PHYSICS 200B : CLASSICAL MECHANICS
SOLUTION SET #1

[1] Consider one-dimensional motion in the potential V' (z) = —V, sech?(x/a) with Vj > 0.

(a) Sketch the potential V' (z). Over what range of energies may action-angle variables be
used?

(b) Find the action J and the Hamiltonian H(.J).
(c) Find the angle variable ¢ in terms of z and the energy E.
(d) Find the Solution for z(t) by first solving for the motion of the action-angle variables.

Helpful mathematical identities :
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where @(E) = cosh™'/V,/(—FE) in the first integral.

Solution :

(a) The figure is shown below. For E < —Vj, there are no Solutions. For £ > 0 the motion
is unbound, neither librating nor rotating. Action-angle variables may be applied in the
region —Vy < E < 0.

(b) Using conservation of energy F = % + V(x), the momentum is

p=1/2m(E —V(z))

The action is
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Thus, from H(J) = E we have

where Z(E) = au(E) = acosh™! \/V, /| E.
(¢) We have

Wiz, J) = /dqp = \/2m/dx/\/E— V(x')
Then
~1/2
0J

= ¢y — sin_1< VO‘—E’\E] sinh(:n/a)) ,

b= __1\/_ 8J/dgc E + Vysech®(x /))

where ¢ is an arbitrary constant.

(d) Since ¢ = a—H = v(J), we have ¢(t) = v(J)t and

z(t) = asinh ™! ( Yy |_E|‘E’ sin(wt + ¢0)> )
where
oF —2F
w =) =57 =\ e

Note that x(t) oscillates between +Z(FE), where sinh(z/a) = \/(Vo — |E|)/|E|, which is
equivalent to cosh(z/a) = \/V,/|E|, as we found in part (b).

[2] A particle of mass m moves in the potential U(q) = A |¢|. The Hamiltonian is thus

2

p
Hy(q,p) = om T Alql



where A is a constant.
(a) List all independent conserved quantities.

(b) Show that the action variable .J is related to the energy F according to J = § E%/2/A,
where f is a constant, involving m. Find .

(c¢) Find g = q(¢, J) in terms of the action-angle variables.
(d) Find H,(J) and the oscillation frequency v(.J).

(e) The system is now perturbed by a quadratic potential, so that

2
p

where ¢ is a small dimensionless parameter. Compute the shift Av to lowest nontrivial
order in e, in terms of v, and constants.

Solution :

(a) The only conserved quantity is the Hamiltonian itself:

dHy _ OHy _,
a ot

We write H(q,p) = E, the total energy. Clearly E > 0, and E = 0 is particularly boring.
(b) Since the energy is conserved, we have
p(a) = £v/2m(E — Alq|)

There are two turning points, at ¢, (E) = E/A. We can integrate to get the action:
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with g = 4v/2m / 3m. Note that the integral over a complete cycle is written above as four
times the integral over a quarter cycle, i.e. from ¢ =0 to ¢ = ¢ (F) = E/A.

(c) We first obtain the characteristic function W(q, E(J)). We have

aw m
p= G —VIE-AG) = W) =755 (B~ Ald) (@)

where we’ve used %\/ 2m = 3. The angle variable is
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Squaring, we find
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This is valid on the interval ¢ € [—%, %], where ¢ is positive. In fact, this is all we need
to solve the problem, but it is worthwhile writing down the continuation of this relation
for the other half of the cycle, i.e. for ¢ € [7, 37“] This can be done by inspection, taking
advantage of the symmetry of the orbit C:

Thus,
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(d)We have
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(e) Expressed in terms of the action-angle variables (¢, .J), the perturbing Hamiltonian is
€

H,(¢,J), with
J2 2/3 4(252 2

This holds for all ¢ provided we periodically extend the function ¢ from the interval
¢ € [, F] to the entire real line. Due to the parity (¢ — —¢) symmetry, we can average
over a quarter cycle, and we obtain

POV 8B )
(o) =5 (57 fas0= 7 = i 1
0

where we’ve substituted s = % ¢. The energy shift is AE = 6<H1>. Thus,
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[3] Consider the nonlinear oscillator described by the Hamiltonian

2
p
H(q,p) = 9 + %qu + %eaq4 + %ebp‘l ,
m
where ¢ is small.

(a) Find the perturbed frequencies v(J) to lowest nontrivial order in e.

(b) Find the perturbed frequencies v(A) to lowest nontrivial order in €, where A is the
amplitude of the ¢ motion.

(c) Find the relationships ¢ = ¢(¢, J;) and J = J(¢,, J,) to lowest nontrivial order in e.
Solution :

With k = mug, recall the AA variables

2
—1( MVyq p
¢g = tan 1<—p0 > ; Jo = s 3mvoq”
0

Thus, ¢ = (2.J,/muy)"/? sin ¢y and p = (2muyJ,)"/? cos ¢y , so the Hamiltonian is

H(pg, Jy) = voJo + €Hy(do, Jo)

where
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Hy(¢, o) = ngg s1n4¢0 + bm21/02J§ cos4<;50
0

(a) Averaging over ¢, we have (sin¢,) = (cos’¢,) = 2, so

Eﬂﬂ:(ﬁm%J»:<é%+MM>xgﬂ

The perturbed frequencies are v(J) = v, + ev; where v; = %. Thus,
(1) = )5 (2 k) x Bes
S Vm mk 4

(b) We only need J to zeroth order in €. Setting p = 0 and g = A gives J = %mV0A2 +0O(e),
in which case

v(A) = % + <% + bmk) X %emyoAz

(c) Recall the desired type-II CT is generated by S(¢y,J) = ¢oJ + €S (¢, J) + ..., with

as, (H,) - H,

09, vo(J)



Thus,
oS aJ? .
8#@1) =2 (% — sm4(b0) + meVOJ(% - cos4¢0)
0

Integrating, we have
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S1(¢g, J) (% sin(2¢,) — 3—12 sin(4q§0)> — bm2V0J2 (% sin(2¢q) + 3% sin(4¢0))
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The constant may be set to zero as it leads to a constant shift of the angle variable ¢. Thus,
we have

J0:J—|—e%+0(62)

a —bmig 9 a+ bm?vd 9 9
= J—|— <W>€J COS(2¢O) — (W)EJ COS(4¢0) + O(E )
Thus,
a—bm*d a+ bm?d
J=Jy— <W>d§ cos(2¢g) + (W)eﬁ cos(4epy) + O(€%)
We then have
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