PHYSICS 200B : CLASSICAL MECHANICS
FINAL EXAM SOLUTIONS

[1] Consider the time-dependent ‘kicked’ Hamiltonian H(t) = T'(p) + V(¢) K(t), where
K(t) =7, d(t —n7) is a Dirac comb. Let ¢, = ¢(n7™) and p, = p(n7~), i.e. just before
each kick.

(a) Find the matrix
Mn _ a(qn—i-l?pn-l—l) ’
(4 )

and show that it is symplectic.

Hamilton’s equations are ¢ = —T"(p) and p = V'(q) K(t). Integrating from t = nr~ to
t = (n+1)7~, we obtain

p+1 = 4n — TT/(pn—l—l) y Pny1 = DPn +7 V/(qn)

Thus,

dpn+1 = dpn +7 V//(Qn) dQn

dgy41 = dg, — TT//(pn—l—l) dpp41

= {1 - 7—2 T//(pn—l—l) V//(qn)] dqn =T T//(pn—l—l) dpn
Thus,
M. = a(qn—l-17pn+1) — <1 - T2 T/,(pn+1)VII(Qn) _TT/,(pn—i-l))
" 0(gnpn) TV"(q,) 1

Now consider a general 2 x 2 matrix, M = <z Z) We have

o= (5 2) (o) (¢ a) = (G 0)

Thus, any 2 x 2 matrix M with unit determinant det M = ad — bc is symplectic. Note that
det M,, = 1, hence M,, is symplectic.

QU

(b) Find the condition that a fixed point (¢*, p*) is unstable.

1—ab —a
b 1
The characteristic polynomial of any 2 x 2 matrix M is P(\) = det(A — M) = X\> = TA+ D
where T = Tr M and D = det M. Since D = 1 we have P(\) = A? — TA + 1, with roots
Ay = 3T £ 3VT? — 4 with T =2 — ab. Note \,A_ = D = 1. For T? < 4 the eigenvalues
are of the form A\, = e with 6 = cos™!(7/2). When T2 > 4 we have A\, = sgn(T) e*?,
with 8 = cosh™(|T'|/2) = log (5|T| + £/ T? —4). Thus, stability requires T € [—2,2], i.e.

The matrix M,, is of the form M,, = ( ) ,wherea = 717" (p,,.,) and b= 7V"(q,).

0< 7_2 T”(p*) V"(q*) < 4



The condition for instability is that this condition is violated, i.e. either 72 T" (p*) V" (¢*) < 0
or T2T"(p*) V" (q*) > 4.
(c) Define the function

g(x) =z — nint(z)
where nint(x) is the nearest integer to z. Thus g(£0.4) = 40.4 since nint(+£0.4) = 0, but
9(0.6) = —0.4, g(—3.7) = 0.3, etc. Now consider the case

2
T(p)Zf_m'[g(p/P)]2 L Vi) = 3kQ% [9(q/Q)]

This effectively renders the phase space a torus of area PQ. Find the conditions for all
fixed points of the map (g,,,P,) =+ (¢p41:Ppy1)- Which fixed points are unstable?

We have, for ¢ € [—%Q, %Q] and p € [—%P, %p],
T'p)=— Vid=k

Note that 7”(p) = m~! and V”(q) = k independent of (¢,p). Thus, T = 2 — w?72, where
w? = k/m, and the instability condition is |wr| > 2 for all fixed points. To find the fixed
points, set g, = Qx,, and p,, = Py,,. The map is

Ty = (1 — w27'2) Z, —Trwry, mod 1

Yni1 = Yn T+ r~Ywrx, mod 1
where r = P/Qv/'mk. Here,“mod 1” folds each of x, ., and vy, into the interval [—1, 3].
So consider a fixed point (z*,y*). We must have

lore* =5

—
Wit 4 roryt =1,

where [z*| < 4 and [y*| < § and both j and [ are integers. One obvious solution is j = I = 0,

yielding z* = y* = 0. But there may be others, depending on the values of wr and r. The

general expression for fixed points is then

[2] Consider the 1D map z,,,; = f(z,), where

f(z) =rz(l —z)(1 - 2z)?

(a) Numerically explore the stability of the fixed 1-cycle by plotting cobweb diagrams for
various values of r. Note that f(z) = f(1—=z), f(0) = r, but f(%) = 0. Thus, as r changes,



new solutions to the fixed point equation f(x) = x may appear discontinuously. Can you
numerically identify the ranges of stability?

See fig 2.

(b) Another way to investigate is the following. Write a computer program which makes a
plot like in fig. 2.10 of the lecture notes. Here is how I made that figure:

i. The outer loop is over the r values. For this problem, choose r € [1,16]. Loop over
at least 500 values.

ii. For each r value, iterate the map 2/ = f(z) one thousand times, but do not plot the
results. Start with a random seed z,. (You can even try using the same seed for each
r value.)

iii. After iterating so many times, your program should have settled in on a stable cycle
or else it is in a regime of chaos. Plot the next 400 iterates of the map.

iv. Advance r to its next value r + Ar and go back to step (ii). Terminate after r = 16.

See fig 1.

(c¢) Analytically obtain the region of stability in the control parameter r and the corre-
sponding set of fixed points x*(r). Hint: Simultaneously set f(x) =z and f'(z) = £1.

Taking the derivative, we find
f'(x) =r(1 —22)(1 — 8z + 82?)

which is cubic. We also have

@ =r(1—z)(1-22)*

which is also cubic. Setting f(z) = x and f’(z) = £1, we have
r(1—z)(1 —22)? = £r(1 — 22)(1 — 8z + 82%) = 1

Note that the first two expressions share the common factor (1 — 2z). Dividing by this
factor yields a quadratic equation! Taking the upper (4) sign, we obtain

(1-2)1—-22)=1-8x+8* = 62°—5z—-0 ,
with the solutions z = 0 and =z = %. Plugging these values into either of the equations
f(z) =z or f'(z) = +1 yields 7(0) = 1 and r(2) = 2f. Now consider the lower sign (—)
case where f'(x) = —1. We then obtain the quadratic equation 1 — 22 — 11z + 2 = 0, with
solutions

vy = 5 (11 £ V41)
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Figure 1: Iterations of the map ' = rz(1 — z)(1 — 22)2.

Numerically, z_ = 0.2298 and z, = 0.8702. Plugging these values into f(z) = z or
f'(x) = 1, we find (0.2298) = 4.448 and r(0.8702) = 14.05. Thus, there are two regions
where there is a stable fixed point (1-cycle): (i) r € [1,4.448] and (ii) r € [13.5,14.05].

(d) Show that for r = 16, if we define 2 = sin? §, with @ € [0, 7], there is a simple relationship
between 0, ,; and 6, . Writing the binary expansion of 0,,—¢ as

b
_ k
00_7(22_]9 s
k=1

and given that sin? is periodic under § — @ + 7, find the corresponding binary expansion
of 0, .
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Figure 2: Cobweb diagrams for the map 2’ = rz(1 — z)(1 — 2x)?.

With z = sin? 6, we have
f(z) =rz(l —z)(1 — 22)? = rsin®0 cos?6 cos¥(260) = % rsin?(46)

Hence when r = 16 we have the map 6,,,; = 46,, and writing 6y = 7> ;2% b, we obtain

o0

b
— Z k;fn
k=1

That is, each iteration of the map at r = 16 shifts the binary expansion of 6 two digits to
the left.



[3] The Burgers vortex — Seek an exact, steady state solution to the Navier-Stokes equations
(with ¢ = 0) of the form

v(r,¢,z) = —3are, + vy(r) e, +aze,

(a) Verify that V - v = 0 and that w = w(r)é,. Show that the equations of motion imply
a first order ODE for the vorticity w(r). Obtain that equation.

First, some vector calculus relations in 3D cylindrical coordinates (r, ¢, z). The gradient is

19U . U,

VU:—eT—Fra—(beqb—i-@ez

The divergence is
1 d(rA,) n 1 0Ay 0A,

V-4 r or r8<;5+82

The curl is

O A (1 04, %> 5t <8AT - aAZ> 6+ (1 o(rAy) 1 814,) ..

r ¢ 0z 0z or r or r O¢
The Laplacian is
ror\"ar ) T e T 92
Thus, the divergence of the velocity field given above is

_ 10 1 2y 10 9
_7‘87’( 2aT)+r8¢v¢(T)+8z(az)_

V2U_la< 8U> 19U U

V.o

The vorticity is

10(rvy(r)) dvg(r)  vy(r)
e STty

Now from the NS equation we have

(Z—j:Vx(vxw)+VV2w(r)éZ:0 ,

since w = w(r) €, is time-independent in the steady-state limit. Since w = wé,, we have

e, e e,
vXxw=det|v, v, v, :wv¢(r)ér+%wré¢ ,

0 0 w

and 5
VX ((vxw)= ;§<%QT2W(T)) e,

Now 19

=12 (i)

~ rw(r)) e,



Integrating the equation V x (v x w) + v V2w(r) &, = 0 once, we have

1 . dw 0 = dw ar
sorw + v — = —_— = ——
2 dr w 2u

(b) Find w(r) and v,(r).

Integrating the first order ODE for w(r), we have

2

logw = log C' — % = w(r) = C e’/

where C' is a constant. From

_ Ldlrey)

_ —ar?/4v
rodr Ce

w(r)

Integrating, we have

vy(r) = C'(l — 6_0”2/41/) )

where C" = 2vC/a, and where the second constant of integration is chosen so that ¢(r) is
not divergent as r — 0,



