the single-particle motion analogy indicates that the total
ergy of the particle would monotonically decrease~increase!
with z, and thus the trajectory would be attracted to~repelled
away from! v0, destroying the limit cycle.

Note that since there is a limit-cycle solution for ea
(vg ,qg) within the regions IV, V, and VI, there is an infinit
number of limit-cycle solutions, each with different (vg ,qq).
This feature is very similar to the report of many stable no
homogeneous states in a revised car-following model in R
@18#. To our knowledge, it has not been realized previou
that hydrodynamic models also possess infinitely many lim
cycle solutions.

C. Limit-cycle –Minimum solution

The limit-cycle solutions are inevitably accompanied
still different types of solutions. According to the flow dia

FIG. 5. Inhomogeneous steady-state solutions of a hydro
namic model.
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grams in Figs. 3~IV,V,VI !, all trajectories inside the limit
cycle approach the minimum point (v0,0) asz→` and the
limit cycle asz→2`. We call this type of steady-state so
lutions limit-cycle–minimum solution. Its profile is shown i
Fig. 5~c!. Since there are infinitely many limit-cycle solu
tions and the limit-cycle–minimum solution is possib
whenever the limit cycle is possible, there also exist in
nitely many limit-cycle–minimum solutions.

This solution is closely related with an interesting ph
nomenon reported in previous studies of hydrodynamic m
elswith on-ramps@14,15#: When a linearly unstable but con
vectively stable homogeneous flow is generated in
upstream part of an on-ramp, oscillatory flow is sponta
ously generated from the homogeneous region and pro
gates in the upstream direction. The relation between
observation and the limit-cycle–minimum solution can
established by noting that the convectively stable homo
neous flow region corresponds to the trivial solutionv(z)
5v0 and the spontaneously generated oscillatory flow to
limit-cycle solution. It is then clear that the phenomenon
Refs. @14,15# is nothing but a manifestation of the limit
cycle–minimum solution. Recent studies of a microsco
car-following model @16# also reported oscillatory flow
growing out of a linearly unstable homogeneous region.

D. Limit-cycle –saddle solution

Each limit-cycle solution accompanies still another ty
of solutions. For each (vg ,qg) in the regions IV and V, there
exists a single trajectory converging to the saddle po
(v1,0) asz→` and approaching the limit cycle asz→2`
@Figs. 3~IV,V !#. Similarly for each (vg ,qg) in the regions V
and VI, there exists a single trajectory converging to t
other saddle point (v2,0) asz→` and approaching the limi
cycle asz→2` @Figs. 3~V,VI !#. We call this type of solu-
tions limit-cycle–saddle solution. Its profile in thez space is
shown in Fig. 5~d!. Similar to the limit-cycle–minimum so-
lutions, there exist infinitely many limit-cycle–saddle sol
tions.

E. Hetero-saddle-saddle solution

Still new types of bounded trajectories appear on
boundaryBi j between the regioni and j. On the boundaries
BI,II andBIV,V , there is a trajectory running from the sadd
point (v1,0) and converging to the other saddle point (v2,0)
@Figs. 3 (BI,II ), (BIV,V)]. This trajectory amounts to the kink
solution in Fig. 5~e!. Also on the boundariesBII,III andBV,VI ,
there is a trajectory running from thesecondsaddle point
(v2,0) and converging to thefirst saddle point (v1,0) @Figs. 3
(BII,III ), (BV,VI )]. Since the roles of (v1,0) and (v2,0) have
been swapped, this trajectory amounts to the antikink so
tion @not shown in Fig. 5#. In the nonlinear dynamics lan
guage, these kinds of trajectories connecting two differ
fixed points are called heteroclinic orbits. In this paper,
will name this type of solutions hetero saddle-saddle so
tions. To be more specific, we will call the first~second! type
of the hetero-saddle-saddle solutions ‘‘upper’’~‘‘lower’’ !
hetero-saddle-saddle solutions since the trajectories appe
the upper~lower! half of the flow diagram. Note that ther

y-
8-4
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exist infinitely many hetero-saddle-saddle solutions si
this solution is allowed for each point (vg ,qg) on the above-
mentioned boundaries.

F. Homo-saddle-saddle solution

For each (vg ,qg) on BVI,I , there exists a trajectory star
ing from the saddle point (v2,0) and returning back to the
samesaddle point@Fig. 3 (BVI,I )]. This trajectory represent
the narrow cluster solution@Fig. 5~f!#. For each (vg ,qg) on
BIII,IV , on the other hand, there exists a trajectory start
from the saddle point (v1,0) and returning back to (v1,0)
@Fig. 3(BIII,IV )]. This trajectory represents the narrow an
cluster solution~not shown in Fig. 5!. In the nonlinear dy-
namics language, these kinds of trajectories are called
moclinic orbits. In this paper, we will name this type
solutions homo-saddle-saddle solutions. To be more spec
we will call the first~second! type of the homo-saddle-sadd
solutions ‘‘right’’ ~‘‘left’’ ! homo-saddle-saddle solution
since the trajectories involve the saddle point on the ri
~left! half of the flow diagram.

G. Wide cluster solution

Figure 4 shows that all six regions and six boundar
meet together at asinglepoint (vg* ,qg* ). The flow diagram
at this point has a special structure@see Fig. 3(vg* ,qg* )] that
allows smoothconnection between flow diagrams of diffe
ent topological structure in different regions or boundarie

This point is also special in the sense that the flow r
ning out of the fixed point (v1,0) reaches the other fixe
point (v2,0) and returns back to (v1,0). The steady-state
solution corresponding to this flow is shown in Fig. 5~g!.
Note that since the particle dynamics becomes infinit
slower as a trajectory approaches the fixed points (v1,2,0),
the cluster size of the steady-state solution is infinitely lar
For this reason, we call this solution wide cluster solution

The wide cluster solution is a limiting case of vario
solutions mentioned above; lf (vg* ,qg* ) is regarded as a lim
iting point of, for example, the boundaryBIII,IV or BVI,I , the
wide cluster solution is a homo-saddle-saddle solution w
an infinite cluster size. If (vg* ,qg* ) is regarded as a limi
point of the region VI, V, or VI, the wider cluster solution i
a limit-cycle solution with an infinite period. Also i
(vg* ,qg* ) is regarded as the point where the border linesBII,III

andBI,II join, the wide cluster solution is a combined obje
of the upper hetero-saddle-saddle solution~kink! and the
lower hetero-saddle-saddle solution~antikink!.

The fact that the wide cluster solution is possible only
the single point (vg* ,qg* ) implies that the wide cluster solu
tion has the so-calleduniversalcharacteristics; when a give
initial state of traffic evolves into the wide cluster solutio
following the real traffic dynamics@Eqs. ~2! and ~3!#, char-
acteristics such as outflow and the speed of the final tra
state are independent of the initial state.

Analyses@4,5# of empirical traffic data revealed that var
ous characteristics of the wide jam are indeed universal. T
empirical observation imposes a constraint on traffic mod
and the universality of the characteristics has been tested
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traffic models. Although the universality has been verifi
for a number of traffic models@10,13,22,23#, the verification
unfortunately has relied largely on repeated numerical sim
lations and thus the verification itself is also ‘‘empirical’’ i
some sense. One exceptional case is the analysis in Ref.@24#,
where the singular perturbation theory is used. This anal
is however considerably model dependent and thus it is
easy to perform the same analysis for other classes of tr
models. Contrarily, in our approach, the finding that the w
cluster solution can exist only at the single point (vg* ,qg* ) is
quite meaningful since it explains clearly and unambiguou
why the characteristics of the wide cluster solution should
universal.

We next address an interesting size dependence of
‘‘wide cluster solution’’ reported in Ref.@22#; when numeri-
cal simulations are performed with periodic boundary con
tions, the so-called universal characteristics are fou
@22,23# to be not strictly universal but depend on the syst
size. This size dependence is not compatible with the st
ment of the universality given above. To resolve this confl
we first note that periodic boundary conditions allow on
those solutions whose periods are compatible with the
posed period. Then the wide cluster solution, whose perio
infinite, cannot be realized in such numerical simulatio
with finite system size, and the solutions, which are int
preted as the wide cluster solution in Refs.@22,23#, are,
strictly speaking, limit-cycle solutions whose periods a
compatible with the imposed periodic boundary conditio
Then by recalling that there are infinitely many limit-cyc
solutions, the size dependence is a very natural consequ
and the conflict is resolved. We remark that the depende
however should become weaker as the period beco
longer since the limit-cycle solutions approach the wide cl
ter solution as their period becomes longer.

V. DISCUSSION

A. Roles of topology: Generality

As demonstrated in previous sections, each steady-s
solution exists only in restricted regions of thevg-qg space
where the flow diagram acquires certain topological str
tures. This relation between the steady-state solutions and
topological structure of the flow diagram is not a mere co
cidence; all steady-state solutions presented in the prece
section areguaranteedto exist by the topologies of the flow
diagrams. For example, when flows near the fixed po
(v0,0) is attracted towards (v0,0) while flows running out of
the other fixed points (v1,2,0) are repelled away from (v0,0),
as in the regions IV,V,VI, there should exist the limit-cyc
solution in those regions~Poincare´-Bendixson theorem@28#!.

This relation with the topology bears an interesting imp
cation. As demonstrated in many branches of physics, ph
cal objects, whose existence is closely related with a cer
topological structure of systems, arenot fragile and their
existence doesnot depend on quantitative details of the sy
tems. Vortices in type-II superconductors are a well-kno
example. It is then expected that the steady-state solut
presented in the preceding section are not specific to
particular model examined but common to many versions
8-5
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hydrodynamic models. For example, our results are not s
sitive to the values of the parameters in Eq.~9!.

The generality due to the topology can be argued in
following way as well. Let us consider an infinitesim
change in the traffic model@in Eqs.~7! and~9! for example#.
At (vg ,qg) located sufficiently interior of a region in Fig. 4
the topological structure of the flow diagram will not b
affected and thus all steady-state solutions, which are o
nally allowed in the region, are still allowed for the modifie
traffic model. On the other hand, at (vg ,qg) located suffi-
ciently close to a boundary in Fig. 4, the topological stru
ture of the flow diagram may be modified to a new structu
However the only possible new structure is the one at
across the boundary. The net effect then amounts to a m
shift of the boundary. Thus as far as the topology is c
cerned, effects of the infinitesimal change in the traffic mo
are no more than shifting the boundaries of the six regions
infinitesimal amounts, and the existence of steady-state s
tions in each region isnot affected. Here we remark tha
despite the shifts, all six boundaries should still meet a
singlepoint, whose coordinate may be slightly different fro
the original (vg* ,qg* ) though. Otherwise, continuous conve
sion of one topological structure to another near (vg* ,qg* ) is
not possible.

Lastly we discuss briefly one special kind of modific
tions that shows negative-valued coefficientC @Eq. ~6!# near
the fixed point (v0,0). In the hydrodynamic model propose
by Kerneret al. @2#, C is indeed negative when the param
eters in the model are set to the values suggested in Ref.@15#.
For this case, the flow isrepelledaway from (v0,0). Then
the limit-cycle solution does not appear any more in the
gions IV, V, VI but appears instead in the regions I, II, II
This shift is natural in view of the Poincare´-Bendixson theo-
rem. However this negativeC does not affect the very exis
tence of the six regions because these are determined ac
ing to the trajectories departing from the two saddle poi
(v1,2,0) as mentioned already. Thus our approach focuse
the bounded trajectories between the four limiting behav
~one limit cycle and three fixed points! is still valid. A more
exotic kind of modifications are those, due to whichC
changes its sign multiple times withv so that multiple limit-
cycle solutions exist for givenvg andqg in certain regions of
parameter space (vg ,qg). However this possibility seems t
be very unlikely since it requires considerable fluctuations
A @see Eq.~6!#, which is unphysical.

B. Implications on universality conjecture

A conjecture has been put forward by Herrmann a
Kerner@29#; many traffic models with different mathematic
structures may belong to the same ‘‘universality’’ class in
sense that they predict same traffic phenomena. Althoug
is not clear yet to what extent the universality conjecture
valid, there are indications that there indeed exists close
lationship between some traffic models. For example, m
roscopic hydrodynamic models have been derived from
microscopic car-following model via certain approximatio
methods@26,30#, and good agreement between two types
traffic models has been demonstrated via numerical sim
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tions @31#. In particular, an exact correspondence betwe
two different types of microscopic models has been est
lished@32#. We note in passing that the hydrodynamic mod
derived in Ref.@30# however has an instability that arise
from short-wavelength fluctuations that arenot present in the
original car-following model. Such instability disappea
when the short-wavelength fluctuations are properly regu
ized as in Ref.@26#.

On the other hand, there exist reports which could
have been reconciled with the universality conjecture. F
example, a recent study@18# on a certain special type o
car-following model reported the existence of many lim
cycle solutions~even without intrinsic inhomogeneities o
roads such as on-ramps!. To our knowledge, the limit-cycle
solution had not been reported for any other traffic mod
and thus it had been inferred that the limit-cycle soluti
might be specific to the special model, in clear contrast w
the universality conjecture. Our results however indicate t
this inference is wrong and reopen a possibility that the s
cial car-following model may also be closely related to oth
traffic models. An evidence for this will follow in the follow-
ing section.

By investigating topological structures of the flow di
grams, we found from asingle traffic modelseveninhomo-
geneous steady-state solutions. Although many of these
lutions were already reported by earlier studies, ear
reports were scattered over various different traffic mod
and thus it was not clear whether a certain solution is spec
to certain traffic models or generic to a wide class of mode
Our analysis in the preceding section indicates that the se
inhomogeneous steady-state solutions are generic to a
class of traffic models. Our results are thus valuable in vi
of the universality conjecture.

C. Prevalence of limit-cycle solution in Ref.†18‡

As remarked above, most studies of traffic models fai
to capture the limit-cycle solution. On the other hand, in t
special car-following model studied in Ref.@18#, a wide class
of initial conditions evolve to the limit-cycle solution. A
question arises naturally: what is special about the mode
Ref. @18#? The model is defined as follows:

ÿn5AS 12
Dyn

0

Dyn
D 2

Z2~2D ẏn!

2~Dyn2rm
21!

2kZ~ ẏn2vper!,

~10!

whereZ(x)5(x1uxu)/2, A is a sensitivity parameter,rm
21 is

the minimal distance between consecutive vehicles,vper is
the permitted velocity,k is a constant, andDyn

0[ ẏnT
1rm

21 . HereT is the safety time gap. When interpreted
terms of the hydrodynamic model in Eq.~3!, the first and
third terms together define the effective optimal veloc
Vop

eff(r21), which is shown in Fig. 6. The role of the secon
term is to strictly prevent the distance from being smal
than the minimum distancerm

21 by establishing additiona
strong deceleration when a vehicle is faster than its prec
ing one and their separation approachesrm

21 .
8-6
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In view of the steady-state analysis given in previous s
tions, the optimal velocity profile in Fig. 6 is very specia
out of three solutionsv1 ,v2 ,v3 of Vop

eff((v1vg)/qg)5v,
which amount to the extremal points of the potentialUeff, v1

is dynamically forbiddensince the vehicle spacingr1
21 re-

lated tov1 via Eq.~4! is shorter thanrm
21 , which is strongly

prohibited by the second term in Eq.~10!. Then steady-state
solutions, such as wide cluster solution, that assume the
cessibility to (v1,0) are not allowed any more and the num
ber of possible solutions reduces to 5~saddle-minimum,
limit-cycle, limit-cycle–minimum, limit-cycle–saddle, an
homo-saddle-saddle solutions!. Further reduction occurs
when the periodic boundary condition is imposed as in R
@18#. Then homo-saddle-saddle and limit-cycle solutions
the only possible solutions. Among these two, the forme
possible only when the average density satisfiesr,(rm

21

1Tvper)
21 because the unique limiting behavior of that s

lution, of which density converges tor2, will govern the
average density andr2,rc . Thus for the density range o
(rm

211Tvper)
21,r,rm , the limit-cycle solution is the only

possible solution. Therefore the characteristics of the mo
in Ref. @18# are explained within the framework of the hy
drodynamic approach.

D. Stability of solutions

The rigorous stability analysis, whether each solut
above is realized through the dynamics in Eqs.~2! and ~3!,

FIG. 6. The bold solid line is the effective optimal velocityVop
eff

due to the dynamics of Eq.~10!. The dotted line on the other han
describes the constant of motion line in Eq.~4!. The hatched region
where no dynamics is allowed, is established by the singular e
of the second term in Eq.~10!. Three crossing points of the tw
lines determine thez-independent solutions of Eq.~5!. Note that
rc

215rm
211Tvper.
ug

-

01611
-

c-

f.
e
s

-

el

n

goes beyond the scope of this work. In this section, we
stead summarize what has been known and also discuss
plications of existing results. The stability of the solution
Sec. IV G is well established@2,22#. For the solution in Sec
IV C, its relation with the oscillatory flow generated spont
neously out of a convectively stable homogeneous flo
which was reported in previous numerical simulations of h
drodynamic models with on-ramps@14,15#, seems to indicate
that this solution can be stable. Also the solution in Sec. IV
has been maintained stably in our own numerical simulat
of the hydrodynamic model that is derived from the follow
ing microscopic model via the mapping rule in Ref.@26#:

ÿn5l@Vop
eff~Dyn!2 ẏn#1k

D ẏn

Dyn2rm
21 Q~2D ẏn!, ~11!

whereVop
eff is the same one depicted in Fig. 6,k is a constant,

and Q(x) is the Heavyside function~1 for x.0 and 0 for
x,0). Note that the idea of the prevalence of the limit-cyc
solution discussed in Sec. V C is simply reflected in Eq.~11!.
These observations suggest that at least some steady
solutions addressed in this work can be maintained sta
However more systematic analysis is necessary to clarify
issue of the stability.

VI. CONCLUSION

Hydrodynamic traffic models are investigated by mapp
them to the problem of single-particle motion. It is found th
typical hydrodynamic models possess seven different ty
of inhomogeneous steady-state solutions. Although these
lutions were already reported by earlier studies, earlier
ports were scattered over various different traffic models
it was not clear whether a certain solution is specific to c
tain traffic models only or generic to a wide class of mode
Our result combined with the topology argument indica
that the seven inhomogeneous steady-state solutions sh
be common to a wide class of traffic models. Also the orig
of the universal characteristics for the wide cluster solution
clearly identified and the reason for the prevalence of
limit-cycle solution in a previous report@18# is provided.
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