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Stability of Turing patterns in the Brusselator model

B. Peña and C. Pe´rez-Garcı´a
Instituto de Fı´sica, Universidad de Navarra, E-31080 Pamplona, Spain

~Received 21 December 2000; revised manuscript received 18 June 2001; published 22 October 2001!

The selection and competition of Turing patterns in the Brusselator model are reviewed. The stability of
stripes and hexagons towards spatial perturbations is studied using the amplitude equation formalism. For
hexagonal patterns these equations include both linear and nonpotential spatial terms enabling distorted solu-
tions. The latter modify substantially the stability diagrams and select patterns with wave numbers quite
different from the critical value. The analytical results from the amplitude formalism agree with direct simu-
lations of the model. Moreover, we show that slightlysqueezed hexagonsare locally stable in a full range of
distortion angles. The stability regions resulting from the phase equation are similar to those obtained numeri-
cally by other authors and to those observed in experiments.
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I. INTRODUCTION

Some chemical systems out of equilibrium undergo a s
tial symmetry breaking, leading to stationary pattern form
tion on macroscopic scales@1#. The new stationary state
form periodic concentration structures with a wavelength
dependent of the reactor geometry, the so-calledTuring pat-
terns@1#. Experimental evidence for Turing patterns was fi
obtained in 1990 by Castetset al. @2#, in the well-known
chlorite–iodine–malonic acid~CIMA ! reaction, and later on
in the chlorine–dioxide iodine–malonic acid~CDIMA ! reac-
tion @3,4#, and in the polyacrilamide-methylene blue-oxyg
reaction, althought in the latter the leading mechanism is
under discussion@5#. Depending on thecontrol parameters
~concentrations of reactants and diffusion coefficients!, the
dynamics of the CIMA or CDIMA reaction exhibits sever
kinds of steady patterns close to onset: stripes, hexagons
‘‘rhombs’’ @6#. ~Usually, the so-called ‘‘black eyes’’ seem t
arise from secondary bifurcations.! Realistic reactive
schemes are, in general, quite complicated. Conseque
they are replaced by simplified schemes, as the Brusse
model @7#, reproducing the observed patterns while deal
with simple calculations@8–10#.

In the present paper we will focus on stationary Turi
patterns arising in the Brusselator. We discuss and obta
generalized amplitude equation, including spatial modula-
tions, for the planforms appearing in the model. This eq
tion has been obtained in many chemical models for st
patterns only, but the hexagonal case has not been discu
in detail so far@8–10#. From symmetry arguments, som
authors established that it must include some nonpote
quadratic terms besides the usual diffusive linear o
@11,12#. By means of a multiple-scale technique we comp
the coefficients of the amplitude equation for the Brussela
Stationary solutions of this equation are stripes, hexag
with two different phases, mixed modes, and distorted he
gons. A linear stability analysis sets the stability of the
stationary solutions in regard to amplitude disturbances.

Another stability limit is obtained fromphase perturba-
tions. In fact, amplitude varies much more rapidly in tim
than phase does and, therefore, it becomes enslaved b
slowly varying phases. The slow dynamics of slight spa
1063-651X/2001/64~5!/056213~9!/$20.00 64 0562
a-
-

-

t

ill

nd

tly
tor
g

a

-
e
sed

ial
e
e
r.
ns
a-
e

the
l

heterogeneities in the pattern can be described with aphase
equation for each stationary solution. The stability region
computed for the Brusselator can be considered as rem
cent of the Busse’s balloon in thermal convection@13#.

The paper is organized as follows. In Sec. II we introdu
the two-dimensional~2D! model and we give a general su
vey of the linear analysis. In Sec. III we carry out a weak
nonlinear analysis using the multiple-scale method to de
the amplitude equations. The stability of patterns towa
homogeneous perturbations~amplitude instabilities! is dis-
cussed in Sec. IV. The stability regions for roll, perfect hex
gons, andsqueezed hexagonsare explicitly computed. We
derive thelinear phase equationsfor different kind of hexa-
gons in Sec. V and we compare the stability diagrams
tained analytically with direct numerical simulations of th
Brusselator model. Sec. VI summarizes our conclusions.

II. THE REACTION-DIFFUSION MODEL

The Brusselator is considered one of the simpl
reaction-diffusion models exhibiting Turing and Hopf inst
bilities. The spatiotemporal evolution of the main variables
given by the following partial differential equations:

] tX5A2~B11!X1X2Y1¹2X,
~1!

] tY5BX2X2Y1D¹2Y,

where X and Y denote the concentrations of activator a
substrate, respectively. HereD is a parameter proportional t
the diffusion ratio of the two speciesDY /DX and, as usual,B
is kept as thecontrol parameterof the problem.

The homogeneous steady state of these equations is
ply us5(Xs ,Ys)5(A,B/A) @9#. Let us briefly recall here the
results of the linear stability analysis aroundus . Considering
small perturbationsu5(x,y) in Eqs.~1! one arrives at

] tu5Lu1S B

A
x212Axy1x2yD S 1

21D , ~2!

whereL is the linearized operator
©2001 The American Physical Society13-1
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L5S B211¹2 A2

2B 2A21D¹2D . ~3!

Perturbations u are expanded in normal modesu
5( uku5kc

u0 exp@s(k)t1ik•r # leading to the eigenvalue equa

tion s(k)22ts(k)1D50 in which t and D indicate the
trace and the determinant of the linear operatorL, respec-
tively. Depending on the values of the parametersA and D
the system will undergo a Turing~stationary! bifurcation or a
Hopf instability. As a matter of fact, 2D reaction-diffusio
systems that display Turing patterns also present a Hop
furcation. The latter gives rise to oscillations ifh[A1/D
.(A11A221)/A @14#. Otherwise, a Turing instability take
place, the case we focus on hereafter.

The marginal condition (s50) leads to a curveB
5B(k) the minimum of which yields thecritical point
(Bc ,kc)5@(11Ah)2,AAh#. To describe naturally the sepa
ration from the critical values the rescaled parameterm
5(B2Bc)/Bc dubbedsupercriticality, replacesB as the con-
trol parameter.

Before going to a perturbative analysis let us show
amples of Turing patterns from direct simulations of t
model in Fig. 1, similar to that obtained by other autho
@8,9#. They correspond to hexagons with different phases
stripes, for different values of the supercriticalitym. These
patterns are shown here just as a guide to the ensuing we
nonlinear analysis.~Technical details on the simulations wi
be given in Sec. V C.!

III. WEAKLY NONLINEAR THEORY

Amplitude equations are a classical tool to describe
cited states beyond linear analysis@15#. We sketch briefly the
main steps in obtaining them. Just above threshold the ei
values of the critical modes are close to zero, so that they
slowly varying modes, whereas the off-critical modes re
quickly, so only perturbations withk aroundkc have to be
considered. The solution of Eq.~2! can be expanded as

u5(
j 51

N

u0~Aje
ik j •r1c.c.!, ~4!

whereu05„1,2h(11Ah)/A…T stands for the eigenvector o
the linear operator. Here we use the standard multiple-s
analysis@15# in which the control parameter and the deriv
tives are expanded in terms of a small parametere and or-

FIG. 1. Turing patterns from direct simulations of Brussela
model (A54.5,D58): ~a! m50.04 initial hexagons,~b! m50.30
striped pattern, and~c! m50.98 reentrant hexagons.
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thogonality conditions~Fredholm alternative! are used at
each order. In the neighborhood of the bifurcation point,
critical amplitudesAj follow the so-callednormal forms.
Their general form can be derived from standard techniq
of symmetry-breaking bifurcations@16#. A normal form de-
scribes perfect extended patterns, but slight variations in
pattern can be included by means of spatial terms with
suitable symmetries, so one arrives at the so-calledamplitude
equations. We discuss in the following the form of thes
equations for different planforms.

Stripes are characterized by a single amplitudeA that
evolves according to

t0] tA5mA2guAu2A1j0
2S ]x1

1

2ikc
]y

2D 2

A, ~5!

which is the normal form for a supercritical bifurcation plu
a term that accounts for spatial variations, known as
Newell–Whitehead–Segel equation@17# in convection phe-
nomena.

Squaresare formed by two perpendicular sets of ro
with equal wave numbers, i.e.,~a! k1'k2 and~b! uk1u5uk2u.
They display four peaks withD4 symmetry in Fourier space
When condition~b! does not hold one obtainsrectangular or
bimodal patterns; instead, without the condition~a! rhombs
~rhombic cells! arise. Squares or rhombs should ob
coupled equations of the kind:t0] tA15mA12guA1u2A1
2guuA2uA1, in which gu depends onk1•k2 ~valid for angles
not around 2p/3).

Hexagonsare built up by three modes satisfying the res
nant conditionk11k21k350 ~resonant triad!, with uk1u
5uk2u5uk3u. When the modes break the rotational symme
but not reflexions (uk1uÞuk2u5uk3u) squeezed hexagonsre-
sult. Distortions breaking rotation and reflexion symmetri
uk1uÞuk2uÞuk3u, lead to a pattern ofsheared hexagons. Let
us stress that what have been called ‘‘rhombs’’ or ‘‘rhomb
cells’’ in many recent papers are actuallydistorted hexagons,
a distinction far from semantic, because the term ‘‘rhom
used for a three-mode pattern has induced some mislea
interpretations@18#. Squares or true rhombs have never be
observed in experiments, while slightlydistorted hexagons
have been reported in chemical systems@6# and in theoretical
models@11,19#.

During the last years several authors have establis
that, up to the third order in the amplitudes, the general fo
of the amplitude equations for a hexagonal pattern should
as follows@11,12#:

t0] tA15mA11j0
2]x1

2 A11vĀ2Ā32guA1u2A1

2h~ uA2u21uA3u2!A11 ia1@Ā2]x3
Ā31Ā3]x2

Ā2#

1 ia2@Ā2]t3
Ā32Ā3]t2

Ā2#, ~6!

where subindices in the derivatives stand for]xi
5n̂i•“ and

]t i
5 t̂i•“, respectively, beingn̂i the unitary vectors in the

direction ofk i andt̂i orthogonal ton̂i . Companion equations
for A2 andA3 are simply obtained by subindex permutation

r
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STABILITY OF TURING PATTERNS IN THE . . . PHYSICAL REVIEW E 64 056213
Although small, the quadratic termĀ2Ā3 ought to be in-
cluded to ensure the bifurcation being subcritical. Con
quently, terms in the formĀ¹Ā @20# must also be consid
ered. Notice that these terms are nonpotential, i.e., t
cannot fit into a Lyapunov functional. In the following, w
will assumeh,g.0, which impliesAh,2.418.

Exact expressions of coefficients in Eq.~6! are specific to
the model. They have been calculated in the context of th
mal fluid convection@12,21,22# and flames fronts@23#. The
linear coefficients stem simply from a Taylor expansion n
onset of the growth parameters(m,k)5(1/t0)@m2j0

2(k
2kc)

2#, that leads in our case to

t0
215

11Ah

12h2
, j0

25
4

~11Ah!2
. ~7!

~These coefficients can be set to one after a suitable resc
of time and space.! For the Brusselator nonlinear coefficien
v, g, andh were computed in Ref.@14#. We also gather here
the expression fora1 anda2 @24#,

v52
12Ah

A~11Ah!
1

2

A
m[v01v1m,

g5
28138Ah15A2h228A3h3

9A3h~11Ah!
,

h5
2315Ah17A2h223A3h3

A3h~11Ah!
, ~8!

a15
4AAh

A~11Ah!2
2

1

A3
a2 ,

a25
22A3AAhh~12Ah!

A2@A21h2~11Ah!2#
.

As distinguished from other systems,v depends onm, so
that we splitv in the formv5v01v1m @9#. Therefore,v can
change its sign depending on the values ofAh. For v.0 the
stationary solution consists of hexagons with a vanishing
tal phase (H0 hexagons!, while for v,0 the total phase
reachesp (Hp hexagons!.

The new terms witha1 anda2 deserve some comment
First, they correspond physically to wave numberdilatations
~term with a1) andstretch distortions~term with a2) in the
pattern@22#. Second, the coefficienta2 remains rather smal
even for high values ofh, while a1 is always positive and
takes values of the same order asv0, except for very small
values ofh.

In extended system, patterns issued from a random in
condition are often composed by several cellular doma
with different orientations, which evolve through rearrang
ments of defects and domain walls. In general, such an e
lution cannot be studied analytically, but its main ingredie
would be made evident under simple situations. In the
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lowing sections we will consider two such situations acti
upon an almost perfect pattern:amplitude instabilitiesand
phase instabilities.

IV. AMPLITUDE INSTABILITIES

In this section we first analyze the stability of differe
symmetries as the control parameter is increased in Eq.~6!.
Although pure amplitude perturbations are rarely the m
dangereous we complete the bifurcation analyses of prev
papers@8,9,14# by including off-critical wave numbers. We
perform separately, computations for regular stripes a
hexagons, and later on for mixed modes and distor
hexagons.

A. Stripe and hexagon patterns

Let us begin with the case of stripes with a wave num
slightly off-critical k5kc1q. These are solutions of Eq.~6!
provided A15Seiqx1, A25A350, with S5A(m2j0

2q2)/g.
Considering uniform perturbations in the formA15S(1
1r 1)eiqx1, A25r 2eiqx2 and A35r 3eiqx3, the linear stability
of this solution requires

l65~g2h!S 26uv8uS,0, ~9!

wherev85v12a1q. The growth ratel6 vanishes along the
curves

mS6

5
2~2v08v12g8!6A~2v08v12g8!224v1

2~v081g8j0
2q2!

2v1
2

,

~10!

whereg85(g2h)2/g andv085v012a1q. Thus, stripes are
stable within the rangemS2,m,mS1 , i.e., in a closed area
of the parameter space (q,m). ~Notice thata2 does not enter
into this expression.!

Likewise, by settingAi5Heiqxi the following eigenvalues
are achieved in the hexagonal case:

s15v8H22~g12h!H 2, ~11!

s25s3522v8H22~g2h!H 2, ~12!

sp1523v8H, ~13!

sp25sp350, ~14!

whereH is the uniform and stationary solution of Eq.~6!
given by

H5
v86Av8214~g12h!~m2j0

2q2!

2~g12h!
. ~15!

Equation~13! shows that the total phase is a damped mo
that relaxes monotonically towards 0 (H0) or p (Hp) de-
pending on the sign ofv8. Thus, initially disordered pattern
will evolve until the maxima~minima! of X arrange them-
selves on a honeycomb lattice ofH0 hexagons (Hp hexa-
gons! for v8.0 (v8,0). We can deal with both solution
simply by usinguv8u. Examples of these two kinds of hexa
gons can be seen in simulations in Figs. 1~a! and 1~c!,
3-3
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respectively. Let us mention thatH0 hexagons are similar to
up hexagons~hexagons with upflow currents in the cente!,
while H0 hexagons are analogous to down hexagons in c
vection.

The first two eigenvalues in Eqs.~11!, ~12! correspond to
the amplitude modes. For hexagons to be stable, they m
be negative, i.e.,
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w52~g12h!H 22uv8uH.0, ~16!

u5~g2h!H 21uv8uH.0. ~17!

The first inequality represents the marginal condition, i
hexagons appear whetherm.mM ,
mM5
22@v08v112~g12h!#26A4@v08v112~g12h!#224v1

2@v80
224~g12h!2#

2v1
2

. ~18!

The functionu has two real roots corresponding to the following curves:

mH65

2S 2v08v12
~g2h!2

~2g1h! D6AS 2v08v12
~g2h!2

~2g1h! D
2

24v1
2S v80

21
~g2h!2

2g1h
j0

2q2D
2v1

2
~19!
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and hexagons become unstable withinmH2,m,mH1 . The
fact that there are two branches for the instability limits,mS6

and mH6 , is a result of quadratic coefficient depending
the control parameter for this particular model.

We discuss first the standard caseq50. Stability regions
are shown as functions of (Ah,m) in Fig. 2. Dashed regions
correspond to stable stripes and shaded areas to hexa
stable solutions (H0 andHp in bright and dark gray, respec
tively!. The curves for the amplitude instabilities are rep
sented with solid (mS6) and dashed lines (mM,mH6). Stripes
can be stable only ifAh.0.879~line 1!, while hexagons are
always stable whenAh,0.958 ~line 2!. Line 3 is the limit
for the amplitude equations to be valid (g.0). Three differ-
ent regions can be distinguished whenm is increased. In
region I (0,Ah,0.879), the condition~17! is satisfied and
consequentlyH0 hexagons are always stable above onset

FIG. 2. Stability thresholds in the parameter space (Ah,m) for
Turing patterns. Shaded and striped regions denote stable hexa
and bands, respectively. In region I only hexagons are stable. H
gons and bands coexist formS2,m,mH2 in region II. In region III
hexagons are unstable within the rangemH1,m,mS1 . To the
right of line 3, g,0 and, therefore, terms higher than cubic a
needed in the amplitude equation.
nal

-

n

region II (0.879,Ah,0.958), the hexagonal solution re
mains stable; however, on increasingm stripes also become
stable, and the two planforms coexist withinmS2,m
,mS1 . In region III (0.953,Ah,2.418), an interesting
phenomenon occurs: the hexagonal solution reappears
stripes@14#. These are calledreentrant hexagons, which have
also been observed in experiments@25#. Within the range
0.9583,Ah,1 reentrant hexagons have the same phas
critical ones (H0 hexagons!, whereas forAh.1 Hp hexa-
gons grow near threshold, while the reentrant ones cha
their phase toH0 hexagons.~Bifurcation diagrams for these
situations were reported in Ref.@9#!.

When spatial disturbaces are included (qÞ0) the ampli-
tude stability curves are represented in terms ofm andq. In
Fig. 3 stability diagrams for characteristic values ofAh in-
side the three main regions in Fig. 2 are shown. Let us m
tion that the stability regions bent to the left and the thre
olds are significantly modified with regard to the case w
a i50 @24#. As we will show, this asymmetry is crucial in
order to fit with numerical simulations.

B. Mixed modes and distorted hexagons

In some experiments a mixture of hexagons and ro
dubbedmixed modeshas been reported@26#. So, naturally
we must analyze the stability of a solution

A15
guvu
h2g

, A25A35S m2gA1
2

g1h D 1/2

, ~20!

which exists beyond the stability limit for stripes (m.ms).
These modes are always unstable under amplitude pertu
tions, but the mixed modes observed in CIMA reaction co
have arisen from 3D effects, namely, by superposition of t

ons
a-
3-4
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Turing layers, a situation not covered by our descripti
Moreover, neithersquaresnor rhombs are stable for the
Brusselator@9# or for any two-variable reaction-diffusion
system@18#.

Other possible solutions aredistorted hexagons. In the
following computations we consider only the simple case
squeezed hexagons for which analytical calculations can
made.~An interested reader can find useful results on
bifurcation analysis for sheared hexagons in Refs.@27,19#!.
Let us consider tilted solutions given by the transformat
(x,y)→@x,(11D)y#, which reduces the symmetry grou
from D6 to D2. Then, the stationary solution of Eq.~6! can
be written in terms of the amplitudesA15A,A25Beid,A3
5Be2 id provided

mA1@v1d~A3a12a2!#B 22~gA12hB 2!A50,

m2 3
4 d21@v1 1

2 d~A3a11a2!#A2~g1h!B 22hA 250.
~21!

FIG. 3. Stability diagrams taking into account spatial quadra
terms. Parameter values:~a! Ah50.8, a150.22, a2522.4
31024; ~b! Ah50.92, a150.22, a2521.331024; ~c! Ah
51.59, a150.21, a2522.731023.
05621
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The latter expression givesB 25$m2 3
4 d21@v1 1

2 d(A3a1
1a2)#A2hA 2%/(g1h), which introduced into the forme
relationship leads to a cubic equation@27#

a3A 31a2A 21a1A1a050, ~22!

with the coefficients

a352h22g~g1h!,

a252h@3v12dA3a1#,

a152m~h2g!2 3
2 hd2

1@v1d~A3a12a2!#@v1 1
2 d~A3a11a2!#,

a05~m2 3
4 d2!@v1d~A3a12a2!#. ~23!

Stability curves for squeezed hexagons are shown in
(m,d) plane forAh51.59 in Fig. 4. We only showHp hexa-
gons, but as for regular hexagons@Fig. 3~c!#, the stability
region of squeezedH0 hexagons stands for higher values
m. Squeezed hexagons are stable within the shaded area
coexist with stripes above the dashed curve. The minima
the stability curves for stripes and hexagons~dashed lines!
are shifted to the left, owing to the sign ofa2. Moreover,
distorted hexagons are not fully replaced by stripes just o
one point but on a wide interval in this case.~Details are
given elsewhere@28#.!

V. LONG-WAVELENGTH INSTABILITIES

A more interesting kind of instabilities occurs because
spatial modulations of the underlying modes. Since a per
pattern remains invariant under spatial translations al
some symmetry axes, slight long-wavelength variations w
evolve in a slow scale, according to the so-calledphase
equation. This formalism applies unless the gradient of pha
becomes large at some location, i.e, at the core of a de
where the phase is singular. For the sake of clarity, we
cuss separately this equation for patterns of stripes and h
gons, and for distorted hexagons.

c

FIG. 4. Amplitude stability zone for squeezed hexagons~shaded
region!. Above the lower dashed line, stripes are also stable. Par
eter values:Ah51.59, a150.21, a2522.731023.
3-5
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A. Stripe and hexagonal patterns

Let us briefly recall thephase equationfor stripes. It is
obtained by considering small amplitude~r! and phase (f)
perturbations on the solutionS, A5S(11r 1 if)eiqx. This
leads to coupled equations forr andf. Consistently with the
phase formalism,r is eliminated adiabatically and written i
terms off, so that we end up with the phase equation] tf
5D i]x

2f1D']y
2f, with D i5(m23j0

2q2)/(m2j0
2q2), D'

5j0q/kc @15#. The zig-zag instabilitybecomes dangereou
wheneverD',0, i.e., for k.kc , whereas theEckhaus in-
stability takes place whenD i,0, i.e, fork2kc.Am/3j0

2.
Generically hexagons have two independent marginal

rections and, therefore, long wavelength perturbations re
in a 2D phase equation. The form of this equation can b
deduced solely by symmetry arguments@29# ~see next sec-
tion!. To compute the coefficients we consider perturbatio
in Eq. ~15! in the form

Ai5H~11r i1 if i !e
iqxi, i 51,2,3, ~24!

so that they evolve according to

]Tr 15~m2q2!r 11]x1

2 r 122q]x1
f11uv12qa1uH~r 21r 3!

22hH 2~r 11r 21r 3!23gH 2r 1

1a1H~]x2
f21]x3

f3!1a2H~]t3
f32]t2

f2!,

]Tf15~m2q2!f11]x1

2 f112q]x1
r 1

2uv12qa1uH~f21f3!2~g12h!H 2f1

1a1H~]x2
r 21]x3

r 3!1a2H~]t3
r 32]t2

r 2!.

These expressions can be further reduced looking bac
the eigenvalues in Eqs.~11!–~14!. The threes i are associ-
ated to the eigenvectorsvW 15(1,1,1), vW 25(1,21/2,21/2)
and vW 35(0,A3/2,2A3/2) and determine the amplitude st
bility. The fourth one~labeledsp1) ~always negative! corre-
sponds to the total phaseF5f11f21f3 decaying to 0 or
p. So the phase evolution results from the other two eig
values after using the following arguments. The amplitud
remain invariant under shiftsDx52nl or Dy52nl/A3, i.e,
under a phase change (f18 ,f28 ,f38)5(f1 ,f2 ,f3)1kDxv2

1kDyv3, so that the eigenvectorsv2 and v3 are marginal
modes~Goldstone modes!. In view thatF can be kept con-
stant only two phases are independent, so it is useful to c
sider fx52(f21f3) and fy5(f22f3)/A3. Adiabatical
elimination of enslaved modes and a center manifold red
tion to (fx ,fy) gives @30,31,22,24#

]Tf5Dt¹
2f1~Dl2Dt!“~“•f!, ~25!

with the coefficients@22#:

Dt5
1

4
2

j0
2q2

2u
1

H 2

8u
~a12A3a2!2, ~26!
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Dl5
3

4
2

j0
2q2~4u1w!

2uw
1

H 2

8u
~a12A3a2!2

2
a1H 2

w
~a11A3a2!1

j0qH
w

~3a11A3a2!,

~27!

@u andw were given in Eqs.~16!, ~17!#. This phase equation
is similar to the wave equation of an isotropic solid@30#.
Hence the phase field can be split into two normal mo
f5fl1ft , that obey the relationships“3fl50 and “

•ft50, respectively.Squeezedf l andshearedf t distortions
relax diffusively (] tfl ,t5Dl ,t¹

2fl ,t) inside the zones
bounded byDl ,t50. We will comment on the phase insta
bility regions in connection with numerical computations
Sec. V C.

B. Squeezed hexagonal patterns

After applying the same procedure to solutions of Eq.~22!
and restricting the analysis to the linear part at lowest or
one obtains an equation of the form@29#

ḟ i5D i
kl j]kl

2 f j . ~28!

The reflection symmetriesx→2x and y→2y and k↔ l
leave six independent coefficients that can be written i
matricial form] tf5B•f, with

B[S D1]x
21D2]y

2 D5]xy
2

D6]xy
2 D3]x

21D4]y
2D . ~29!

This is the general expression for the phase of distorted h
gons or for a rhombic pattern. For squares the diagonal s
metry x→y gives in additionD15D4 , D25D3 , D55D6,
so that only three diffusion coefficients should remain ind
pendent. Finally, rotation symmetry reduces these to two
dependent coefficients for equilateral hexagons, becauseD1
5D45Dl , D35D55Dt andD55D65Dl2Dt , so that Eq.
~25! is recovered. In the casea i50 the diffusion coefficients
Di for squeezed hexagons can be computed from Eq.~6!.
Their explicit expressions are rather cumbersome, but an
terested reader can find them in Ref.@28#. The eigenvalues of
B has to be computed numerically and they give the stab
curves in Fig. 5, now drawn in terms of the deviationsDu
from 2p/3 rad. This stability region~dashed region! is simi-
lar to, though smaller than the region determined numeric
in Ref. @11#. @Its width is model dependent~see Ref.@28#!.#

When a15a250, Eqs. ~6! become variational, i.e., a
Lyapunov functional can be derived. Equilateral hexago
get the minimum energy among the squeezed lattices
therefore, this should be the selected planform. Neverthel
though globally unstable, distorted hexagons can be loc
stable owing to boundary conditions or pinning~nonadia-
batic! effects among domains~a situation not covered within
the amplitude equation framework!, as obtained in experi-
ments. Irregular patterns come out spontaneously from
homogeneous state after making a sudden jump in con
3-6
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parameter, so that the Turing stability region is reached
by illuminating the cell through a distorted hexagonal latt
of spots with angles slightly different from 2p/3. In both
cases the evolved pattern displays several domains with
equal angles. The rmsDu rms of the observed angular distr
bution function changes withm in qualitative accord with the
theoretical findings@11,26#.

C. Comparison with numerical simulations

The validity of these stability diagrams have be
checked against simulations of model~1!. These are per-
formed after discretizing the spatial terms in a square m
of 1283128 points with periodic boundary conditions. Sim
lar outputs are obtained using two different integration me
ods: a spectral method@32# and a semi–implicit method@33#.
During the first stages several domains, separated by s
walls or defects, are formed, but most of these evolve slow
After about 5000 time steps a stationary pattern with f
defects is eventually reached. Typical stationary snaps
arising from random initial conditions for several values ofm
are shown in Fig. 6. Values for the concentrationx are rep-
resented in a gray scale varying from black~minimum! to
white ~maximum!. On varying the control parameterm the

FIG. 5. Stability regions of hexagons distorted an angleDu as a
function of m.

FIG. 6. Patterns from computations of the Brusselator. Par
eter valuesAh51.59 and~1! m50.04, ~2! m50.07, ~3! m50.08,
~4! m50.30, ~5! m50.54, ~6! m50.66, and~7! m50.98.
05621
r
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ts

sequenceHp hexagons ~asterisk! →Hp-hexagon–stripe
mixtures ~full squares! → stripes ~open circles!,
→H0-hexagon–stripe mixtures~full squares! →H0 hexa-
gons ~asterisk! is observed. From the Fourier transform
the pattern one obtains the average wave number tha
creases withm, its value remaining not far from the line o
highest linear growth~dotted line!. These fit rather well into
the stability regions of the asymmetrical diagram~Fig. 7!,
hence confirming that the spatial nonlinear terms are cru
for a correct interpretation of the transition between differe
symmetries and the nonlinear pattern selection@24#.

Finally, we performed a simulation starting from a give
initial pattern of stripes inside the regionS in Fig. 7. A sud-
den decreasing ofm to a value for whichHp hexagons are
stable, gives rise to a pattern of steady sheared hexagon
one can see in the Fourier spectrum in Fig. 8. Although,
sheared case has not been worked out explicitly, this si
lation confirms that initial and/or boundary conditions c
give rise to locally stable distorted hexagons, as discusse
Sec. V B.

VI. CONCLUSIONS

We have presented a weakly nonlinear analysis for
Turing patterns formed in the Brusselator model, for whi
we have derived amplitude equations for the excited mod
Up to third order in the amplitudes these equations also
clude spatial nonlinear terms, as it has also been discu

-

FIG. 7. Amplitude and phase instabilities~dashed curves! for
Ah51.59, a150.21, a2522.731023. Eckhaus instabil-

ity, curveDl50, and - - -Dt50. Dark areas: stable hexa

gons. Striped domains: stable stripes. Points: numerical simulati
Dotted line: maximum linear growth.

FIG. 8. A stable distorted hexagon pattern that comes up fr
simulation of the Brusselator and its ensuing Fourier spectrum.
3-7
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in other systems. The coefficients of these generalized
plitude equations have been explicitly calculated, allow
us to determine the relative stability of hexagons and stri
near the onset of the Turing instability. From those equati
the evolution of phase modes has been derived@34#. The
diffusion coefficients of the phase equations, together w
the eigenvalues of amplitude equations allow us to calcu
the stability regions forstripes and hexagonsin parameter
space. These regions look quite different whether the sp
nonlinear terms are included in the description.

We have computed the phase instability regions
stretched Hp hexagons. Although globally unstable
stretched hexagons can be locally stable with distort
angles inside the phase stability region. This is qualitativ
similar to the stability diagram reported in experiments
initially imposed distorted chemical patterns@11,26#, but the
permitted angles for the Brusselator result to be rather sm

To confirm these analytical findings numerical simu
tions of the Brusselator model have also been perform
The average wave number of patterns in these simulat
fits quite well into the stability regions calculated from th
hy

.

s.

. J

k

ys

. A
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amplitude equation. This fact gives valuable support to
clude nonpotential terms into evolution equations. We a
checked that simulations from suitable initial conditions c
lead to stabledistorted hexagonsin the Brusselator, as found
by other authors@20#. We guess the results presented he
will stimulate a search of spatial effects in Turing patter
forming experiments.
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@9# A. De Wit, Thèse doctoral, Universite´ Libre de Bruxelles,
1993; inAdvances in Chemical Physics, edited by I. Prigogine
and S.A Rice~Wiley, New York, 1999!, Vol. 109, p. 435.

@10# E. Mosekilde, F. Larsen, G. Dewel, and P. Borckmans, Int
Bifurcation Chaos Appl. Sci. Eng.8, 1003 ~1998!; K.E. Ras-
mussen, W. Mazin, E. Mosekilde, G. Dewel, and P. Borc
mans,ibid. 6, 1077~1996!.

@11# Q. Ouyang, G. Gunaratne, and H. Swinney, Chaos3, 707
~1993!; G.H. Gunaratne, Q. Ouyang, and H.L. Swinney, Ph
Rev. E50, 2802~1994!.

@12# H. Brand, Prog. Theor. Phys. Suppl.99, 442~1989!; E.A. Kuz-
netsov, A.A. Nepomnyashchy, and L.M. Pismen, Phys. Lett
205, 261 ~1995!.
s.

.

-

.

@13# F.H. Busse, Rep. Prog. Phys.41, 1929~1978!.
@14# J. Verdasca, A. de Wit, G. Dewel, and P. Borckmans, Ph

Lett. A 168, 194 ~1992!.
@15# P. Manneville,Structures Dissipatives, Chaos et Turbulen
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