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Stability of Turing patterns in the Brusselator model
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The selection and competition of Turing patterns in the Brusselator model are reviewed. The stability of
stripes and hexagons towards spatial perturbations is studied using the amplitude equation formalism. For
hexagonal patterns these equations include both linear and nonpotential spatial terms enabling distorted solu-
tions. The latter modify substantially the stability diagrams and select patterns with wave numbers quite
different from the critical value. The analytical results from the amplitude formalism agree with direct simu-
lations of the model. Moreover, we show that slightlyueezed hexagomse locally stable in a full range of
distortion angles. The stability regions resulting from the phase equation are similar to those obtained numeri-
cally by other authors and to those observed in experiments.
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[. INTRODUCTION heterogeneities in the pattern can be described wjthase
equationfor each stationary solution. The stability regions

Some chemical systems out of equilibrium undergo a spasomputed for the Brusselator can be considered as reminis-
tial symmetry breaking, leading to stationary pattern forma<ent of the Busse’s balloon in thermal convectjas].
tion on macroscopic scalgd]. The new stationary states  The paper is organized as follows. In Sec. Il we introduce
form periodic concentration structures with a wavelength inthe two-dimensional2D) model and we give a general sur-
dependent of the reactor geometry, the So_ca'nedng pat_ vey Of the |inear_ana|ysis. In SeC: I we carry out a Weak!y
terns[1]. Experimental evidence for Turing patterns was firsthonlinear analysis using the multiple-scale method to derive
obtained in 1990 by Castett al. [2], in the well-known the amplitude equations. The stability of patterns towards
chlorite—iodine—malonic acidCIMA) reaction, and later on homogeneous perturbatioriamplitude instabilities is dis-
in the chlorine—dioxide iodine—malonic adi@DIMA) reac- cussed in Sec. IV. The stability regions for roll, perfect hexa-
tion [3,4], and in the polyacrilamide-methylene blue-oxygen9ons, andsqueezed hexagorese explicitly computed. We
reaction, althought in the latter the leading mechanism is stilflerive thelinear phase equationfor different kind of hexa-
under discussiofi5]. Depending on theontrol parameters 9ons in Sec. V and we compare the stability diagrams ob-
(concentrations of reactants and diffusion coefficigntise tained analytically with direct numerical simulations of the
dynamics of the CIMA or CDIMA reaction exhibits several Brusselator model. Sec. VI summarizes our conclusions.
kinds of steady patterns close to onset: stripes, hexagons, and
“rhombs” [6]. (Usually, the so-called “black eyes” seem to Il. THE REACTION-DIEFUSION MODEL
arise from secondary bifurcations.Realistic reactive
schemes are, in general, quite complicated. Consequently The Brusselator is considered one of the simplest
they are replaced by simplified schemes, as the Brusselatégaction-diffusion models exhibiting Turing and Hopf insta-
model[7], reproducing the observed patterns while dea"ngbilities. The spatiotemporal evolution of the main variables is

with simple calculation§8—10. given by the following partial differential equations:
In the present paper we will focus on stationary Turing
patterns arising in the Brusselator. We discuss and obtain a dX=A—(B+1)X+X3Y+V3X,
generalized amplitude equatipimcluding spatial modula- D
tions, for the planforms appearing in the model. This equa- 4Y=BX—X?Y+DV?Y,

tion has been obtained in many chemical models for stripe

patterns only, but the hexagonal case has not been discussgflere X and Y denote the concentrations of activator and
in detail so far[8-10. From symmetry arguments, some g pstrate, respectively. HeBeis a parameter proportional to
authors established that it must include some nonpotentighe giffusion ratio of the two specié, /Dy and, as usuaB
quadratic terms besides the usual diffusive linear ongs kept as thecontrol parametenf the problem.

[11,12. By means of a multiple-scale technique we compute  The homogeneous steady state of these equations is sim-
the coefficients of the amplitude equation for the Brusselatorp|y us=(Xs,Yo) = (A,B/A) [9]. Let us briefly recall here the

Stationary solutions of this equation are stripes, hexagonsqits of the linear stability analysis around Considering
with two different phases, mixed modes, and distorted hexagy 4| perturbationsi=(x,y) in Egs.(1) one arrives at
gons. A linear stability analysis sets the stability of these
stationary solutions in regard to amplitude disturbances.

o T . B 1

Another stability limit is obtained fronphase perturba- du=Lu+| —x2+ 2Axy+x?y ( ) 2

tions In fact, amplitude varies much more rapidly in time A -1
than phase does and, therefore, it becomes enslaved by the
slowly varying phases. The slow dynamics of slight spatialwhere L is the linearized operator
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thogonality conditions(Fredholm alternative are used at
each order. In the neighborhood of the bifurcation point, the
critical amplitudesA; follow the so-callednormal forms
Their general form can be derived from standard techniques
of symmetry-breaking bifurcatior46]. A normal form de-
scribes perfect extended patterns, but slight variations in the
pattern can be included by means of spatial terms with the
suitable symmetries, so one arrives at the so-calfeglitude

FIG. 1. Turing patterns from direct simulations of Brusselatorequations We discuss in the following the form of these

model A=4.5D=38): (a) ©=0.04 initial hexagons(b) «=0.30
striped pattern, an¢t) u=0.98 reentrant hexagons.

B—1+V? A2 .
| -B  —-A%2+DV2) ®
Perturbations u are expanded in normal modes

=Z|k|:kcuo exd o(K)t+ik-r] leading to the eigenvalue equa-
tion o(k)2— 7o(k)+A=0 in which r and A indicate the
trace and the determinant of the linear operaforespec-
tively. Depending on the values of the paramet&rand D
the system will undergo a Turingtationary bifurcation or a
Hopf instability. As a matter of fact, 2D reaction-diffusion

systems that display Turing patterns also present a Hopf b

furcation. The latter gives rise to oscillations 4= \/1/D
>(\/1+AZ—1)/A [14]. Otherwise, a Turing instability takes
place, the case we focus on hereafter.

The marginal condition €=0) leads to a curveB
=B(k) the minimum of which yields thecritical point
(B¢ ko) =[(1+A%)?,JA7]. To describe naturally the sepa-
ration from the critical values the rescaled parameter
=(B—B,)/B. dubbedsupercriticality, replacesd as the con-
trol parameter.

equations for different planforms.
Stripesare characterized by a single amplitudethat
evolves according to

2
700 A= uA—g|AIPA+ & 9, + %aﬁ) A (B
Cc
which is the normal form for a supercritical bifurcation plus
a term that accounts for spatial variations, known as the
Newell-Whitehead—Segel equatipti7] in convection phe-
nomena.

Squaresare formed by two perpendicular sets of rolls
with equal wave numbers, i.€a) k;L k, and(b) |k;|=|k5|.
They display four peaks witlh, symmetry in Fourier space.
When condition(b) does not hold one obtaimectangular or
bimodal patterns; instead, without the conditiéa) rhombs
(rhombic cellg arise. Squares or rhombs should obey
coupled equations of the kindrgdA;=uA;—g|A|?A,
—dy|As|A1, in which g, depends oik; -k, (valid for angles
not around 2r/3).

Hexagonsare built up by three modes satisfying the reso-
nant conditionk;+k,+k;=0 (resonant triad, with |kq]
=|k,| =|ks|. When the modes break the rotational symmetry
but not reflexions |k,| # |k,| =|ks|) squeezed hexagome-

Before going to a perturbative analysis let us show exsult. Distortions breaking rotation and reflexion symmetries,
amples of Turing patterns from direct simulations of the|k, |+ |k,|+# ks, lead to a pattern ofheared hexagons.et
model in Fig. 1, similar to that obtained by other authorsys stress that what have been called “rhombs” or “rhombic
[8,9]. They correspond to hexagons with different phases angells” in many recent papers are actuatligtorted hexagons

stripes, for different values of the supercriticalityy These

a distinction far from semantic, because the term “rhomb”

patterns are shown here just as a guide to the ensuing weakliged for a three-mode pattern has induced some misleading

nonlinear analysigTechnical details on the simulations will
be given in Sec. V Q.

IIl. WEAKLY NONLINEAR THEORY

interpretationg18]. Squares or true rhombs have never been
observed in experiments, while slighttlistorted hexagons
have been reported in chemical systdBisand in theoretical
models[11,19.

During the last years several authors have established

Amplitude equations are a classical tool to describe exthat, up to the third order in the amplitudes, the general form

cited states beyond linear analygl$]. We sketch briefly the

of the amplitude equations for a hexagonal pattern should be

main steps in obtaining them. Just above threshold the eigens follows[11,17;

values of the critical modes are close to zero, so that they are

slowly varying modes, whereas the off-critical modes relax Tod AL = AL+ 5(2)(9)2( A1+UK2K3_9|A1|2A1
1

quickly, so only perturbations witk aroundk. have to be
considered. The solution of E¢R) can be expanded as

N
u= >, ug(Ae"iT+c.c),
=1

(4)

whereuy=(1,— 7(1+An)/A)" stands for the eigenvector of

the linear operator. Here we use the standard muItipIe—scaI‘éﬁ_

—h(|Agl?+[Agl?) Ay +i al[KZﬁX3K3+K3(9X2K2]

+i az[Kzarg,Ks_KsaTsz]y (6)

where subindices in the derivatives stand (fQir= ﬁi -V and

7.-V, respectively, beingy the unitary vectors in the

analysis[15] in which the control parameter and the deriva- direction ofk; andr, orthogonal tan; . Companion equations

tives are expanded in terms of a small parametand or-

for A, andA; are simply obtained by subindex permutations.
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Although small, the quadratic termd,A; ought to be in- lowing sections we will consider two such situations acting
cluded to ensure the bifurcation being subcritical. ConselUPon an almost perfect patteramplitude instabilitiesand

quently, terms in the fornAVA [20] must also be consid- phase instabilities

ered. N(_)ti_ce that these terms are nonpotential, _i.e., they IV. AMPLITUDE INSTABILITIES
cannot fit into a Lyapunov functional. In the following, we
will assumeh,g>0, which impliesA7<2.418. In this section we first analyze the stability of different

Exact expressions of coefficients in H§) are specific to Symmetries as the control parameter is increased in(g.
the model. They have been calculated in the context of therflthough pure amplitude perturbations are rarely the most
mal fluid convectio{12,21,23 and flames front§23]. The dangereous we cqmpletg the b|fu_r_cat|on analyses of previous
linear coefficients stem simply from a Taylor expansion neaPaPers(8,9,14 by including off-critical wave numbers. We

_ 2 perform separately, computations for regular stripes and
onsetz of the grovyth parameter (s, k) = (1/7o)[ .~ £o(k hexagons, and later on for mixed modes and distorted
—k¢)?], that leads in our case to

hexagons.

1 1+Ayp > 4 @ A. Stripe and hexagon patterns
0o - ’ (O . . . . .
1— 52 (1+An)? Let us begin with the case of stripes with a wave number

slightly off-critical k=Kk.+ g. These are solutions of E()
(These coefficients can be set to one after a suitable rescalifgovided A, = Se'®, A,=A;=0, with S=\/(u— 502q2)/g_
of time and spacgFor the Brusselator nonlinear coefficients Considering uniform perturbations in the for,=S(1
v, g, andh were computed in Ref14]. We also gather here +r,)el%1 A,=r,e'%2 and A;=r,e'%3, the linear stability

the expression for; and a, [24], of this solution requires
, 1=An 2 N N.=(g—h)S?+[v'|8<0, 9)
V=2"—"7""7+ T -u=vgtuim, .
A(l+Azy)  ARTUOTUIA wherev’ =v + 2a,q. The growth rate\ .. vanishes along the
curves
—8+38A7n+5A%5%—8A3,° s
g= =
9A3n(1+An)
—(2ugr1=9") =V (v —9')*—4vi(vg+ g’ €07
o —3+5Ap+7A272—3A3,3 - 202 '
Adp(1+An) ’ (10
JAn whereg’ =(g—h)?/g andv{=vy+2a,q. Thus, stripes are
VA7 1 stable within the ranggs <u<usy , i.€., in a closed area

al:A(1+A7])2 B ﬁaz’ of the parameter space,(«). (Notice thata, does not enter

into this expression.

. e Likewise, by settingh;= He'%*i the following eigenvalues
= 2\3A77(1 A”)_ are achieved in the hexagonal case:
A A%+ 7%(1+Ap)?
(AT 71+ An)] o1=v' H—2(g+2h)H?, (11)

As distinggished from other systems, depends onu, so 0= 03=—20"H—2(g—h)H?, (12)
that we splitv in the formv=vy+vu [9]. Thereforep can
change its sign depending on the value#\ef. Forv>0 the op=—3v'H, (13
stationary solution consists of hexagons with a vanishing to-
tal phase H, hexagons while for v<0 the total phase Op2=0p3=0, (14

reachesr (H, hexagong

) whereH is the uniform and stationary solution of E
The new terms withy; and @, deserve some comments. y ®

iven b
First, they correspond physically to wave numdéatations g 4
(term with ;) andstretch distortiongterm with «;) in the v’ v 2+4(g+2h)(u— 297
pattern[22]. Second, the coefficient, remains rather small H= 2(g+2h) . (19

even for high values of;, while «, is always positive and
takes values of the same orderwas except for very small Equation(13) shows that the total phase is a damped mode
values of 7. that relaxes monotonically towards ®§) or = (H,) de-

In extended system, patterns issued from a random initighending on the sign af’. Thus, initially disordered patterns
condition are often composed by several cellular domainsvill evolve until the maxima(minima) of X arrange them-
with different orientations, which evolve through rearrange-selves on a honeycomb lattice bff; hexagons I . hexa-
ments of defects and domain walls. In general, such an evaggong for v'>0 (v’'<0). We can deal with both solutions
lution cannot be studied analytically, but its main ingredientssimply by using|v’|. Examples of these two kinds of hexa-
would be made evident under simple situations. In the folgons can be seen in simulations in Figga)land 1c),
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respectively. Let us mention thit, hexagons are similar to w=2(g+2h)H?2—|v'|H>0, (16)
up hexagonghexagons with upflow currents in the center
while Hy hexagons are analogous to down hexagons in con-
vection.

The first two eigenvalues in Eg€ll), (12) correspond to
the amplitude modes. For hexagons to be stable, they mushe first inequality represents the marginal condition, i.e.,
be negative, i.e., hexagons appear whethge> wy, ,

u=(g—h)H2+|v'|H>0. (17)

 —2[vguy+2(g+2h) 17+ JA[vgv i+ 2(g+2h) P~ 4vi[v §—4(g+2h)?]

MM = 2 2 (18)
U1
The functionu has two real roots corresponding to the following curves:
' (g—h)? \/ ' (g—h%* of o, (@=N)* 2
(Zvovl_(Zg—-l—h) * 20001_(29—-{—h) —4vilv'pt 2g+h o4
MH== (19

2
21)1

and hexagons become unstable within. <u<uy, . The  region Il (0.87<A%<0.958), the hexagonal solution re-
fact that there are two branches for the instability limjts,- mains stable; however, on increasipgstripes also become
and uy- , is a result of quadratic coefficient depending onstable, and the two planforms coexist withing_ <u
the control parameter for this particular model. <uss . In region Il (0.953A7%<2.418), an interesting
We discuss first the standard cape 0. Stability regions  phenomenon occurs: the hexagonal solution reappears after
are shown as functions oA@y, 1) in Fig. 2. Dashed regions  stripes[14]. These are calletkentrant hexagonsvhich have
correspond to stable stripes and shaded areas to hexagoR@o heen observed in experimefi&s]. Within the range
stable solutionski, andH , in bright and dark gray, respec-  g583<A5<1 reentrant hexagons have the same phase as
tively). The curves for the amplitud_e instabilities are repre-crirical ones H, hexagons whereas forA7>1 H_ hexa-
sented with solid fs..) and dashed linesy, up-). SUiPes 40 grow near threshold, while the reentrant ones change

can be stable only iR 7>0.879(line 1), while hexagons are : : : :
: . . o their phase tdd, hexagons(Bifurcation diagrams for these
always stable whei<0.958(line 2). Line 3 is the limit situations were reported in ReB]).

for the amplitude equations to be valig>*0). Three differ- When spatial disturbaces are includeg0) the ampli-

ent regions can be distinguished whanis increased. In tude stability curves are represented in termg.adndg. In
region I (0=A7<=0.879), the conditiori17) is satisfied and Fig. 3 stability diagrams for characteristic values/fof in-

consequentiy, hexagons are always stable above onset. Ir%ide the three main regions in Fig. 2 are shown. Let us men-
tion that the stability regions bent to the left and the thresh-

uw 1 1 3 : olds are significantly modified with regard to the case with
| a;=0 [24]. As we will show, this asymmetry is crucial in
15 | order to fit with numerical simulations.
(D (1 /
1.0 L/
B. Mixed modes and distorted hexagons
0.5 1 g<0 In some experiments a mixture of hexagons and rolls,
/ N dubbedmixed modesas been reportef26]. So, naturally
0 = we must analyze the stability of a solution
1’ 4 N AN 2\ 112
glv| n—9gAL
A]_:h_ ’ A2:A3: Th ) (20)
FIG. 2. Stability thresholds in the parameter spagey,(u) for 9 g

Turing patterns. Shaded and striped regions denote stable hexagons

and bands, respectively. In region | only hexagons are stable. Hexa-

gons and bands coexist fprs_ << uy_ in region II. Inregion Il Which exists beyond the stability limit for stripeg.© us).
hexagons are unstable within the rangg.<u<us.. To the  These modes are always unstable under amplitude perturba-

right of line 3,g<0 and, therefore, terms higher than cubic aretions, but the mixed modes observed in CIMA reaction could
needed in the amplitude equation. have arisen from 3D effects, namely, by superposition of two
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0.05f

FIG. 4. Amplitude stability zone for squeezed hexag@aded
region. Above the lower dashed line, stripes are also stable. Param-
eter valuesAn=1.59, a;=0.21, ap,=—2.7X10 3.

The latter expression giveB?={u—3&+[v+:8(\3ay
+ ay)]A—h.A2}/(g+h), which introduced into the former
relationship leads to a cubic equatif2¥/]

a3A3+ a2A2+ a1A+ a0=0, (22)

with the coefficients
az=2h*-g(g+h),
a,=—h[3v+253a,],

a;=—pu(h—g)—3hs?
+[v+ 8(V3ay— ) J[v+38(\Bay+ ay)],

15 10 05 0 05 q ao=(u—328)[v+8(\3ay—ay)]. (23)

FIG. 3. Stability diagrams taking into account spatial quadratic Stability curves_for sqgee;ed hexagons are shown in the
terms. Parameter valuega Ap=0.8, «;=0.22, a,=—24 (#,8) plane forAz=1.59 in Fig. 4. We only shod . hexa-
%104 (b) A7p=092, a1=0.22, a,=—1.3x10% (c) Ay  9ONS, but as for regular hexagoffsig. 3(c)], .the stability
=1.59, a;=0.21, ay=—2.7X 10" 3. region of squeezeHl, hexagons stan(_js_for higher values of

m. Squeezed hexagons are stable within the shaded area and
Turing |ayersy a situation not covered by our descriptionlcoeXiSt with StripeS above the dashed curve. The minima of
Moreover, neithersquaresnor rhombs are stable for the the stability curves for stripes and hexagdudashed lines
Brusselator[9] or for any two-variable reaction-diffusion are shifted to the left, owing to the sign aof,. Moreover,
system[18]. distorted hexagons are not fully replaced by stripes just over

Other possible solutions amistorted hexagonsin the ~ One point but on a wide interval in this cas@etails are
following computations we consider only the simple case ofdiven elsewher¢28].)
squeezed hexagons for which analytical calculations can be
made. (An interested reader can find useful results on the V. LONG-WAVELENGTH INSTABILITIES
bifurcation analysis for sheared hexagons in RE13,19).

Let us consider tilted solutions given by the transformation A more interesting kind of instabilities occurs because of
(x,y)—[x,(1+A)y], which reduces the symmetry group spatial modulations of the underlying modes. Since a perfect
from Dy to D,. Then, the stationary solution of E¢6) can  Pattern remains invariant under spatial translations along
be written in terms of the amplitudes,=A,A,=Be'’, A,  SOMe symmetry axes, slight long-wavelength variations will

=Be ™" provided evolve in a slow scale, according to the so-calfsiiase
equation This formalism applies unless the gradient of phase
wA+[v+ 8(\3ay— an)1B2—(gA+2hB2)A=0, becomes large at some location, i.e, at the core of a defect
where the phase is singular. For the sake of clarity, we dis-
— 3824+ [v+18(\Ba+ay)]A—(g+h)B2—hA2=0. cuss separately this equation for patterns of stripes and hexa-

(21 gons, and for distorted hexagons.
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A. Stripe and hexagonal patterns 3 §§q2(4u+w) H?2 ,

Let us briefly recall thephase equatiotior stripes. It is o S v G V3ay)
obtained by considering small amplitud® and phase ¢) 2 -y
perturbations on the solutiof, A=S(1+r+i¢)e'9. This g od
leads to coupled equations foand ¢. Consistently with the w o (at VBag)+ w Baut V3ay),

phase formalisn; is eliminated adiabatically and written in 27)

terms of ¢, so that we end up with the phase equatips

=D|dzp+D, F¢p, with Dy=(u—3£50%)/(n—£50%), D, [u andw were given in Eqs(16), (17)]. This phase equation

= ¢oa/ke [15]. The zig-zag instabilitybecomes dangereous s similar to the wave equation of an isotropic sofie0].

wheneverD, <0, i.e., fork>k., whereas théckhaus in- Hence the phase field can be split into two normal modes

stability takes place wheD <0, i.e, fork—k.> \/,u/3502. d= ¢+ ¢, that obey the relationship¥ X ¢=0 and V
Generically hexagons have two independent marginal di- ¢p,= 0, respectivelySqueezeg, andshearedp, distortions

rections and, therefore, long wavelength perturbations resutelax diffusively (@ ¢ (=D, V¢ ) inside the zones

in a 2D phase equationThe form of this equation can be bounded byD,;=0. We will comment on the phase insta-

deduced solely by symmetry argumefi29] (see next sec- bility regions in connection with numerical computations in

tion). To compute the coefficients we consider perturbationec. V C.

in Eq. (15) in the form

Ai=’H(l+ri+i¢i)eiqxi, i=1,23, (24) B. Squeezed hexagonal patterns

After applying the same procedure to solutions of 3)
so that they evolve according to and restricting the analysis to the linear part at lowest order
one obtains an equation of the foffi29]
=(u—)ri+ad2r,— +lo+ + - <
_ 200410+ — 2 . .
ZhH ANyt 1roHrs) =3gH T, The reflection symmetries— —x and y— —y and k|
+ayH(dx, ot dx,b3) + aaH(0 3= 0. b2), leave six independent coefficients that can be written in a
matricial form d;¢p=B- ¢, with

2
drdp1=(n—0°) p1+ Oy, $112Q0x 11 D15+ Dyd; Dsd%,
— v+ 2as| H( by + ba)— (g+2) H2dbs B=| Do,  Dsi2+Dyi) @9

ot dugfa)t azH(d,f 50y ). This is the general expression for the phase of distorted hexa-
These expressions can be further reduced looking back Oer:f or fora rhomblc pattern. Fgr squarei the dlag:onal sym
. X : y X—Yy gives in additionD;=D,, D,=D3, Ds=Dy,
the eigenvalues in Eq$1%)—(14). The Ehree(ri aré assocl- - g4 that only three diffusion coefficients should remain inde-
ated to the eigenvectors;=(1,1,1), v,=(1,-1/2-1/2)  pendent. Finally, rotation symmetry reduces these to two in-
and 53=(0,\/§/2,— J3/2) and determine the amplitude sta- dependent coefficients for equilateral hexagons, becByse
bility. The fourth one(labeledo,,) (always negativecorre-  =D4=D,, D3=Ds=D; andDs=Dg=D,;—Dy, so that Eq.
sponds to the total phase= ¢+ ¢,+ ¢3 decaying to 0 or  (25) is recovered. In the cage =0 the diffusion coefficients
7. So the phase evolution results from the other two eigenDb; for squeezed hexagons can be computed from(EQ.
values after using the following arguments. The amplitudes heir explicit expressions are rather cumbersome, but an in-
remain invariant under shiftsx=2nx or Ay=2nx/+/3,i.e, terested reader can find them in R&8]. The eigenvalues of
under a phase changeb{, o, d3)=(d1,0,,¢3)+kAxv, B has to be computed numerically and they give the stability
+kAyvs, so that the eigenvectors, and v, are marginal curves in Fig. 5, now drawn in terms of the deviatiohg
modes(Goldstone modés|In view that® can be kept con- from 2/3 rad. This stability regiortdashed regionis simi-
stant only two phases are independent, so it is useful to cort@r to, though smaller than the region determined numerically
sider ¢,=—(do+ #3) and ¢, = (¢~ #3)/\/3. Adiabatical  in Ref.[11]. [Its width is model dependemSQe.Ref[ZS]).]
elimination of enslaved modes and a center manifold reduc- When a;=a,=0, Egs. (6) become variational, i.e., a

tion to (¢, $,) gives[30,31,22,23 Lyapunov_ft_mctional can be derived. Equilateral h_exagons
get the minimum energy among the squeezed lattices and,
drp=D.V2+(D,— D)V (V- ), (25) therefore, this should be the selected planform. Nevertheless,

though globally unstable, distorted hexagons can be locally
stable owing to boundary conditions or pinniigonadia-
batic) effects among domain& situation not covered within
the amplitude equation framewgrkas obtained in experi-
ments. Irregular patterns come out spontaneously from the
homogeneous state after making a sudden jump in control

with the coefficient§22]:

- _ 2
D=7~y *+ gy (@1~ V3@2)?, (26
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o0
0.1
0.05
0
FIG. 7. Amplitude and phase instabilitiédashed curvesfor
FIG. 5. Stability regions of hexagons distorted an arfgleas a ~ Ayp=1.59, a;=0.21, a,=—2.7X10 3. — — — Eckhaus instabil-

function of 4. ity, —-—- curveD,=0, and - - -D,=0. Dark areas: stable hexa-

gons. Striped domains: stable stripes. Points: numerical simulations.

parameter, so that the Turing stability region is reached, oPOtted line: maximum linear growth.

by illuminating the cell through a distorted hexagonal lattice

of spots with angles slightly different from723. In both , ,
cases the evolved pattern displays several domains with u$éduenceH . hexagons (asterisk —H ;-hexagon-stripe
equal angles. The rm&#, . of the observed angular distri- Mixtures (full squarey — stripes (open circleg

bution function changes with in qualitative accord with the —Ho-hexagon—stripe mixturegfull squarey —H, hexa-
theoretical finding§11,26. gons (asterisk is observed. From the Fourier transform of

the pattern one obtains the average wave number that in-
] ] ] ] ) creases withu, its value remaining not far from the line of
C. Comparison with numerical simulations highest linear growtlidotted lind. These fit rather well into
The validity of these stability diagrams have beenthe stability regions of the asymmetrical diagrafig. 7),
checked against simulations of moddl). These are per- hence confirming that the spatial nonlinear terms are crucial
formed after discretizing the spatial terms in a square mesfor a correct interpretation of the transition between different
of 128x 128 points with periodic boundary conditions. Simi- Symmetries and the nonlinear pattern select®f.
lar outputs are obtained using two different integration meth- Finally, we performed a simulation starting from a given
ods: a spectral methd@2] and a semi—implicit methof@®3].  initial pattern of stripes inside the regi@in Fig. 7. A sud-
During the first stages several domains, separated by songien decreasing of. to a value for whichH . hexagons are
walls or defects, are formed, but most of these evolve slowlystable, gives rise to a pattern of steady sheared hexagons, as
After about 5000 time steps a stationary pattern with fewone can see in the Fourier spectrum in Fig. 8. Although, the
defects is eventually reached. Typical stationary snapshogheared case has not been worked out explicitly, this simu-
arising from random initial conditions for several valuesuof lation confirms that initial and/or boundary conditions can
are shown in Fig. 6. Values for the concentratioare rep-  give rise to locally stable distorted hexagons, as discussed in
resented in a gray scale varying from blagkinimum) to ~ Sec. V B.
white (maximum. On varying the control parametgr the
VI. CONCLUSIONS

We have presented a weakly nonlinear analysis for the
Turing patterns formed in the Brusselator model, for which
we have derived amplitude equations for the excited modes.
Up to third order in the amplitudes these equations also in-
clude spatial nonlinear terms, as it has also been discussed

FIG. 6. Patterns from computations of the Brusselator. Param-
eter valuesA»=1.59 and(1) ©=0.04,(2) ©=0.07,(3) ©=0.08, FIG. 8. A stable distorted hexagon pattern that comes up from
(4) ©=0.30,(5) ©u=0.54,(6) «=0.66, and(7) u=0.98. simulation of the Brusselator and its ensuing Fourier spectrum.
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in other systems. The coefficients of these generalized amamplitude equation. This fact gives valuable support to in-
plitude equations have been explicitly calculated, allowingclude nonpotential terms into evolution equations. We also
us to determine the relative stability of hexagons and stripeshecked that simulations from suitable initial conditions can
near the onset of the Turing instability. From those equationsead to stablalistorted hexagonm the Brusselator, as found

the evolution of phase modes has been derif@tl. The  py other author§20]. We guess the results presented here

diffusion coefficients of the phase equations, together withyj|| stimulate a search of spatial effects in Turing pattern-
the eigenvalues of amplitude equations allow us to calculatgyrming experiments.

the stability regions foistripes and hexagonsin parameter
space. These regions look quite different whether the spatial
nonlinear terms are included in the de_scrlptl_o_n. _ ACKNOWLEDGMENTS
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