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Steady-state solutions of hydrodynamic traffic models
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We investigate steady-state solutions of hydrodynamic traffic models in the absence of any intrinsic inho-
mogeneity on roads such as on-ramps. It is shown that typical hydrodynamic models possess seven different
types of inhomogeneous steady-state solutions. The seven solutions include those that have been reported
previously only for microscopic models. The characteristic properties of wide jam such as moving velocity of
its spatiotemporal pattern and/or out-flux from wide jam are shown to be uniquely determined and thus
independent of initial conditions of dynamic evolution. Topological considerations suggest that all of the
solutions should be common to a wide class of traffic models. The results are discussed in connection with the
universality conjecture for traffic models. Also the prevalence of the limit-cycle solution in a recent study of a
microscopic model is explained in this approach.
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[. INTRODUCTION ramps. Our result shows that such view is incorrect and that
the physics contained in hydrodynamic models may be much
Vehicles on roads interact with other and various trafficricher than previously recognized.
phenomena can be regarded as collective behaviors of inter- In Sec. Il, we first review the mapping to the single-
acting vehicle§ 1-3|. Analyses of highway traffic data re- particle motion and introduce the concept of the flow dia-
vealed that there exist qualitatively different states of trafficgram in the single-particle phase space. It is demonstrated in
flow [4—8]. Transition between different traffic states was Sec. lll that the flow diagram can have various topologically
also reported5]. Some empirical findings, such as the so-different structures, which are directly linked to the existence
called synchronized traffic flow pha§g], have become sub- of certain types of steady-state solutig&c. IV). Section V
jects of considerable concern and ignited intense theoreticaliscusses implications of our results. Section VI concludes
investigations of traffic flow. Comprehensive reviews can bethe paper.
found, for example, in Ref9].
Many traffic flow models have been put forward and ana- Il. MAPPING TO SINGLE-PARTICLE MOTION
lyzed [10-21]. Quite often, the analysis aims to find out i ) ]
possible steady-states, or dynamic phases, of the models and e consider a hydrodynamic model that consists of the
investigate their properties. A criterion for good and reliablefollowing two equations, an equation for local vehicle num-
traffic models is good agreement between steady states 8f" conservation,
models and traffic states revealed via real traffic data analy-
. . . : - . J J
sis. Thus an important first step in the analysis of traffic flow —p(x,t) +—[ p(x,t)v(x,t)]=0, 2)
models is to find out all possible steady states. at X
In this paper, we consider hydrodynamic models for traf- . .
fic without bottlenecks such as ramps and present a systerﬁpd an equation of motion,

atic search for their steady-state solutions which are time- 9 2

independent in a proper moving reference frame: + w =R[Voop * Aap+Dﬁ 2 3
p prop g : T v T RNVolp ) vl = A+ D7, (3
p(X,D=p(XFuvgl), v(X,h=v(X+uv4l), (D) where Vo(p Y is the so-called optimal velocity function

. L. . and the coefficients® for the relaxation term,A for the
wherep andu are density and velocity fields, respectively, opiicination term, and for the diffusion terr are positive

and —v is the constant velocity of the moving reference yeinite and depend in general on the density and velocity
frame with respect to the stationary reference frame. Tw ields, i.e., R(p,v), A(p,v), andD(p,v)>0.

well-known steady solutions of this type are free flow and To find out stead : : .

e . - ) y-state solutions of the type in EQ, it
traffic jam solutiong22—-24. Surprisingly, we find that hy- 5 sefyl to map the problem into a single-particle motion
drodynamic models possess not only these two but sgse problem by using the method in Ref&2,24). For the map-

e_ral other steady-state S_OIU“O_”S' S(_)me_of_ the newly r€COG4ing, one first integrates out E(R). The resulting constant
nized steady-state solutions, including limit-cycle solunons,of motion

have been reported previously only for microscopic traffic

models[16,18,25 and not been reported for hydrodynamic dg=p(v+vg) (4)
models, which led to the widespread view that free flow and

traffic jam are the only possible steady-state solutions of hyrelates two dynamic fields andv, and can be used to re-
drodynamic models in the absence of bottlenecks such aduce the number of independent dynamic fields from two to
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FIG. 1. A typical shape of the potential energi(vivg.dg) FIG. 2. A schematic diagram of the flow near the three fixed

(solid line). Three examples of the particle motion are also shown]lfi)oljnrteS ©0.120). C is assumed to be positive near=uv, in this
(dotted, dashed, and dash-dotted lines gure.

0 v, Uy v, v

one (we choose in this work. Then Eq.(3) can be trans- those ranges af whereC is negative, the particle mayain
formed into anordinary differential equation for the single €nergy due to the damping. The possibility of the negative

dynamic fieldv that depends on a single parameterx  damping is crucial for the existence of certain steady-state
+ugt, solutions presented in the following section.

Before we close this section, we remark that the stability
d% dv of a solution in the single-particle problem should not be
32 TCwivg.ag) g+ F(vivg,dg) =0, (5 identified with the stability in the real traffic problem. We
demonstrate this point with triviat-independent solutions.
where For the camelback-shaped potential in Fig. 1, extremal points
of the potential become solutions. Thus there are three
z-independent solutionsy =v; (i=0,1,2 and Gv,;<vg
, (6) <uv,), wherevg is the coordinate of the local minimum and
vq, Uy are coordinates of the two local maxima or saddle
points. Allv;’s satisfy V(v +vg)/qg) =v and thus depend
onvg anddg. Thesez-independent solutions correspond to
the homogeneous traffic stategx,t)=vq;, From the
shape of the potential energy, it is clear that in the single-
Here the fieldp in the arguments ofR, A, D, andV,, particle problem, the two solutions(z)=v,, are unstable
should be understood ag,/(v+vg). Then the search for with respect to small deviations and the other soluti¢n)

A
%—(v#—vg)
(v+vg)

1
C(U;Ug ng)E 5

R
7:(0;09,%)5 5(Vop_v)-

steady-state solutions reduces to the analysis ofBqinder  =uv, is stable(if C is positive neaw,). For the real traffic
the physically meaningful boundary condition that solutionsproblem[described by Eq92) and(3)], however, the solu-
should be bounded as— * . tionsv(x,t)=v,, are (usually stablewith respect to small

To gain insights into implications of E@5), it is useful to  deviations and (x,t)=vy, is linearly unstable.
make an analogy with a classical mechanics of a particle by
regarding_z as a time varia_ble _and as a_coordi_nateof a Ill. FLOW DIAGRAMS
particle with unit mass moving in a one-dimensional system.
Then Eq.(5) describes the time evolution of a particle under Besides the trivial staticztindependentsolutions, there
the influence of a potential energyU(v;vg,dq) also exist dynamic 4-dependentsolutions, some examples
=[Ydv'F(v';vg,q4) and of a damping force with the of which are shown in Fig. Xdotted, dashed, and dash-
coordinate-dependent damping coefficiéfi;vy,q,). Fora  dotted lineg. In the language of traffic flow, these dynamic
physical choice ovop(pfl), which decreases asincreases, solutions correspond tateady but inhomogeneousraffic
goes to zero for large, and saturates at a finite value for flow states. For a systematic study of dynamic solutions, it is
small p, the potential energy) becomesamelback shaped useful to introduce a two-dimensional phase spagen(
for wide ranges ob 4 andqg (solid curve in Fig. 1L Thusthe =dv/d2), where each trajectory in the phase space corre-
potential energy profile is of very typical shape. Below wesponds to a dynamic solution. Then finding all solutions for
focus onU of this shape only and ignore the possibility of givenvy andqg is equivalent to constructing a flow diagram
more exotic shaped’s, such adJ’s with three peaks, since in the phase space for the giveg andqy.
we do not know of any reason to expect such exotic possi- To gain an insight into flow diagram structures, it is useful
bilities. Furthermore, we will not address the trivial case oc-to examine the flow near the three fixed points=@;,w
curring when the range af, and gy allows less than two =0)’s. Figure 2 show flows near the three fixed points. The
peaks inU. fixed points ¢, ,,0) are saddle points regardless of the sign

An unusual feature in this mechanical analogy is that theof C nearv =v, , since the damping force alofithe second
damping coefficientC is not necessarily positive, and in term in Eq.(5)] cannot reverse the direction of the particle
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motion (that is, the sign oflu/dz) even if the damping co- @ (H)/\ (M/\
efficient is negative. On the other hand, the fixed point //)\/ =) -
(v5,0) is a stableunstablg fixed point of the flow diagram Nl = ~
when theC is positive(negative nearv =v (C is assumed to av) ) VI)
be_posmve in Fig. 2 Floyvs running out of or into the fixed //_\\ g~y ///%\/’
points can be mutually interconnected and the way they are ~—_S %22 T 2D
interconnected will in general depend on the valuesodnd
qq and affect the structure of the flow diagram. By (Bym) (By1)

To make our discussion concrete, we choose here a par- /)\k /;Q
ticular hydrodynamic model. We choose the coefficients in N \/

Eq. (3) as follows:

)
|

g
(

R=)\, Azp, D=6—p2,

P (v;,q;>§
where nEdVOp/d(pfl). As demonstrated in Ref26], this

choice provides a macro-micro link between the hydrody-
namic modelEgs.(2) and(3)] and the microscopic optimal
velocity model[3],

FIG. 3. Schematic drawings of the flow diagram in the phase
space {,w). Depending on the values af;, and qy, the flows
running out of or into the fixed points are connected in different
ways and as a result, the flow diagram acquires different topological
yn:)\[vop(Ayn)_yn]r (8) structures. In each flow diagram, the fixed pointg {,0) are
marked by black circles. Emphasis is given to the flows running out

. . . of or into the fixed points in the rangg <v<wv,.
wherey, (t) represents the coordinate of thth vehicle in a

one-dimensional road antlly,, is the distance to the preced- IV. STEADY-STATE SOLUTIONS
ing vehicle,y,.1—Y,. But we remark that as far as steady- ) ) ) , ,
state solutions are concerned, the chditeis just onepar- Out of all flow trajectories contained in the flow diagrams

ticular option, and most results presented below are notFig- 3, only those trajectories that remain bounded both for
sensitively dependent on it. Results which are dependent ofr—~® and —e constitute physically meaningful steady-state
the choice will be stated so. For the parameters, values igolutions. Below we focus on those bounded trajectories.

Ref.[27] are usedA =2 sec !,
A. Saddle-minimum solution

_ Umag 2(Y—VYrer) For each {4,q,) in the regions | and Il, there exists a
VoY) = 2 h Cref|» 9 single trajectory starting from the saddle point,0) and
converging to the potential minimum point{,0) [see Figs.
3(1,I1)]. This trajectory represents the steady-state solution in
Umag=33.6 M/SEC, Y1e=25.0 M, Yyigin=23.3 M, andCrer  Fig. 5a). Similarly for each 04.dg) in the regions Il and Il
=0.913. For thisc,s, the maximum value oWqp is [(1  there exists a single trajectory starting from the other saddle
+0.913)/2v mag, Which is slightly different fromu pag. point (v4,0) and converging to the potential minimum point

_ For this hydrodynamic model, the resulting flow diagram,, oy [see Figs. @I,II )]. The steady-state solution for this
is shown for various values of; andqg in Fig. 3. Note that  yraiectory is similar to that in Fig.(8) except that the spatial
depending om 4 andq, trajectories departing from the two fjle approaches; instead ofv, asz— —=. We call this

saddle pointsi; 5,0) behave in different ways and thus the tyne of steady-state solutions saddle-minimum solutions. We
flow diagrams acquiretopologically different structures.

Ywidth

Since the structure of the flow diagram is closely linked to 1.16

characters of nonhomogeneous steady-state solutions, it will

be meaningful to divide the plane{,q,) according to the Q

flow diagram structures, which is given in Fig. 4. Thgqg < . i

plane is divided into six regiongegions I, Il, ..., VI). The = v
flow diagramwithin each region is labeled accordingly in % /
Fig. 3. On the boundary between two neighboring regions, Z . v
(e.g., boundanB,, between the region | and)lthe flow o )/(vg,qz)

diagram acquires structures topologically different from I m

those within the regions, and on the special poirff (qg ), 109

where all six boundaries join together, the flow diagram ac- 125 Ug (m/sec) 134

quires a special structure still different from all others.
Steady-state solutions contained in the flow diagrams are FIG. 4. The division of the parameter spaag, (d,) based on
presented in the following section. the topological structure of the flow diagram.
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v (@) v (@ grams in Figs. @V,V,VI), all trajectories inside the limit
cycle approach the minimum point {,0) asz—o and the
limit cycle asz— —o. We call this type of steady-state so-
lutions limit-cycle—minimum solution. Its profile is shown in
Fig. 5(c). Since there are infinitely many limit-cycle solu-
tions and the limit-cycle—minimum solution is possible
whenever the limit cycle is possible, there also exist infi-
nitely many limit-cycle—minimum solutions.

This solution is closely related with an interesting phe-
nomenon reported in previous studies of hydrodynamic mod-
elswith on-rampq14,15: When a linearly unstable but con-
vectively stable homogeneous flow is generated in the
upstream part of an on-ramp, oscillatory flow is spontane-

FIG. 5. Inhomogeneous steady-state solutions of a hydrodyOusly generated from the homogeneous region and propa-
namic model. gates in the upstream direction. The relation between this

observation and the limit-cycle—minimum solution can be
remark that the oscillation near, may or may not appear established by noting that the convectively stable homoge-
depending on the parameter choice, which can be easily umeous flow region corresponds to the trivial solutiofz)
derstood in the particle analogy; if the particle motion near=v, and the spontaneously generated oscillatory flow to the
vy is underdamped/overdamped, the convergenceytin limit-cycle solution. It is then clear that the phenomenon in
the saddle-minimum solution is oscillatory/nonoscillatory. Refs. [14,15 is nothing but a manifestation of the limit-
Expansion of Eq(5) near @(,0) shows that the motion near cycle—minimum solution. Recent studies of a microscopic
v is overdamped il >2 and underdamped K<2. car-following model [16] also reported oscillatory flow

A study [25] on the optimal velocity model revealed that growing out of a linearly unstable homogeneous region.
the microscopic model possesses so-called oscillatory travel-
ing wave solutions and monotonic wave solution. These so- D. Limit-cycle —saddle solution
lutions are identical in their character to the saddle-minimum

solution with the underdamped and overdamped convergenCt? Each limit-cycle solution accompanies still another type
t0 vy of solutions. For eachuy,qg) in the regions IV and V, there

exists a single trajectory converging to the saddle point
(v1,0) asz—< and approaching the limit cycle as— —o
[Figs. 3IV,V)]. Similarly for each {4,qg) in the regions V
For each (4,qg) in the region IV, V, or VI, there exists a and VI, there exists a single trajectory converging to the
single trajectory, which encircles the potential minimum other saddle pointy(,,0) asz—c and approaching the limit
point (v(,0) and makes a loopsee dashed curves in Figs. cycle asz— —« [Figs. 3V,VI)]. We call this type of solu-
3(IV,V,VI)]. In the language of nonlinear dynamics, this typetions limit-cycle—saddle solution. Its profile in tlzespace is
of flow is usually referred to as a limit cycle. For traffic flow shown in Fig. %d). Similar to the limit-cycle—minimum so-
language, the limit cycle corresponds to a steady-state solldtions, there exist infinitely many limit-cycle—saddle solu-
tion with periodic wavdFig. 5(b)]. The “wavelength” of the  tions.
limit-cycle solution increases and approaches infinity as

(vg.dg) approachesuy ,qg). We remark that for the exis- E. Hetero-saddle-saddle solution

tence of the limit-cycle solution, it is crucial to have sign Still new types of bounded trajectories appear on the
alternation ofC with v. If C were always positivénegative, boundaryB;, between the regionandj. On the boundaries

the single-particle motion analogy indicates that the total en- . . .
ergy ofgthepparticle would mono%gnically decredBwreasg By andByy , there is a trajectory running from the saddle

: : i ,0) and converging to the other saddle poins,0)
with z, and thus the trajectory would be attractedriepelled pqlnt ©s . . .
away from v, destroyjing th)(/e limit cycle. [Figs. 3 B,1), (Byyv)]. This trajectory amounts to the kink

Note that since there is a limit-cycle solution for eachsolutio_n in Fig_. %€). Also on the boundaries, andBW,_,
(vg,dg) Within the regions IV, V, and VI, there is an infinite E:erg) I:m?j ::r:rjf\alcet%%;:g?'ngsgrsoag dﬁe pg%q%sa(%d[lﬁigpso'gt
. . . . 2, hiéy 1 .
number of limit-cycle solutions, each with differenty,q). (Byn), (Byw)]. Since the roles ofi(;,0) and ,,0) have

This feature is very similar to the report of many stable non- ) . -
homogeneous states in a revised car-following model in Re oeen swapped, this trajectory amounts to the antikink solu-
ion [not shown in Fig. % In the nonlinear dynamics lan-

[18]. To our knowledge, it has not been realized previouslyt ) . : . .
that hydrodynamic models also possess infinitely many limit-24age, t_hese Kinds of trajectories connecting two different

. fixed points are called heteroclinic orbits. In this paper, we
cycle solutions. ) ; .

will name this type of solutions hetero saddle-saddle solu-

tions. To be more specific, we will call the firsgtecondl type
of the hetero-saddle-saddle solutions “uppetlower” )
The limit-cycle solutions are inevitably accompanied by hetero-saddle-saddle solutions since the trajectories appear in

still different types of solutions. According to the flow dia- the upper(lower) half of the flow diagram. Note that there

B. Limit-cycle solution

C. Limit-cycle—Minimum solution
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exist infinitely many hetero-saddle-saddle solutions sinceéraffic models. Although the universality has been verified
this solution is allowed for each point {,q,) on the above- for a number of traffic modelgl0,13,22,23 the verification

mentioned boundaries. unfortunately has relied largely on repeated numerical simu-
lations and thus the verification itself is also “empirical” in
F. Homo-saddle-saddle solution some sense. One exceptional case is the analysis inZ2&f.

, ) where the singular perturbation theory is used. This analysis
~ Foreach ¢4,qg) onBy,,, there exists a trajectory start- i however considerably model dependent and thus it is not
ing from the saddle pointv(;,0) and returning back to the gagy to perform the same analysis for other classes of traffic
samesaddle poinfFig. 3 (By;,)]. This trajectory represents models. Contrarily, in our approach, the finding that the wide
the narrow cluster solutiofFig. 5(f)]. For each ¢4,dg) On  cluster solution can exist only at the single poin (a7 ) is
Buiv . on the other hand, there exists a trajectory startinguite meaningful since it explains clearly and unambiguously
from the saddle pointy(;,0) and returning back tovq,0)  why the characteristics of the wide cluster solution should be
[Fig. 3(Byv)]. This trajectory represents the narrow anti- universal.
cluster solution(not shown in Fig. b In the nonlinear dy- We next address an interesting size dependence of the
namics language, these kinds of trajectories are called hdwide cluster solution” reported in Ref.22]; when numeri-
moclinic orbits. In this paper, we will name this type of cal simulations are performed with periodic boundary condi-
solutions homo-saddle-saddle solutions. To be more specifitions, the so-called universal characteristics are found
we will call the first(second type of the homo-saddle-saddle [22,23 to be not strictly universal but depend on the system
solutions “right” (“left” ) homo-saddle-saddle solutions size. This size dependence is not compatible with the state-
since the trajectories involve the saddle point on the righinent of the universality given above. To resolve this conflict,

(left) half of the flow diagram. we first note that periodic boundary conditions allow only
those solutions whose periods are compatible with the im-
G. Wide cluster solution posed period. Then the wide cluster solution, whose period is

. . . . . _infinite, cannot be realized in such numerical simulations
Figure 4 shows that all six regions and six boundaries

. . . with finite system size, and the solutions, which are inter-
meet together at aingle point (vg ,qg). The flow diagram y

. : . , . . preted as the wide cluster solution in Ref22,23, are,
at this point has a special structyeee Fig. 3¢g,dg)] that  gyicily speaking, limit-cycle solutions whose periods are

allows smoothconnection between flow diagrams of differ- compatible with the imposed periodic boundary conditions.
ent to_pologmal structure in d|_fferent regions or boundaries. Then by recalling that there are infinitely many limit-cycle

_ This point is also special in the sense that the flow runqions; the size dependence is a very natural consequence
ning out of the fixed point«,,0) reaches the other fixed 514 the conflict is resolved. We remark that the dependence
point (v2,0) and returns back tovg,0). The steady-state phowever should become weaker as the period becomes

solution corresponding to this flow is shown in Figgh  |onger since the limit-cycle solutions approach the wide clus-
Note that since the particle dynamics becomes infinitelye, solution as their period becomes longer.

slower as a trajectory approaches the fixed points,0),

the cluster size of the steady-state solution is infinitely large.

For this reason, we call this solution wide cluster solution.
The wide cluster solution is a limiting case of various A. Roles of topology: Generality

solutions mentioned above; Ibf ,qg) is regarded as alim- A demonstrated in previous sections, each steady-state
iting point of, for example, the boundaBy,y or By, the  sojution exists only in restricted regions of thg-q, space
wide cluster solution is a homo-saddle-saddle solution withyhere the flow diagram acquires certain topological struc-
an infinite cluster size. If (g ,q3) is regarded as a limit tyres. This relation between the steady-state solutions and the
point of the region VI, V, or VI, the wider cluster solution is topological structure of the flow diagram is not a mere coin-
a limit-cycle solution with an infinite period. Also if cidence; all steady-state solutions presented in the preceding
(vy ,qg) is regarded as the point where the border liBgg  section areguaranteedo exist by the topologies of the flow
andB, join, the wide cluster solution is a combined object diagrams. For example, when flows near the fixed point
of the upper hetero-saddle-saddle solutitink) and the (v,,0) is attracted towards¢,0) while flows running out of
lower hetero-saddle-saddle soluticantikink). the other fixed pointsu »,0) are repelled away fromvg,0),

The fact that the wide cluster solution is possible only atas in the regions IV,V,VI, there should exist the limit-cycle
the single point ¢ ,qy) implies that the wide cluster solu- solution in those regiondoincareBendixson theorerf28]).
tion has the so-calledniversalcharacteristics; when a given  This relation with the topology bears an interesting impli-
initial state of traffic evolves into the wide cluster solution cation. As demonstrated in many branches of physics, physi-
following the real traffic dynamic§Eqgs.(2) and (3)], char-  cal objects, whose existence is closely related with a certain
acteristics such as outflow and the speed of the final traffitopological structure of systems, anet fragile and their
state are independent of the initial state. existence doenot depend on quantitative details of the sys-

Analyses[4,5] of empirical traffic data revealed that vari- tems. Vortices in type-Il superconductors are a well-known
ous characteristics of the wide jam are indeed universal. Thisxample. It is then expected that the steady-state solutions
empirical observation imposes a constraint on traffic modelgpresented in the preceding section are not specific to the
and the universality of the characteristics has been tested fgarticular model examined but common to many versions of

V. DISCUSSION
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hydrodynamic models. For example, our results are not sertions [31]. In particular, an exact correspondence between

sitive to the values of the parameters in E9). two different types of microscopic models has been estab-
The generality due to the topology can be argued in thdished[32]. We note in passing that the hydrodynamic model

following way as well. Let us consider an infinitesimal derived in Ref.[30] however has an instability that arises

change in the traffic modéin Egs.(7) and(9) for examplé. fro_m short-wavelength fluctuations tha_\t amet present in the

At (v4,q) located sufficiently interior of a region in Fig. 4, original car-following model. Such instability disappears

the topological structure of the flow diagram will not be yvhen thg short-wavelength fluctuations are properly regular-

affected and thus all steady-state solutions, which are origized as in Ref[26]. . .

nally allowed in the region, are still allowed for the modified ©On the other hand, there exist reports which could not

traffic model. On the other hand, at,q,) located suffi- have been reconciled with the universality conjecture. For

ciently close to a boundary in Fig. 4, the topological Struc_example, a recent studyi8] on a certain special type of

ture of the flow diagram may be modified to a new structure.Car'fOlIowm.g madel reported _the_ e>_<isFence of many limit-
ycle solutions(even without intrinsic inhomogeneities on

However the only possible new structure is the one at jus(f

cros e boundary The et fect hen amouns o 2 mlSC5 26155 ST ATRA0 o Ioowedoe, e I
hift of th . Th f h I i - ; X - .
shift of the boundary. Thus as far as the topology is con nd thus it had been inferred that the limit-cycle solution

cerned, effects of the infinitesimal change in the traffic modef" o ; . .
9 ight be specific to the special model, in clear contrast with

are no more than shifting the boundaries of the six regions b . . . -~

infinitesimal amounts, and the existence of steady-state sol b? gnlversallty conjecture. Our results hovye_yer indicate that

tions in each region inot affected. Here we remark that th|s mference.ls wrong and reopen a possibility that the spe-
é:la| car-following model may also be closely related to other

despite the shifts, all six boundaries should still meet at L ffi dels. A id for this will follow in the foll
singlepoint, whose coordinate may be slightly different from traffic modeis. An evidence for this will foflow in the Tollow-

the original @3 ,q3) though. Otherwise, continuous conver- Ing section.

: . . By investigating topological structures of the flow dia-
*
rs]ltt))tnpc;fsgirtl)(laetopologlcal structure to another naag (@) is grams, we found from aingletraffic modelseveninhomo-

. . . . - eneous steady-state solutions. Although many of these so-
Lastly we discuss briefly one special kind of mod|f|ca-g y 9 y

. . - lutions were already reported by earlier studies, earlier
tions that shows negative-valued coeffici€nteq. (6)] near y rep y

he fixed poi he hvdrod . del q reports were scattered over various different traffic models
the fixed point ¢¢,0). In the hydrodynamic model proposed g thys it was not clear whether a certain solution is specific

by Kerneret al. [2], C is indeed negative when the param- q certain traffic models or generic to a wide class of models.
eters in the model are set to the values suggested i B&f. 5 analysis in the preceding section indicates that the seven
For this case, the flow igepelledaway from (,0). Then  j,nomogeneous steady-state solutions are generic to a wide

the limit-cycle solution does not appear any more in the re¢|ass of traffic models. Our results are thus valuable in view
gions 1V, V, VI but appears instead in the regions I, II, llI. of the universality conjecture.

This shift is natural in view of the Poincaiendixson theo-
rem. However this negativé does not affect the very exis-
tence of the six regions because these are determined accord-
ing to the trajectories departing from the two saddle points As remarked above, most studies of traffic models failed
(v1.20) as mentioned already. Thus our approach focused oi® capture the limit-cycle solution. On the other hand, in the
the bounded trajectories between the four limiting behaviorspecial car-following model studied in R¢L8], a wide class
(one limit cycle and three fixed pointss still valid. A more  of initial conditions evolve to the limit-cycle solution. A
exotic kind of modifications are those, due to whi¢h question arises naturally: what is special about the model in
changes its sign multiple times withso that multiple limit-  Ref.[18]? The model is defined as follows:

cycle solutions exist for giveng andqy in certain regions of

C. Prevalence of limit-cycle solution in Ref[18]

parameter spacev§,qdg). However this possibility seems to v —al1- A_yﬂ B Z%(—Ayy) KZ(Y— v
be very unlikely since it requires considerable fluctuations of /" Ay 2(Ay,—pih) Yn™ Uper:
A [see Eq(6)], which is unphysical. (10)

B. Implications on universality conjecture ) o 1.
whereZ(x) = (x+x|)/2, Ais a sensitivity parametep,,” is

A conjecture has been put forward by Herrmann andye ninimal distance between consecutive vehiclgg, is
Kerner[29]; many traffic models with different mathematical . ] . 0 -
the permitted velocity,k is a constant, andAy,=y,T

structures may belong to the same “universality” class in the” ™ ! . ) - .
sense that they predict same traffic phenomena. Although it Pm™ - HereT is the safety time gap. When interpreted in
is not clear yet to what extent the universality conjecture is€rms of the hydrodynamic model in E(B), the first and
valid, there are indications that there indeed exists close réhird terms together define the effective optimal velocity
lationship between some traffic models. For example, macYes(p~*), Which is shown in Fig. 6. The role of the second
roscopic hydrodynamic models have been derived from &rm is to strictly prevent the distance from being smaller
microscopic car-following model via certain approximation than the minimum distancp,,* by establishing additional
methodg 26,30, and good agreement between two types ofstrong deceleration when a vehicle is faster than its preced-
traffic models has been demonstrated via numerical simulang one and their separation approacbg%.
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o goes beyond the scope of this work. In this section, we in-
& stead summarize what has been known and also discuss im-

plications of existing results. The stability of the solution in
Sec. IV G is well establishel®,22]. For the solution in Sec.

IV C, its relation with the oscillatory flow generated sponta-
neously out of a convectively stable homogeneous flow,
which was reported in previous numerical simulations of hy-
drodynamic models with on-ramp$4,15|, seems to indicate
that this solution can be stable. Also the solution in Sec. IV B
has been maintained stably in our own numerical simulation
pol p5! o1 of the hydrodynamic model that is derived from the follow-

ing microscopic model via the mapping rule in REZ6]:

Ap) =\{7er

FIG. 6. The bold solid line is the effective optimal veloc\l‘sifjf
due to the dynamics of Eq10). The dotted line on the other hand Ay
describes the constant of motion line in E4). The hatched region, Vh= )\[Vgg(Ayn) —y,]+ k—n,l(@( —Ay,), (11
where no dynamics is allowed, is established by the singular effect AYn=pm
of the second term in Eq10). Three crossing points of the two
lines determine the-independent solutions of E@5). Note that

== p=14 Ty wherevg‘g is the same one depicted in Fig.l6is a constant,
c ~ Fm per-

and ®(x) is the Heavyside functioil for x>0 and 0 for
x<0). Note that the idea of the prevalence of the limit-cycle
solution discussed in Sec. V C is simply reflected in &@q).
These observations suggest that at least some steady-state
solutions addressed in this work can be maintained stably.
However more systematic analysis is necessary to clarify the
issue of the stability.

In view of the steady-state analysis given in previous sec
tions, the optimal velocity profile in Fig. 6 is very special:
out of three solutionsvy,v,,v3 of Ve((v+vg)/dg)=v,
which amount to the extremal points of the potenti&f’, v,
is dynamically forbiddersince the vehicle spacingl’l re-
lated tov, via Eq.(4) is shorter tharp;l, which is strongly
prohibited by the second term in EL0). Then steady-state

solutions, such as wide cluster solution, that assume the ac- VI. CONCLUSION
cessibility to ¢4,0) are not allowed any more and the num- . i . . :
ber of possible solutions reduces to (§addle-minimum, Hydrodynamic traffic models are investigated by mapping

limit-cycle, limit-cycle—minimum, limit-cycle—saddle, and them to the problem_of single-particle motion. It i; found that

homo-saddle-saddle solutignsFurther reduction occurs typ_mal hydrodynamic models POSSESS seven different types
when the periodic boundary condition is imposed as in Refo Inhomogeneous steady-state solutions. Although these so-
[18]. Then homo-saddle-saddle and limit-cycle solutions ardtions were already reported by earlier studies, earlier re-
the only possible solutions. Among these two, the former iorts were scattered over various different traffic models and

possle oy when the auerage densy sasfic(r, %% 61 o8 Athr  ceia soion s shecc o e
+Tuvpe) ! because the unique limiting behavior of that so- yorg X

. . . . Our result combined with the topology argument indicates
lution, of which density converges tp,, will govern the . .
average density ang,< Thus for the density range of that the seven inhomogeneous steady-state solutions should
_1+g_|_ _11 - 2 pt% imit | luti 'yth 9 | be common to a wide class of traffic models. Also the origin
(pm™+ Tope) "<p=<pm, the limit-cycle solutionis the only ¢y yniversal characteristics for the wide cluster solution is
learly identified and the reason for the prevalence of the

in Ref. [18] are explained within the framework of the hy- limit-Cycle solution in a previous repoft.8] is provided.

drodynamic approach.

D. Stability of solutions ACKNOWLEDGMENT

The rigorous stability analysis, whether each solution This work was supported by the Korea Research Founda-
above is realized through the dynamics in E@.and(3), tion (Grant No. KRF 2000-015-DP0138

[1] K. Nagel and M. Schreckenberg, J. Phy&, P221(1992; O. national Symposium on Transportation and Traffic Theedy
Biham, A.A. Middleton, and D. Levine, Phys. Rev. 46, ited by D. J. Buckley(Elsevier, New York, 1974 M. Koshi,
R6124(1992. M. lwasaki, and I. Ohkura, iProceedings of the Eighth Inter-

[2] B.S. Kerner and P. Konlhiger, Phys. Rev. B8, R2335(1993. national Symposium on Transportation and Traffic Flad-

[3] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sug- ited by V. F. Hurdle, E. Hauer, and G. N. Stewédniversity
iyama, Phys. Rev. 51, 1035(1995. of Toronto Press, Toronto, 1983

[4] I. Treiterer and J. A. Myers, ifProceedings of the Sixth Inter-  [5] B.S. Kerner and H. Rehborn, Phys. ReVvo& R4275(1996);

016118-7



LEE, LEE, AND KIM PHYSICAL REVIEW E 69, 016118 (2004

Phys. Rev. Lett79, 4030(1997; B.S. Kerner,ibid. 81, 3797 (2002; J. Phys. A35, 3369(2002.
(1998; J. Phys. A33, L221 (2000; Phys. Rev. E65, 046138 [18] E. Tomer, L. Safonov, and S. Havlin, Phys. Rev. L8, 382
(2002. (2000.

[6] L. Neubert, L. Santen, A. Schadschneider, and M. Schrecken19] P. Nelson, Phys. Rev. &1, R6052(2000.
berg, Phys. Rev. B0, 6480(1999; W. Knospe, L. Santen, A. [20] I.LA. Lubashevsky and R. Mahnke, Phys. Rev.6E, 6082

Schadschneider, and M. Schreckenbeilgd. 65 056133 (2000; I. Lubashevsky, S. Kalenkov, and R. Mahnisd. 65,
(2002. 036140(2002; R. Kuhne, R. Mahnke, |. Lubashevsky, and J.
[7] M. Treiber, A. Hennecke, and D. Helbing, Phys. Rev6E Kaupuz, ibid. 65, 066125(2002; |. Lubashevsky, R. Mahnke,
1805(2000. P. Wagner, and S. Kalenkoipid. 66, 016117(2002.
[8] H.Y. Lee, H.-W. Lee, and D. Kim, Phys. Rev. &, 4737 [21] L.A. Safonov, E. Tomer, V.V. Strygin, Y. Ashkenazy, and S.
(2000. Havlin, Europhys. Lett57, 151(2002; E. Tomer, L. Safonov,

[9] D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep. N. Madar, and S. Havlin, Phys. Rev.@5, 065101(2002.
329 199 (2000; D. Helbing, Rev. Mod. Phys73, 1067 [22] B.S. Kerner and P. Konhiger, Phys. Rev. B0, 54 (1994).

(2001. [23] S. Wada and H. Hayakawa, J. Phys. Soc. 1763 (1998.
[10] T.S. Komatsu and S.I. Sasa, Phys. Re%Z=5574(1995. [24] B.S. Kerner, S.L. Klenov, and P. Konhser, Phys. Rev. B6,
[11] T. Nagatani, J. Phys. Soc. J@6, 1928(1997). 4200(1997.

[12] H.Y. Lee, H.-W. Lee, and D. Kim, Phys. Rev. Le81, 1130 [25] P. Berg and A. Woods, Phys. Rev.a3, 036107(200J).

(1998. [26] H.K. Lee, H.-W. Lee, and D. Kim, Phys. Rev. &, 056126
[13] D. Helbing and M. Treiber, Phys. Rev. Le&1, 3042(1998; (2002).

D. Helbing and M. Schreckenberg, Phys. Revb®& R2505 [27] S.-l. Takaki, M. Kikuchi, Y. Sugiyama, and S. Yukawa, J.

(1999; V. Shvetsov and D. Helbingbid. 59, 6328(1999. Phys. Soc. Jpr67, 2270(1998.

[14] D. Helbing, A. Hennecke, and M. Treiber, Phys. Rev. L8#. [28] E.A. Jackson,Perspectives of Nonlinear Dynamid€am-

4360(1999. bridge University Press, Cambridge, England, 1988l. 1.
[15] H.Y. Lee, H.-W. Lee, and D. Kim, Phys. Rev. B9, 5101  [29] M. Herrmann and B.S. Kerner, Physica2A5 163(1998.

(1999. [30] P. Berg, A. Mason, and A. Woods, Phys. Rev.6E, 1056
[16] N. Mitarai and H. Nakanishi, J. Phys. Soc. J@8, 2475 (2000.

(1999; Phys. Rev. Lett85, 1766(2000; J. Phys. Soc. Jp69, [31] D. Helbing, A. Hennecke, V. Shvetsov, and M. Treiber, Math.

3752(2000. Comput. Modell.35, 517 (2002.

[17] W. Knospe, L. Santen, A. Schadschneider, and M. Schrecken-32] J. Matsukidaira and K. Nishinari, Phys. Rev. L&, 088701

berg, J. Phys. A3, L477 (2000; Phys. Rev. E65, 015101 (2003.

016118-8



